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INTRODUCTION

In medicine, improving prognosis is the ultimate goal 
of all diagnostic and therapeutic decisions. Prognosis 
commonly relates to the probability or risk of an 
individual developing a particular state of health. Health 
care providers need to make decisions to order tests for 
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diagnostic work-up or decisions relating to therapeutics 
such as starting or delaying treatments, surgical decision-
making, and changing or modifying the intensity of 
treatments. A clinical prediction model (often referred to as 
the clinical prediction rule, prognostic model, or risk score) 
is developed to calculate estimates of the probability of the 
presence/occurrence or future course of a particular patient 
outcome from multiple clinical or non-clinical predictors 
in order to help individualize diagnostic and therapeutic 
decision-making in healthcare practice (1).

For example, the Framingham risk score is well known 
in public health as a prediction model used to estimate 
the probability of the occurrence of a cardiovascular 
disease in an individual within 10 years. It is calculated 
using traditional risk factors such as age, sex, systolic 
blood pressure, hypertension treatment, total and high-
density lipoprotein cholesterol levels, smoking, and 
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prediction is inherently multivariable. The same challenges 
and measures exist for developing and assessing the 
prediction model. This model can be developed for either ill 
or healthy individuals.

The main difference is the time at which outcomes 
are evaluated. In diagnosis, outcome is evaluated at the 
same time of prediction for individuals with a suspected 
disease. In prognosis, models estimate the probability of a 
particular outcome, such as mortality, disease recurrence, 
complications, or therapy response, occurring in a certain 
period in the future; therefore, collecting follow-up data is 
more important. Consequently, diagnostic modeling studies 
involve a cross-sectional relationship, whereas prognostic 
modeling studies involve a longitudinal relationship.

Study Design for Raw Dataset

The performance of a statistical model depends on the 
study design and the quality of the analyzed data. Various 
study designs can be used to develop and validate a 
prediction model. Diagnostic accuracy studies are often 
designed as cross-sectional studies in which, typically, the 
diagnostic test results and the results of a reference test 
are compared to establish the ground truth regarding the 
presence or absence of the target disease performed for a 
group of subjects in a short duration. Prospective studies 
using a pre-specified protocol for systematic diagnostic 
work-up and reference standard testing in a well-defined 
clinical cohort, i.e., a cohort-type diagnostic accuracy 
study, are preferred to retrospective studies so as to 
minimize incomplete test results and/or assessment bias. 
Case-control-type accuracy studies can also be applied in 
prediction model studies (12). However, patient sampling 
for the presence or absence of the target disease and 
including non-consecutive patients leads to selection bias 
and loss of generalizability.

The best design for prognostic studies is a cohort study. 
Healthy or symptomatic participants are enrolled in the 
cohort at a certain time interval and are followed over time 
in anticipation of the outcome or event of interest. Such 
studies can be prospective or retrospective; the preferred 
design is a prospective longitudinal cohort study because it 
is efficient to optimally control and measure all predictors 
and outcomes and minimize the number of missing values 
and those lost to follow-up. Alternatively, retrospective 
cohort studies are often performed with existing databases 
such as hospital records systems or registries. In these 

diabetes (2). In clinical practice and medical research, 
baseline characteristics and laboratory values have been 
commonly used to predict patient outcome. For instance, 
risk estimation for the hepatocellular carcinoma in chronic 
hepatitis B score was developed using sex, age, serum 
alanine aminotransferase concentration, hepatitis B e 
antigen status, and serum hepatitis B virus DNA level (3).

In radiology practice and research, diagnostic imaging 
tests have traditionally been viewed and evaluated by 
assessing their performance to diagnose a particular 
target disease state. For example, ultrasound features of 
thyroid nodules have been used in risk stratification of 
thyroid nodules (4). Coronary computed tomography (CT) 
angiography (CCTA) has been evaluated for the selection 
of coronary artery bypass graft candidates (5). Recently, 
it appears that imaging findings are also often used as 
predictive parameters, either for standalone prediction or 
as an addition to the traditional clinical prediction models. 
For example, cardiac CT, including coronary artery calcium 
scoring and CCTA, provides prognostic information regarding 
mortality or disease recurrence and is expected to improve 
risk stratification of coronary artery disease (CAD) beyond 
clinical risk factors (6-9).

In evaluating diagnostic imaging tests, patient health 
outcomes can measure higher levels of efficacy than 
diagnostic accuracy (10). Radiologic imaging techniques are 
being developed for accurate detection and early diagnosis, 
which will eventually affect patient outcomes. Hence, with 
results attained through radiological means, especially 
diagnostic imaging results, being incorporated into a 
clinical prediction model, the predictive ability of the model 
may improve in both diagnostic and prognostic settings. In 
this review, we aim to explain conceptually the process for 
development and validation of a clinical prediction model 
involving radiological parameters with regards to the study 
design and statistical methods.

Diagnosis and Prognosis

There are several similarities between diagnostic and 
prognostic prediction models (11). The type of outcome 
is often binary; either the disease is present or absent (in 
diagnosis) or the future event occurs or does not occur (in 
prognosis). The key interest is in generating the probability 
of the outcome occurring for an individual. Estimates of 
probabilities are rarely based on a single predictor, and 
combinations of multiple predictors are used; therefore, 
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cases, it is possible to have longer follow-up times, and 
obtaining records incurs a relatively lower cost than in the 
prospective design. However, some information is often 
missing or incorrect, leading to a selection bias.

Randomized clinical trials are a subtype of the 
prospective cohort design, and thus can also be used for 
prognostic models. However, the main disadvantages may 
be in the selection of patients. Participants are enrolled 
strictly according to inclusion/exclusion criteria and receipt 
of informed consent, decreasing the generalizability of this 
model.

Candidate predictors include patient demographics, 
disease type and severity, history characteristics, physical 
examination, biomarkers, and tests results. Predictors 
should be reliably measured and well defined by any 
observer. Inter-observer variability caused by subjective 
interpretation is a specific concern when imaging test 
results are involved as predictors. Predictor assessors 
should always be blinded to the outcome and vice 
versa, particularly if the predictors involve subjective 
interpretation of an imaging test or pathology results, 
in order to prevent potential bias in estimation of the 
association between predictors and outcome.

The outcomes of a prediction model are preferably focused 
on patient-relevant outcomes. In diagnostic modeling, the 
outcome is the presence or absence of a specific target 
disease state (i.e., reference standard information) at the 
time of the diagnostic test. For prognostic models, common 
outcomes relate to mortality (e.g., all-cause or cause-
specific), non-fatal events (e.g., disease progression, tumor 
growth, and cardiovascular events), and patient-centered 
outcomes (e.g., symptoms, and health-related quality of 
life).

Development of Prediction Model

Sample Size for Model Derivation
It is important to have an adequate sample size when 

developing a prediction model; however, what constitutes 
an “adequate” sample size is unclear. In medical research, 
a larger sample size will yield more findings of high 
reliability. When the number of predictors is much larger 
than the number of outcome events, there is a risk of 
overestimating/overfitting the predictive performance of 
the model. In principle, the sample size could be estimated 
regarding a precision of metrics of prediction model 
performance (R2 or c-index to be discussed later). Generally, 

the smaller number of the binary outcome (events or non-
events) dictates the effective sample size in prediction 
studies. From some empirical simulation studies, a rule of 
thumb for sample size has been suggested (13, 14) in which 
at least 10 events (or non-events depending on which side 
is smaller) are required per candidate predictor, although 
other investigations have found the value of 10 to be too 
strict (15) or, conversely, too lax (16). For example, when 
the number of events is 400 out of 1000, we can consider 
as many as 40 (= 400/10) variables as candidate predictors 
in developing the prediction model. It is often the case 
that a data set may already be readily available from a large 
cohort or registry; it would make sense to use the entire 
data set for maximum power and generalizability of the 
results, regardless of whether it meets specific sample size 
calculations.

Statistical Model Selection
As mentioned previously, prognostic studies are inherently 

multivariable. Hence, the most frequently used approach 
is multivariable regression modeling. A linear regression 
can be applied to predict a continuous outcome; a logistic 
regression model is commonly used to predict a binary 
endpoint; and a Cox proportional hazards regression model 
is used for time-to-event outcomes. The logistic regression 
is usually used in diagnostic models or short-term 
prognostic events (e.g., 30-day mortality), and the Cox 
regression is used for long-term prognostic outcomes (e.g., 
10-year cardiovascular disease risk).

Considerations in Selecting Predictors
Predictor selection can be performed before and during 

modeling. Before modeling, a set of variables could be 
selected by considering clinical reasoning (i.e., commonly 
applied in clinical practice), costs or burden of measuring, 
relevant literature (e.g., a systematic review of the 
literature), and/or knowledge of experts in the field. For 
continuous variables, categorization (e.g., dichotomization) 
is commonly used for user (e.g., clinician) convenience 
or easier presentation of prediction models. However, 
information loss or various results from different cut points 
are non-ignorable. A data-driven cut point (e.g., mean or 
median of the predictor as optimal cut point) may produce 
a biased regression coefficient (17). Thus, researchers 
should carefully use the categorization of predictor values 
and should explain the rationale for any categorization.

After preselection of predictors, candidate variables can 
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be selected based on univariable (unadjusted) association 
with the outcome. However, this approach may reject 
important predictors due to confounding by other predictors 
in the model. Non-significance does not imply that there 
is evidence for a zero effect of a predictor; in other words, 
absence of evidence is not evidence of absence (18). 
Automated variable selection methods, such as forward 
selection, backward elimination, or stepwise selection, 
can be implemented in some statistical packages. Usually, 
automated variable selection methods make a model 
smaller. However, different criteria for predictors to be 
included or excluded or different statistics of model fit (i.e., 
F statistic or Akaike information criterion) are used in the 
different statistical packages and, along with the random 
variability that exists in the data, means that the selection 
of predictors may be unstable (19). Alternatively, repeating 
the automated variable selection process by bootstrapping, 
i.e., most frequently selected (e.g., at least 50% or 75% of 
the bootstrap samples) variables within bootstrap samples 
being included in the prediction model, may identify true 
predictors (20). Austin (21) showed that the bootstrapping-
based method tended to have similar variable selection to 
backward variable elimination with a significance level of 
0.05 for variables retention.

Multicollinearity is a relevant issue in regression modeling 
because it affects the reliable estimation of each predictor’s 
estimate. However, this is not relevant for adequate 
reliability of the prediction model as a whole. The purpose 
of multivariable prediction modeling is to predict outcome 
with consideration of the joint effects of predictors 
that are correlated with each other. Prediction is about 
estimation rather than risk factor testing, and thus it is 
quite reasonable to include all clinically relevant predictors 
in the prediction model despite non-significant univariable 
association or multicollinearity (1).

Missing values, for either predictors or outcomes, often 
occur in clinical prediction research. There are several 
approaches to deal with missing values, such as complete 
case analysis or imputation. Traditional “complete case” or 
“available case” analyses lead to selection bias of subjects 
and statistically inefficient results. A more effective method 
can be used, the so-called imputation approach, in which 
the missing value is replaced by a mean or median, or 
replaced by a predicted value from the observed data. 
It is related to observed variables, and thus assumes a 
missing at random mechanism. Multiple imputations can be 
performed to incorporate uncertainty in the imputed values. 

For example, in Rubin’s method (22), multiple simulated 
with imputation data sets are analyzed by standard methods 
and then the results (e.g., regression coefficients and 
predictive performance measures) are combined to produce 
overall estimates.

Assumption for Model Development
Unlike linear regression, logistic regression does not 

require many assumptions such as normality, homogeneity 
of variance, and linearity between predictors and outcome. 
When modeling a Cox proportional hazard regression, a 
key assumption is the proportionality of hazard, i.e., the 
predictor effects being constant over time. There are a 
number of approaches for testing proportional hazard–for 
instance, Kaplan-Meier curves for categorical predictors with 
few levels, testing for time-dependent covariates, or using 
the scaled Schoenfeld residuals. When the assumptions 
were not met, other approaches can be considered, such as 
transformation (e.g., log transformation) for the predictors, 
nonlinear modeling (e.g., restricted cubic spline), or 
stratified analysis according to the variables that did not 
satisfy the assumptions.

Data Example
We illustrate the process of prediction model development 

with artificial data from a retrospective cohort study 
aiming to evaluate the findings of CCTA and related patient 
outcomes (e.g., all-cause mortality).

The cohort consists of 960 consecutive retrospectively-
identified patients from a CT registry database who 
underwent CCTA over a period of two years (2008–2009), 
and follow-up data after CCTA were collected up to 
December 2011. Baseline characteristics such as age, sex, 
hypertension, diabetes, and hyperlipidemia were obtained 
from electronic medical records, and the CCTA findings were 
evaluated in consensus by two experienced radiologists 
blinded to patients’ clinical findings. Through CCTA, 
observers determined the presence of significant stenosis 
and the number of segments with significant stenosis, 
finally determining whether each patient had “significant 
CAD”. Data about death status was obtained for all patients 
from the National Statistics database.

To estimate the absolute risk of all-cause mortality, 
the logistic regression models employed cardiac risk 
factors including age as a continuous predictor, and sex, 
hypertension, diabetes, hyperlipidemia, and CCTA finding 
(significant CAD) as dichotomous predictors. Although the 
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Cox proportional hazard regression could be implemented to 
account for time-to-death, we refer only to status of death 
for the purpose of simple illustration in this article. 

Table 1 shows the baseline characteristics and CCTA 
findings in the cohort of 960 patients (referred to as a 
derivation cohort) and an external cohort of additional 
patients (referred to as a validation cohort, to be discussed 
further later). There were 9.6% (= 92/960) deaths in the 
derivation cohort. Although two variables (hypertension 
and hyperlipidemia) were not statistically significant in 
univariable comparison, we chose to include these factors 
to build the multivariable prediction model because they 
are well-known cardiac risk factors. We developed two 
models, an old model that includes the five cardiac risk 
factors excluding the CCTA finding, and a new model that 
includes all six variables including the CCTA finding. The 
results of the two multivariable logistic regression models 
in the derivative cohort are shown in Table 2. The adjusted 
odds ratio of the five baseline characteristics were deemed 
similar between the two models, and the risk of death in 
the patients with significant CAD calculated in the new 
model is relatively higher (adjusted OR = 4.669, 95% 
confidence interval [CI], 2.789–7.816).

Evaluation of Model Performance

The measures of association are not directly linked to a 

predictor’s ability to classify a participant (23). In other 
words, the prediction models are focused on absolute risks, 
not on relative risks such as odds ratios or hazard ratios. 
To evaluate the strength of the predictions from the model, 
measures of performance (not of association) are needed. 

Traditional overall performance measures can be 
quantified by the distance between the predicted and 
actual outcome. The coefficient of determination (denoted 
as R2 in linear regression models) of the percentage of total 
variance of outcomes explained by the prediction model is 
used for continuous outcomes. For binary or time-to-event 
outcomes, the newly proposed R2 or Brier score can be used 
to present overall performance measures (24-26). However, 
the common types of outcome in the prediction model 
in medicine are the binary or time-to-event outcomes, 
and in such cases, the most important aspects of model 
performance can be assessed in terms of calibration and 
discrimination.

Calibration
Calibration is related to goodness-of-fit, which reflects 

the agreement between observed outcomes and predictions. 
A calibration plot has the predicted probabilities for groups 
defined by ranges of individual predicted probabilities 
(e.g., 10 groups of equal size) on the x-axis, and the mean 
observed outcome on the y-axis, as shown in Figure 1. 
Perfect calibration should lie on or around a 45° line of 

Table 1. Baseline Characteristics and CCTA Findings

Variables
Derivative Cohort External Validation Cohort

Death (n = 92) Survivor (n = 868) Death (n = 15) Survivor (n = 221)
Age, years (mean ± SD) 75.5 ± 4.3 74.3 ± 4.0 75.9 ± 5.6 73.9 ± 3.6
Sex, male (%) 68 (73.9) 354 (40.8) 11 (73.3) 80 (36.2)
Hypertension (%) 71 (77.2) 590 (68.0) 14 (93.3) 129 (58.4)
Diabetes (%) 45 (48.9) 212 (24.4) 13 (86.7) 35 (15.9)
Hyperlipidemia (%) 15 (16.3) 169 (19.5) 1 (6.7) 34 (15.4)
Significant CAD at CCTA (%) 70 (76.1) 296 (34.1) 11 (73.3) 75 (33.9)

CAD = coronary artery disease, CCTA = coronary computed tomographic angiography, SD = standard deviation

Table 2. Multivariable Logistic Regression Analysis in Derivative Cohort
Old Model New Model

Adjusted OR 95% CI P Adjusted OR 95% CI P
Age, years 1.073 1.021–1.128 0.005 1.059 1.005–1.115 0.031
Sex, male 3.899 2.381–6.385 < 0.001 3.311 1.996–5.492 < 0.001
Hypertension 1.458 0.861–2.468 0.161 1.282 0.745–2.206 0.369
Diabetes 2.755 1.750–4.338 < 0.001 2.407 1.504–3.852 < 0.001
Hyperlipidemia 0.838 0.457–1.538 0.569 0.754 0.403–1.413 0.379
Significant CAD at CCTA 4.669 2.789–7.816 < 0.001

CAD = coronary artery disease, CCTA = coronary computed tomographic angiography, CI = confidence interval, OR = odds ratio
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the plot. This plot is a graphical illustration of the Hosmer-
Lemeshow goodness-of-fit test (27) for binary outcomes, 
or the counterpart tests for survival outcomes including 
the Nam-D’Agostino test (28). A p value < 0.05 for these 
calibration tests would indicate poor calibration of the 
model. In our example, the Hosmer-Lemeshow test showed 
that the calibration of the two models is adequate with p 
> 0.05 (p = 0.648 in the old model, p = 0.113 in the new 
model). The Hosmer-Lemeshow test has some drawbacks in 
that it is often non-significant for small sample sizes but 
nearly always significant for large sample sizes, and has 
limited power to assess poor calibration (29).

Discrimination
Various statistics can be used to evaluate discriminative 

ability. Discrimination refers to the ability of a prediction 
model to differentiate between two outcome classes. 
The well-known statistical measures used to evaluate 
discrimination (classification) performance of diagnostic 
tests, particularly in radiological research, are true-
positive rates, false-positive rates, and receiver operating 
characteristic (ROC) curves with the area under the ROC 
curve (AUC) (30). The concordance statistic (c-index), which 
is mathematically identical to the AUC for a binary outcome, 
is the most widely used measure to indicate discriminatory 
ability. The c-index can be interpreted as the probability 
that a subject with an outcome is given a higher probability 
of the outcome by the model than a randomly chosen 
subject without the outcome (31). A value of 0.5 indicates 
that the model has no discriminatory ability, and a value of 

1.0 indicates that the model has perfect discrimination. In 
our example, the c-index was 0.801 (95% CI, 0.749–0.852) 
for the new model.

For time-to-event (often referred to as “survival” 
data), Harrell’s c-statistic is an analogous measure of the 
proportion of all subject pairs that can be ordered such that 
the subject with the higher predicted survival is the one 
who survived longer (31). A number of different approaches 
to the c-index for survival models have been proposed, and 
researchers should carefully state which measure is being 
used (32). Extensions of the c-index have been proposed 
for polytomous outcome (33), clustered time-to-event data 
(34), and competing risks (35).

Although ROC curves are widely used, there are some 
criticisms. First, AUC interpretation is not directly clinically 
relevant. Second, the predicted risk can differ substantially 
from the actual observed risk, even with perfect 
discrimination. Therefore, calibration is also very important 
in prediction model evaluation.

Validation of Prediction Model

The purpose of a prediction model is to provide valid 
prognoses for new patients; hence, validation is an important 
aspect of the predictive modeling process. Internal 
validation is a necessary part of model development. It 
determines the reproducibility of a developed prediction 
model for the derivative sample; and prevents over-
interpretation of current data. Resampling techniques such 
as cross-validation and bootstrapping can be performed; 
bootstrap validation, in particular, appears most attractive 
for obtaining stable optimism-corrected estimates (1). The 
optimism is the decrease between model performance (e.g., 
c-index) in the bootstrap sample and in the original sample, 
which can adjust the developed model for over-fitting. To 
obtain these estimates, we first develop the prediction model 
in the development cohort (n = 960 in our example), and 
then generate a bootstrap sample by sampling n individuals 
with replacement from the original sample. After generating 
at least 100 bootstrap samples, the optimism-corrected 
model performance can be obtained by subtracting the 
estimated mean of the optimism estimate value from the 
c-index in the original sample. In our example study, with 
500 bootstrap replications, the estimated optimism is 0.005, 
and the optimism-corrected c-index of 0.796 (= 0.801 - 
0.005) showed good discrimination. In addition, statistical 
shrinkage techniques for adjusting regression coefficients Fig. 1. Calibration plot.
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can be used to recalibrate the model (1).
Another aspect is external validity. External validation 

is essential to support generalizability (i.e., general 
applicability) of a prediction model for patients other 
than those in the derivative cohort. External validation 
can be achieved by evaluating the model performance 
(e.g., c-index) in data other than that used for the model 
development. Therefore, it is performed after developing 
a prediction model. There are several types of external 
validation, such as validation in more recent patients 
(temporal validation), in other places (geographic 
validation), or by other investigators at other sites (fully 
independent validation). Formal sample size calculations 
based on statistical power considerations are not well 
investigated for external validation studies. However, a 
substantial sample size is required to validate the prediction 
model to achieve adequate model performance in the 
validation set. The number of events and predictors has an 
effect in determining the sample size for external validation 
data for the development of the prediction model. 
Simulation studies suggested that a minimum of 100 events 
and/or 100 non-events is required for external validation 
of the prediction model (36, 37), and a systematic review 
found that small external validation studies are unreliable 
and inaccurate (38). In our example study, we had a new 
dataset including 236 patients from another hospital in 
January–June 2013. External validation using these data 
showed that our model (new model) discriminates well 
(c-index = 0.893, 95% CI, 0.816–0.969).

Comparison of Prediction Models

To compare different prediction models, the improvement 
in discrimination can be assessed by quantifying an 
incremental value such as the change in the c-index. The 
statistical significance of the difference between the two 
models can be tested by the method used by DeLong et 
al. (39), which was designed to compare two correlated 
ROC curves. In our example, the c-index values were 0.748 
(95% CI, 0.696–0.800) for the old model, and 0.801 (95% 
CI, 0.749–0.852) for the new model, and the difference of 
0.053 (95% CI, 0.021–0.085) between the two models was 
statistically significant (p = 0.001). It can be interpreted 
that discriminatory ability improved significantly when 
CCTA finding (significant CAD) was added to the old model. 
Figure 2 illustrates ROC curves for the two models.

However, when the new predictor(s) adds to an existing 

clinical prediction model as in our example, the c-index is 
often conservative in model comparisons (40). A simulation 
study showed that statistical testing on the difference of 
the AUC (c-index), such as the method from DeLong et 
al. (39), is not recommended when the test of the added 
predictor is not significant (41). Ware (42) showed that 
the measure of association between the risk factor and 
predicted outcome (e.g., odds ratio or hazard ratio) does 
not reflect the predictive (discriminative) ability. Thus, very 
large associations are required to significantly increase the 
prognostic performance.

To overcome these drawbacks, Pencina et al. (43) 
proposed two indexes–net reclassification improvement 
(NRI) and integrated discrimination improvement (IDI)–
to quantify the amount of overall reclassification and to 
evaluate the incremental value of predictors. These were 
originally proposed for comparing nested models, but they 
can also be used for comparing two non-nested models.

The NRI is the net proportion of events reclassified 
correctly plus the net proportion of nonevents reclassified 
correctly, for a pre-specified set of cut-off points. If D 
denotes the disease status, the NRI is defined as

NRI = (P [up|D = 1] - P [down|D = 1]) - (P [up|D = 0] - P 
[down|D = 0])
where an upward movement (up) refers to a change of the 
predicted risk into a higher category based on the new 
model and a downward movement (down) refers to a change 
in the opposite direction. Thus, the NRI is an index that 
combines four proportions and can have a range from -2 to 
2. The above NRI has two components–event NRI and non-

Fig. 2. ROC curves for two prediction models. ROC = receiver 
operating characteristic
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event NRI–the net percentage of persons with (without) the 
event of interest correctly classified upward (downward). 
In our example, we measured the incremental prognostic 
value of the CCTA finding by calculating the NRI and the 
IDI. We chose risk categories based on frequently used cut-
off values in the cardiovascular disease field corresponding 
to 10% to 20% (7). The results regarding reclassification 
by the model with or without CCTA finding including 
calculation details, are shown in Table 3. The categorical 
NRI was 0.266 (95% CI, 0.131–0.400), with 24.0% and 2.6% 
of patients who died and survived, respectively, correctly 
reclassified by the model with CCTA finding added. As the 
weights for event and nonevent groups are equal in the 
overall NRI, this may be problematic in cases of low disease 
occurrence. Therefore, it is recommended that authors 
report separately both the event and non-event components 
of the NRI separately, along with the overall NRI (44-46).

Category-based NRI is highly sensitive to the number 
of categories, and higher numbers of categories lead to 
increased movement of subjects, thus inflating the NRI 
value. In several diseases, there are no established risk 
categories, and the selection of thresholds defining the 
risk categories can influence the NRI amount. In this 
situation, two or more NRIs can be employed according 
to the different risk categories (47). Additionally, the 
continuous (category-free) NRI suggested by Pencina et al. 
(48) was presented, which considers any change (increase 
or decrease) in predicted risk for each individual, and it is 
not affected by the category cut-off. Presenting p values 

from statistical testing for NRI significance is discouraged 
because it has been proved mathematically that it is 
equivalent to the testing for adjusted effects of a newly 
added factor controlling for existing factors; instead, only 
confidence intervals for the NRI should be provided (45, 49, 
50).

The IDI is the difference in predicted probabilities 
between in those who do and do not have the outcome. It 
estimates the magnitude of the probability improvements 
or worsening between two models (nested or not) over all 
possible probability thresholds. The IDI can be interpreted 
as equivalent to the difference in mean predicted 
probability in subjects without and with the outcome. Thus, 
the estimation of IDI can be expressed as follows: 

IDI = (p̂new, events - p̂old, events) - (p̂new, nonevents - p̂old, nonevents)
where p̂new, events is the mean predicted probabilities of 
an event in the new model for event group, p̂old, events is 
the corresponding quantity in the old model, p̂new, nonevents 
is the mean predicted probabilities of a non-event in 
the new model for nonevent group and p̂old, nonevents is the 
corresponding quantity based on the old model. Although 
statistical testing regarding IDI was proposed by the 
original authors (43), other investigators demonstrated that 
the p value for the IDI may be not be valid even in large 
samples (51). Therefore, the bootstrap confidence interval 
for the IDI would be more appropriate. In our example, 
the estimated IDI was 0.057 (= 0.051 - [-0.005], 95% CI, 
0.043–0.071).

Several statisticians have concluded that increases in 
AUC, IDI, and NRI offer complementary information. They 
therefore recommend reporting all three values together 
as measures that characterize the performance of the final 
model (52).

How to Present Prediction Model?

Regression Formula
To allow individualized predictions, the estimated 

regression models can be represented regarding the 
predictive probability of the outcome occurring. In logistic 
regression, the predicted probability of the outcome event is

exp (β0 + β1X1 + … + βκXκ)

1 + exp (β0 + β1X1 + … + βκXκ)
Probability = 

where, β0: intercept in model, β1, … βκ: regression 
coefficient (= log odds ratio) for each predictor (X1, … Xκ).

In our example, the predicted probability for a patient to 

Table 3. Reclassification Tables

Model without CCTA Finding
Model with CCTA Finding

< 10% 10–20% ≥ 20%

Death (n = 92)

< 10% 17 (18.5) 13 (14.1) 0 (0.0)

≥ 10% and < 20% 5 (5.4) 4 (4.4) 19 (20.7)

≥ 20% 0 (0.0) 5 (5.4) 29 (31.5)

Survivor (n = 868)

< 10% 525 (60.5) 70 (8.1) 0 (0.0)

≥ 10% and < 20% 104 (12.0) 25 (2.9) 58 (6.7)

≥ 20% 12 (1.4) 35 (4.0) 39 (4.5)

Values are numbers (percentages). Event NRI = (13 + 19 + 0) / 92 
- (5 + 5 + 0) / 92 = (14.1% + 20.7%) - (5.4% + 5.4%) = 24.0%, 
Non-event NRI = (104 + 35 + 12) / 868 - (70 + 58 + 0) / 868 = 
(12.0% + 4.0% + 1.4%) - (8.1% + 6.7% + 0.0%) = 2.6%, 
Category-based NRI = 0.240 + 0.026 = 0.266 (95% CI, 0.131–0.400), 
Category-free NRI = 0.840 (95% CI, 0.654–1.025).
CCTA = coronary computed tomographic angiography, CI = 
confidence interval, NRI = net reclassification improvement
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death based on the new model can be expressed as

exp (-8.527 + 0.057 age + 1.197 male + 0.249 hypertension 
1 + exp (-8.527 + 0.057 age + 1.197 male + 0.249 hypertension 

p = 

    
+ 0.878 diabetes - 0.282 hyperlipidemia + 1.541 significant CAD)
+ 0.878 diabetes - 0.282 hyperlipidemia + 1.541 significant CAD)

For example, the predicted probability for a 77-year-old 
man with both hypertension and diabetes and significant 
CAD on CCTA is estimated as

exp (-8.527 + 0.057 x 77 + 1.197 

1 + exp (-8.527 + 0.057 x 77 + 1.197 
p = 

      

+ 0.249 + 0.878 + 1.541)

+ 0.249 + 0.878 + 1.541)
= 43.22%.

Scoring System
Simplified scoring is a useful method to present the 

predicted probability of an outcome that is easy to use 
in practice. It is developed in several ways, based on 
converting the regression coefficient or relative risk 
(odds ratio or hazard ratio) for each predictor to integers. 
Motivated by the Framingham heart study, Sullivan et al. 
(53) developed a so-called points (scoring) system that 
can simply compute the risk estimates without a calculator 
or computer. In many studies, this approach was used to 
create risk scoring systems (54, 55). We developed a scoring 

system for presenting the prediction model in our example. 
The algorithm for developing the scoring system using our 
example is shown in Table 4. Each step with details is as 
follows: 

1)	�Estimate the regression coefficients (β) of the 
multivariable model

2)	�Organize the risk factors into categories and determine 
the baseline category and reference values for each 
variable 
In our example, we consider a 70–74 year old, non-
hypertensive, non-diabetic, and non-hyperlipidemic 
female with non-significant CAD on CCTA as the 
referent profile. Reference values (WREF) for continuous 
variables such as age are determined as mid-point 
values of each category. For categorical variables, 
assign 0 point to the reference category and 1 point 
to the other category in the scoring system.

3)	�Determine how far each category is from the reference 
category in regression units 
The quantities for each category determined using β (W 
- WREF).

4)	�Set the base constant (constant B) 
It means the number of regression units that reflects 
one point in the point scoring system. Generally, the 
smallest regression coefficient in the model can be 
used. In our example, the constant B was determined 

Table 4. Scoring System to Calculate Point Values for Risk Score
Variables β (1) Categories (2) Reference Value (W) (2) β (W - WREF) (3) Pointsi = β (W - WREF) / B (4, 5)

Age 0.057

70–74* 72 (WREF) 0 0
75–79 77 0.285 1
80–84 82 0.570 2
85–92 88.5 0.941 3

Sex 1.197
Female* 0 (WREF) 0 0

Male 1 1.197 4

Hypertension 0.249
No* 0 (WREF) 0 0
Yes 1 0.249 1

Diabetes 0.878
No* 0 (WREF) 0 0
Yes 1 0.878 3

Hyperlipidemia -0.282
No* 0 (WREF) 0 0
Yes 1 -0.282 -1

Significant CAD 1.541
No* 0 (WREF) 0 0
Yes 1 1.541 5

*Reference category
1) Estimate the regression coefficients (β) of the multivariable model
2) Organize the risk factors into categories, determine the reference category, and reference values for each variable
3) Determine how far each category is from the reference category in regression units
4) Set the base constant (constant B)
5) Determine the number of points for each of the categories of each variable
CAD = coronary artery disease
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in terms of the increase in risk associated with a 
5-year increase in age based on the work from the 
Framingham study. The constant B in our example was 
set 0.057 x 5 = 0.285. 

5)	�Determine the number of points for each of the 
categories of each variable 
Points for each of the categories of each variable are 
computed by β (W - WREF) / B. The final points are 
rounded to the nearest integer. As a result, a single 
point was meant to represent the increase in all-cause 
mortality associated with a 5-year increase in age. For 
example, a 77-year-old man with both hypertension 
and diabetes and assessed has significant CAD on 
CCTA would have a score of 15 (= 1 + 4 + 1 + 3 + 5).

6)	�Create risk categories according to the total score 
In our example, the maximum total score is 16 points. 
For simple interpretation in a clinical setting, risk 
categories are often suggested. For example, the 
patients can be classified according to their total 
score into three categories: < 6 points, low-risk; 
6–10 points, intermediate-risk; > 10 points, high-risk 
group. Table 5 indicates these three risk groups within 
derivation and validation cohorts.

Caution and Further Considerations

Prediction models can be used for diagnostic or prognostic 
purposes. Such models will be more generalizable when 
the properties including range or usability of predictors 
and outcome in the new population for application are 
similar to those seen in the development population. In 
the previous example study, the developed prediction model 
was designed primarily for use with elderly patients, so 
this model cannot be generalized to young or middle-aged 
adults. Rapidly changing predictors–for example, continuing 
developments in diagnostic tests or imaging modalities 
in radiology–can limit the application of the developed 
prediction model. 

Various prediction models have been published with or 
without validation results. In cases where a researcher 
applied such an existing model to their own data, the model 

performance using the data was often revealed to be poor, 
indicating that the published prediction model requires 
“updating”. For example, re-calibration and re-estimation of 
some regression coefficients including new predictors can 
be performed (56).

Optimal study design and statistical methods have been 
simultaneously developed. However, these cannot remedy 
any limitations in the collection of raw data and/or missing 
or misclassified information. Therefore, the quality of the 
raw data is emphasized. Efforts should be made to minimize 
missing values, especially required patient characteristics 
and/or follow-up information.

To overcome small sample size and reduced 
generalizability in a single-center study, individual 
participant data sharing in multicenter collaborative 
studies or “big data” from national or worldwide surveys 
or registries are being used to derive and/or validate the 
prediction model.

Reporting guidelines for various study types including 
randomized trial or observational studies have been 
published. Radiology researchers may be familiar with the 
standards for the reporting of diagnostic accuracy studies 
(STARD) statement (57). Recently, an international group 
of prediction model researchers developed the reporting 
guidelines for prediction models–transparent reporting of 
a multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) statement (11). In addition to the 
TRIPOD statements, an accompanying explanation and 
elaboration document with more than 500 references from 
statistics, epidemiology, and clinical decision-making are 
also available (58). Each checklist item of the TRIPOD is 
explained, and corresponding examples of good reporting 
from published articles are provided.

SUMMARY

·Diagnostic imaging results are often combined with 
other clinical factors to improve the predictive ability of a 
clinical prediction model in both diagnostic and prognostic 
settings.

·The model-based prediction is inherently multivariable; 

Table 5. Risk Groups within Derivation and Validation Cohort
Risk Group Score* Derivation Cohort Validation Cohort

Low 1–5 13/529 (2.5) 1/135 (0.7)
Intermediate 6–10 36/305 (11.8) 6/82 (7.3)
High 10–16 43/126 (34.1) 8/19 (42.1)

*Sum of scores for each variable as shown in Table 4.
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and, therefore, the most frequently used approach is 
multivariable regression modeling. 

·Predictors should be selected using both clinical 
knowledge and statistical reasoning.

·The model performance should be evaluated in terms of 
both calibration and discrimination. 

·The validation, especially external validation, is an 
important aspect of establishing a predictive model. 

·Performance of different predictive models can be 
compared using c-index, NRI, and IDI.

·A predictive model may be presented in the form of 
a regression equation or can be converted into a scoring 
system for an easier use in practice.
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