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Purpose: Metabolic dysfunction-associated fatty liver disease (MAFLD) is fueled by escalations in both sedentary behavior and
caloric intake and is noted in obese type 2 diabetic (T2DM) patients. This study aimed to examine the effects of exercise and the
phytoestrogen genistein in mice fed a high fat (60% fat) high sugar (55% fructose with 45% sucrose), HFHS diet.

Methods: Male C57BL/6J mice were assigned to five groups: HFHS, HFHS with genistein (600 mg/kg diet, HFHS+Gen), HFHS with
moderate exercise (HFHS+Ex), and HFHS with combined genistein and moderate exercise (HFHS-Gen+Ex). Control lean mice were
fed standard chow and water. Exercise consisted of 30-minute sessions of treadmill running five days/week for the 12-week study
duration. Body weight was assessed weekly. Liver, kidney, fecal pellets and serum were extracted at the end of the study and
maintained at —80°C.

Results: After 12 weeks of treatment, mice in the HFHS group had the highest hepatic lipid content. Plasma levels of glucose, insulin,
leptin, cholesterol, amylin, and total fat content were significantly elevated in HFHS mice compared to control mice. HFHS feeding
increased protein expression of carnitine palmitoyltransferase 1b (CPT-1b isoform) in gastrocnemius, CPT1la, glucose transporter
protein 2 (GLUT2), glucocorticoid receptor (GR), and fructose 1,6-bisphosphate 1 (FBP1) expression in liver. Exercise alone had
minor effects on these metabolic abnormalities. Genistein alone resulted in improvements in body weight, fat content, amylin, insulin
sensitivity, and liver histopathology, GR, FBP1, and acetyl-CoA carboxylase 1 (ACC1). Combination treatment resulted in additional
metabolic improvements, including reductions in hepatic lipid content and lipid area, alanine transferase activity, CPT1b, and CPT1a.
Conclusion: Our results indicate that a HFHS diet is obesogenic, inducing metabolic perturbations consistent with T2DM and
MAFLD. Genistein alone and genistein combined with moderate intensity exercise were effective in reducing MAFLD and the
aberrations induced by chronic HFHS feeding.
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Introduction

The unprecedented rise in obesity and type 2 diabetes mellitus (T2DM) in the United States caused by sedentary behavior
and the excessive consumption of energy-rich saturated fatty acids and sugar-based foods has yielded a burgeoning
prevalence of metabolic dysfunction-associated fatty liver disease’ (MAFLD). MAFLD, formerly known as non-alco-
holic fatty liver disease (NAFLD), is characterized by excessive lipid infiltration in the liver (hepatic steatosis) in the
absence of alcohol consumption, along with one of the three following criteria: overweight/obesity, presence of T2DM,
or evidence of metabolic dysregulation (exhibiting 2 of the following abnormalities high waist circumference, high blood
pressure, high cholesterol, pre-diabetes, insulin resistance, high plasma C-reactive protein levels).? Early studies have
shown that lipid accumulation in the liver is an early indicator of the presence and development of metabolic diseases,
including insulin resistance, atherogenic dyslipidemia, T2DM as well as an increased risk of cardiovascular events.” >
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Population-based and clinical studies indicate a strong association between MAFLD and cardiometabolic diseases,*’
autonomic dysfunction, expressed as sympathetic/parasympathetic tone imbalance,® development of cardiac arrhythmias
(atrial fibrillation, prolonged QT interval, and premature ventricular contractions), in addition to ischemic heart disease,
stroke, and major adverse cardiovascular events.” '*

Given the observation that weight gain and insulin resistance are strongly associated with the prevalence of MAFLD,'' '3
current guidelines for the treatment of MAFLD recommend physical activity and dietary modifications aimed at weight loss.
In fact, weight loss is the only recognized mainstay of therapy.'* A reduction in body weight between 7% and 10% has been
shown to significantly reduce hepatic steatosis and improve hepatic insulin sensitivity and serum transaminase levels.'®'> In
more severe liver conditions, plasma hyaluronic acid, a marker of liver fibrosis, was improved in patients with non-alcoholic
steatohepatitis following weight loss.'® Exercise, regardless of type or intensity, is known to be effective in the treatment and
minimizing the risk of MAFLD even in the absence of weight loss.'®?* Moderate intensity aerobic exercise favoring duration
or vigorous exercise training emphasizing intensity, both align with the recommendations for disease prevention,'* and
consistently result in reductions in hepatic lipid content and decreased MAFLD.'®*-* Benefits of regular exercise are
attributed to an increase in whole body muscle capacity for fatty acid oxidation and a reduction in lipid accumulation in the
liver by reducing de novo lipogenesis.***> In addition to these effects, exercise in combination with dietary modifications
offers the added benefits of further reducing hepatic lipid accumulation, decreasing fat mass, and regulating hepatic glucose
production, thus improving glucose metabolism and insulin sensitivity.*®

Genistein, a known phytoestrogen found in soybean products, fava beans, and in a wide variety of plant-derived foods, has
been shown to exert several health benefits.?’*® Because of its structural similarity to estrogen, genistein can bind to the
estrogen receptor and exert estrogenic effects,”® without increasing prevalence of certain breast cancers.>® Chronic consump-
tion of genistein has been shown to have antioxidant, anti-inflammatory, and potential antidiabetic effects.'~** Treating obese
diabetic rodents with genistein improved -cell pancreatic function, increased insulin sensitivity, lowered blood glucose, and
exerted a hypolipidemic action.>* > In a model mouse of diet-induced obesity (DIO) and T2DM from high fat feeding,
genistein ameliorated the lipid content and the inflammatory response in liver cells.*® We have shown previously that genistein
diet provides benefit at the same concentration proposed in this study (600 mg genistein/kg diet): after 4-weeks consumption
induces thermogenic and metabolic changes in the 0b/0b mouse model.>”** Based on those studies, it is evident that a dietary
intervention with both genistein and regular exercise training could provide maximal benefit on overall metabolic function.
The beneficial impact of both genistein and exercise training on metabolic health is supported in a recent study that
demonstrated improved histopathologic profile of ovariectomized rats with nonalcoholic steatohepatitis (NASH) induced
by a diet consisting of high-fat and high fructose. The results of that study indicate that four weeks of combined treatment with
genistein and exercise reduced the severity of steatohepatitis by decreasing oxidative stress, local inflammation, and
intrahepatic lipid content of the ovariectomized rats.>

Considering the relationship between weight gain, diet-induced obesity, and physical inactivity on the development of
MAFLD,"*"'%4° it remains unclear whether dietary genistein or exercise training can each prevent MAFLD induced by chronic
high fat-high sugar (HFHS) feeding in mice, or whether combined treatment has an additive effect in preventing this condition.
In this study, we examined the effects of genistein, exercise training, and combined treatment after a 12-week period on hepatic
liver accumulation, expression of proteins relating to glucose and fatty acid synthesis and regulation in liver and muscle, and
on common markers of cardiovascular disease. To induce MAFLD (as evidenced by hepatic steatosis, T2DM and obesity and
therefore fitting the criteria described above), young male mice were given a diet rich in saturated fatty acids and allowed
access to drinking water ad libitum containing a blend of high sucrose and fructose (HFHS). The sex and age of mice and
addition of simple carbohydrates were selected based on the evidence that the rates of childhood obesity and pediatric MAFLD

are increased, and singularly reported in young male boys where the consumption of soft drinks is increased*' *®

Materials and Methods
Mouse Model of Obesity and Diet

The Midwestern University Institutional Animal Care and Use Committee approved all experimental procedures
involving mice in this study. Animal care was conducted in accord with the National Institutes of Health’s Guide for
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the Care and Use of Laboratory Animals. Four-week-old male C57BL/6 mice were purchased from Charles River
(Wilmington, MA, USA). After a week of acclimatization, mice were randomly divided into five groups: high fat-high
sugar (HFHS) diet, HFHS and exercise training (HFHS+Ex), HFHS high fat and genistein (HFHS+Gen), HFHS and
combination exercise training and genistein treatment (HFHS+Gen+Ex). Mice fed a standard diet and normal tap water
served as controls (Lean). A description of the diets used in this study has previously been described.*’ The high sugar
water (42 g/L) consisted of 55% fructose and 45% sucrose. Fructose was added to the drinking water because it
accelerates lipid accumulation in the liver and promotes leptin resistance.*® Water was changed every other day. The high
fat diet contained 60% of energy from lipids, 20% from carbohydrates, and the remaining 20% from protein (Dyets Inc.
Bethlehem, PA). Genistein was incorporated in the high fat diet at a concentration of 600 mg/kg diet (Dyets Inc.
Bethlehem, PA). This concentration of genistein yields plasma concentrations of low micromolar ranges*’ equivalent to
the consumption of a cup of soy milk per day and is therefore reasonable to achieve this dose in humans.***>

All mice were given food and water ad libitum. Body weight of mice was recorded weekly. Food and water intake
were measured over a 24-hour period (at weeks 5, 7, 9 and 11) and at such time points five mice/group were housed
separately for the 24-hour duration and the average data for the five mice is shown in Table 1. Mice were housed 2—3 per
cage with 12:12-hour light—dark cycle. At the completion of the study and 48 hours after the last exercise session to
eliminate the effects of insulin sensitivity,”' mice were euthanized by asphyxiation in an atmosphere of 100% CO,,
followed immediately by surgical thoracotomy inducing pneumothorax. Blood was collected by cardiac puncture,
immediately centrifuged to obtain the plasma and stored at —80°C for analyses. Liver and skeletal muscle (gastrocne-
mius) were immediately extracted, frozen in liquid N, then stored at —80°C until use. A segment of liver was embedded
in Optimal Cutting Temperature compound for sectioning (O.C.T., Fisher HealthCare, Houston, TX, USA) Inguinal,
peritoneal, and visceral fat pads were carefully excised and weighed to determine total fat pad weight of mice.

Exercise Training Protocol
Exercise training consisted of daily treadmill running (Exer 3/6, Columbus Instruments, Columbus, Ohio, USA), 30
minutes at 12 m/min, five days/week, for a total duration of 150 minutes/week, as previously described.’> Mice were

Table | The Effects of Exercise Training, Genistein, and Combined Exercise and Genistein on Basic Physical
Characteristics and Caloric Intake

Parameter Group
Lean HFHS HFHS+Ex HFHS+Gen HFHS+Gen+Ex

Start Body weight (g) 22.35£1.24 22.84+0.68 22.32+0.05 22.82+0.45 21.27£0.38
End Body weight (g) 35.66+1.87 50.19+1.72% 45.731.32 40.56x1.27% 33.80x1.57%
Weight gain (g) 13.31£1.04 27.34% | .74% 23.42%1.03 17.74%1.05% 12.53%1.45%
Liver weight (g) 1.34+0.09 2.60+0.28* 1.76+0.12% 1.26+0.09% 1.14+0.06%
LW/BW 0.037£0.002 0.05120.005* 0.038+0.002% 0.031£0.001% 0.034£0.002"*
Adipose weight (g) 2.06+0.38 4.63£0.2 0% 4492027 3.75£0.17% 2.56+0.30%
AW/BW 0.055+0.008 0.092+0.002* 0.098+0.004 0.092+0.003 0.07520.005
Water (g) 2.57+0.68 2.49£0.17 3.46£0.59 3.20£0.27 4.1420.16*
Food (g) 3.87+0.31 4.72%1.31 6.78+5.41 2.79£0.46 7.74£3.05
Water calories (kcal) 0+0 0.42+0.03 0.58+0.09 0.54£0.05 0.69+0.03%
Food calories (kecal) 12.99+1.04 24.16£6.71 34.71£27.70 14.28+2.37 39.61£15.62

Notes: Values are reported as mean * SEM for 8—10 mice/group after 12 weeks treatment. *Significant difference from lean control, P < 0.05,
#signiﬁcant difference from HFHS control.
Abbreviations: LW, liver weight; BW, body weight; AW, adipose weight; HFHS, high fat-high sucrose; Gen, genistein; Ex, exercise training.
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initially acclimated to daily 10-min sessions of treadmill running for a period of one week. After acclimation to running,
week 1 consisted of 10 m/min for 15 minutes, and in week 2 duration of running was increased to 30 minutes at 10 m/
min. For the remaining weeks of the study (3 to 12), the intensity of exercise was increased to 12 m/min for a 30 minutes
duration (5 days/week), corresponding to an estimated oxygen consumption of ~45—48 mL/kg/min based on treadmill
belt speed.>® This exercise protocol was designed to mimic the recommendations for physical activity by the American
Diabetes Association™® and endorsed by the American Association for the Study of Liver Disease and the American
Gastroenterological Association.'*

Glucose Tolerance Test

Glucose tolerance tests (GTT) were administered to overnight fasted mice at week 11 of the study. Following a baseline
glucose reading (time 0 minutes), mice were administered an intraperitoneal bolus of glucose (2 mg/g body weight).
Thereafter, glucose readings were obtained from the tail vein at the following four time points (15, 30, 60, and 120
minutes) after the intraperitoneal bolus. Blood glucose levels were measured using a standard glucose monitoring system
(True Metrix, Trividia Health Inc. Fort Lauderdale, FL). The area under the curve (AUC) of the blood glucose measures
was determined to assess the degree of insulin resistance in mice.

Western Blot Analysis

Tissues were homogenized per mg in 1 mL Tissue PE LB™ (G-Biosciences, St. Louis, MO, USA) containing 10 pL of
EDTA (G-Biosciences, St. Louis, MO, USA) and 10 pL. mammalian protease arrest (G-Biosciences, St. Louis, MO, U.S.
A.). Homogenizations were performed at 4°C using a disperser drill (IKA Works, Inc., Wilmington, NC, U.S.A.).
Samples were analyzed for protein content using a Pierce™ BCA protein assay kit (Thermo Scientific, Rockford, IL,
USA) to normalize protein content loaded per sample. Westerns were run as previously described using standard Western
blot protocols. Samples were loaded at a known protein concentration and run on NuPAGE® 4-12% Bis-Tris gels
(ThermoFisher Scientific, Waltham, MA, USA) at 125-150 volts for 2 hours on ice. Wet transfers were at 2 hours at 30
volts at 4°C or dry transferred using the iBlot 2 Gel Transfer device (Thermo Fisher Scientific, Waltham, MA, USA). The
blots were incubated with primary antibody CPT1B (1:1000, Abcam, Cambridge, MA, U.S.A.), GLUT2 (1:500, Santa
Cruz, Dallas, TX), GLUT4 (1:500, Santa Cruz, Dallas, TX), GR (1:1000, Cell Signaling Technology Danvers, MA and
Abcam Cambridge, MA), FBP1 (1:1000, My BioSource, San Diego, CA), ACC1 (1:1000, Cell Signaling Technology
Danvers, MA), CPT1A (1:1000, Abcam Cambridge, MA) and FAS (1:1000, Abcam Cambridge, MA) overnight at 4°C in
5% milk in Tris-buffered saline solution + 0.1% Tween (TBST). Membranes were probed with either actin anti-actin
primary antibody (1:3000, EMD Millipore, Billerica, MA, USA), or with GAPDH (1:10,000; Millipore Sigma) for 1
hour at room temperature (either used as controls for normalization). After washing, blots were incubated with secondary
antibody, anti-rabbit immunoglobulin (Ig)G (H + L) Dylight™ 800 Conjugate (1:15,000, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA), for 1 hour at room temperature. Membranes were imaged and band intensity quantified using
Odyssey-Clx (Li-COR, Lincoln, NE, USA) and Image Studio Software (Li-COR Biosciences, Inc.).

Hepatic Histology and Morphology

Prior to liver sectioning, the cutting block and blade were acclimated for ~ 30 minutes to —20°C inside the cryostat
chamber. Tissues were sectioned (10 pm) on a Leica CM 1860 cryostat with Thermo Scientific MX35 Premier
microtome blades, onto a slide (Fisher Scientific Superfrost Excell microscope slides, Pittsburgh, PA, U.S.A).
Immediately after tissue sectioning, tissues were stained with Oil Red O kit (Abcam, Cambridge, MA, USA), briefly:
slides were immersed in 10% neutral buffered formalin, NBF (2 minutes), dipped in water five times, submerged in Oil
Red O (40 minutes), dipped in tap water until slides were clear (except for the tissue), slides were immersed in Mayer’s
solution hematoxylin (5 seconds), dipped in tap water until clear, and dipped in 1% acid alcohol (5 times), followed by
tap water (1 minute). Coverslips were applied using an aqueous mounting medium, Vectashield H1000 (Vector
Laboratories, Burlingame, CA, U.S.A.). Images were obtained at 20X magnification on an Olympus IX73 inverted
microscope. Images were analyzed using Image J Pro software (NIH) to quantify fat droplet size, area and diameter.
Three images from different locations of the liver were averaged per mouse.
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Serum and Fecal Assays

Plasma samples were assayed for insulin (Alpco Diagnostics, Salem, NH). Leptin, resistin, and amylin were analyzed
using a Milliplex Mouse Metabolic Magnetic Bead Panel (EMD Millipore Corporation, Billerica, MA) according to
manufacturer instructions. Alanine transaminase activity (Cayman Chemical Company, Ann Arbor, MI), triglyceride,
glucose (Wako Diagnostics, Mountain View, CA) and cholesterol (Cayman Chemical Company, Ann Arbor, MI), were
assessed according to manufacturer specifications. Fecal samples were removed from the distal end of the large intestine
in euthanized mice and assayed for corticosterone (Cayman Chemical Company, Ann Arbor, MI) per manufacturer’s
instructions.

Statistical Analysis

Data are presented as mean + standard error of the mean (SEM). Group mean differences were determined using analysis
of variance (ANOVA) followed by Tukey’s post hoc test. Analyses were performed using GraphPad software (GraphPad
Software, Inc., La Jolla, CA, USA). A value of P < 0.05 was considered statistically significant.

Results
Effect of HFHS Diet, Genistein and/or Exercise on Body and Tissue Weights

Body and tissue weights are shown in Table 1. Mice were weighed at the beginning of the study (day zero, start body weight),
and all groups started at the same body weight. Weights were recorded weekly thereafter until the end of the week 12. Chronic
HFHS feeding resulted in a significant 1.41-fold increase in final body weight (50.19 + 1.18 g, n = 10, P<0.05) compared to
lean controls (33.66 + 1.87 g, n = 10). The HFHS-induced weight gain was significantly mitigated by 20% with genistein
(Gen) supplementation and by 33% with genistein and exercise combined (Gen+Ex). To assess whether the increases in body
weight were associated with improvements in fat accumulation, total visceral adipose tissue content was evaluated (Table 1).
HFHS feeding significantly increased adipose content 2.24-fold compared to lean controls. Adipose tissue weight was
significantly reduced with Gen (20%) and combined Gen+Ex (45%) compared to mice fed HFHS. Exercise alone had no
effect on adiposity. HFHS feeding significantly increased liver weight 1.94-fold compared to lean controls. Liver weight was
significantly reduced with Ex (33%). Interestingly, Gen and Gen+Ex significantly prevented the gain in liver weight (52% and
56% respectively) compared to mice fed HFHS, yielding a “lean-like” phenotype.

Food and water intake (and determination of caloric intake) are presented in Table 1 as the average recorded over
weeks 5, 7, 9, and 11 of the study. Average daily food intake (expressed as actual grams of food or caloric intake)
between the groups was comparable (Table 1). Average daily water intake and the corresponding water caloric intake was
comparable between leans and HFHS-fed mice. However, Gen+Ex treatment resulted in a significant increase in water
intake and water-associated calories compared to HFHS mice (Table 1).

Effect of HFHS Diet, Genistein and/or Exercise on GTTs and Serum Profile
GTTs were performed during week 11 of the study to assess the effects of treatment on insulin sensitivity. As shown in Figure 1,
administration of an intraperitoneal bolus of glucose caused blood glucose levels to rise in all groups. The total excursion in blood
glucose as determined by area under the curve (AUC), was highest in mice fed HFHS diet and also with Ex. At 120 minutes,
blood glucose levels remained elevated and significantly higher in these two groups compared to lean mice (Figure 1A and B).
Blood glucose levels returned to normoglycemic levels at 120 minutes in mice fed either Gen or Gen+Ex. Of note, the total
excursion in blood glucose levels was the lowest in the Gen+Ex group. Fasting serum glucose levels (Table 2) were significantly
elevated by 1.6-fold with HFHS feeding (235.7+26.1 mg/dL, n = 4, P< 0.05) compared to lean mice (148.5+11.6 mg/dL, n=4,
P< 0.05). Ex had no effect on fasting glucose, whereas Gen and Gen+Ex both significantly reduced fasting glucose levels
compared to HFHS and thereby maintained glucose at lean levels. Serum insulin levels (Table 2) were significantly increased by
2.24-fold with HFHS diet compared to leans. Insulin levels were significantly reduced by 40% with Gen+Ex.

We assessed the effects of HFHS diet on three key hormones that play a role on insulin and glucose regulation
(Table 2). Leptin levels were significantly increased 2-fold with HFHS diet compared to leans, and treatments were
without effect. HFHS diet did not modify serum resistin levels and Gen was without effect. However, Ex increased
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Figure | Effects of 12 weeks of genistein treatment, exercise training, and combined treatment on glucose tolerance. (A) Glucose tolerance tests, GTTs, were performed in
overnight fasted mice at week | | of the study. Following an intraperitoneal bolus of glucose (2 mg/g body weight), glucose readings were obtained from the tail vein at time
15, 30, 60, and 120 minutes. Excursions in blood glucose for 120 minutes following bolus of glucose. (B) Average area under the curve (AUC) calculated from the GTT data
shown in IA. Values are reported as mean + SEM for 4-5 mice in each group. *Significant difference from lean control mice, “Significant treatment effect, P < 0.05.

resistin levels by 1.73-fold (Table 2). Amylin levels were significantly increased 4.6-fold with HFHS feeding compared
to leans and both Gen and Gen+Ex significantly decreased amylin levels compared to the HFHS group (Table 2).

As shown in Table 2, chronic HFHS feeding yielded a 2-fold increase in serum cholesterol levels compared to leans.
Gen treatment was beneficial and significantly diminished serum cholesterol levels by 33%. Triglycerides levels were
significantly reduced by 34% in the HFHS diet group versus lean controls and Ex returned levels to those noted in leans.

Effect of HFHS Diet, Genistein and/or Exercise on Hepatic Steatosis

Representative images of the effects HFHS and treatment on fat accumulation in liver evaluated by oil-red-O staining are
shown in Figure 2. Chronic consumption of HFHS diet-induced hepatic steatosis (Figure 2A). Hepatic fat area was
increased by 40% and fat droplet size was ~4-fold higher after HFHS feeding compared to lean controls. Both Gen and
combined Gen+Ex treatment prevented fat accumulation, and mitigated HFHS-induced increases in fat droplet size and
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Table 2 The Effects of Exercise Training, Genistein, and Combined Exercise and Genistein on Serum Profile

Parameter Group

Lean HFHS HFHS+Ex HFHS+Gen HFHS+Gen+Ex
Glucose 1485 £ 11.7 | 235.6 + 26.3* 2155 339 147.3 = 10.3% 106.5 + 5.6"
(mg/dL) 4) 4) 4) ®3) 4)
Insulin 34+08 7.7 £ 1.2% 62+08 45+ 1.7 46+ 06"
(pg/ml) (8) 4) ©) ©) @)
Resistin 14473 + 1875 | 18214 + 4146 | 25084 + 3948* | 16646 + 2886 19235 +2703
(pg/ml) ®) ®) ®) @) @)
Leptin 4666 + 966 9697 + 1220 | 10637 £ 143] 8883 + 1295 7861 + 1214
(pg/ml) @) ®) 8) @) @)
Amylin 87.8+27.4 | 4067 £109.3% | 629.9 +246.6 | 181.6 £ 49.1" 38.6 + 9.5%
(pg/ml) (6) ®) 8) (6) (6)
Cholesterol 176.7 £ 203 | 368.3 £ 51.0% 294.1+ 29.9 2454 + 20.5% 266.4 + 269
(mgfdL) ®) 8) ®) ®) @)
Triglycerides 129.6 + 15.1 86.1 +11.2* 137.9 £10.0 # 117.7 + 144 1102+78
(mg/dL) ®) 8) ®) ®) (6)

Notes: Values are reported as mean + SEM for 3—10 mice/group (sample size is indicated in parentheses) after 12 weeks treatment.
*Significant difference from lean control, P < 0.05, #signiﬁcant difference from HFHS control, P < 0.05.
Abbreviations: HFHS, high fat-high sucrose; Gen, genistein; Ex, exercise training.

area (ie, yielded a more normal liver fat profile, Figure 2B and C). Serum levels of alanine aminotransferase activity,
ALT, a marker of hepatic injury, reflected the beneficial effects of combined Gen+Ex treatment on hepatic steatosis and
hepatic damage despite consuming HFHS diet (Figure 2D).

Effect of HFHS Diet, Genistein and/or Exercise on Hepatic and Skeletal Muscle Protein
Expression of CPT B, GLUT4, GLUT?2, GR, FBPI and Fecal Corticosterone

Given the correlation of lipid accumulation in the liver and with insulin resistance in skeletal muscle,” we measured, by
Western blot techniques, the expression levels of proteins involved in lipid metabolism in gastrocnemius muscle. There were
no differences between treatment groups in protein expression of lipoprotein lipase, adipose tissue lipase, and peroxisome
proliferator-activated receptor-delta (data not shown). Protein expression of CPT1b was also measured under HFHS-induced
caloric overload (Figure 3A). CPT1b expression in gastrocnemius muscle was significantly increased 35% by HFHS feeding
compared to lean controls and was significantly mitigated by 21% with Gen+Ex treatment. In gastrocnemius muscle GLUT4
expression was shown to be comparable between all groups (Figure 3B). Hepatic GLUT2 expression was significantly
elevated 2.2-fold with HFHS feeding compared to leans and Ex treatment prevented this (Figure 3C).

Hepatic GR expression and fecal corticosterone levels were measured to reflect the glucocorticoid status of mice following
treatment. GR expression was significantly increased 2-fold HFHS fed mice compared to lean controls and both Gen and Gen
+Ex diminished this to maintain lean-type GR levels (Figure 3D). Expression of the rate-limiting enzyme in gluconeogenesis,
FBP1 (Figure 3E) was significantly elevated 2.4-fold by HFHS diet compared to lean controls, and both Gen and Gen+Ex
prevented this increase. Fecal corticosterone levels were significantly increased 10-fold with HFHS diet, and this increase was
mitigated by Ex (Figure 3F). These data suggest that glucocorticoid synthesis was enhanced by HFHS-feeding.

Effect of HFHS Diet, Genistein and/or Exercise on Hepatic Protein Expression of
ACCI, CPTla and FAS

Interestingly, expression of acetyl-CoA carboxylase-1, ACC1, was comparable between HFHS fed and lean control
mice. Gen and Gen+Ex both significantly decreased expression of ACCl by 75% and 85%, respectively
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Figure 2 Effects of 12 weeks of genistein treatment, exercise training, and combined treatment on hepatic steatosis. (A) Representative histology liver sections stained with
Oil Red O staining. Images are at 20x magnification and scale bar is 50 um. (B) Average fat droplet size in liver. (C) Average fat area in liver per given area evaluated. (D)
Serum alanine aminotransferase, ALT, a marker for hepatic injury. Values are reported as mean = SEM for 7—10 mice in each group. *Significant difference from lean control
mice, "Significant treatment effect, P < 0.05.

(Figure 4A). Expression of carnitine CPTla was significantly increased 2.5-fold by HFHS diet compared to lean
controls and Gen+Ex significantly mitigated this (Figure 4B). Expression of FAS was unchanged between all groups
(Figure 4C).

In summary, 12 weeks of HFHS feeding in mice induced, for the most part, the expected changes that reflect insulin
resistance, obesity and T2DM. MAFLD was evident in liver of these mice following a diet consisting of HFHS. HFHS
feeding increased body weight, adipose tissue content, and plasma glucose levels remained elevated following the GTT
challenge. Mice were also hyperinsulinemic, hyperleptinemic, and hypercholesterolemic. In liver of HFHS-fed mice,
expression of GR was increased and coupled with the increase fecal corticosterone content, increased glucocorticoid
production is suggested with this obesogenic diet. Expression of CPT1 in gastrocnemius muscle and liver were
significantly increased with HFHS feeding. In liver, HFHS caused an increased expression of GLUT2, FBP1, and GR,
aberrations contributing to hyperglycemia. Exercise had some benefit in preventing the onset of the diabetic phenotype,
but the main effects occurred with genistein treatment alone or in combination with exercise. Both forms of treatment,
either separately or in combination, were effective in reducing the obese diabetic phenotype, insulin resistance, and
MAFLD. A summary of the effects of HFHS feeding and treatment is illustrated in Table 3.
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Figure 3 Effects of 12 weeks of genistein treatment, exercise training, and combined treatment on expression of key hepatic and gastrocnemius proteins. (A) Expression of
carnitine palmitoyl transferase, CPTIb, in gastrocnemius. (B) Expression of GLUT4 in gastrocnemius. (C) Expression of glucose transporter protein, GLUT2, in liver. (D)
Expression of glucocorticoid receptor, GR, in liver. (E) Expression of fructose-1,6-bisphosphate, FBPI, in liver. Protein expression was determined by Western blot analysis.
Protein expression was normalized using either GAPDH or actin as the housekeeping gene. (F) Fecal corticosterone level. Fecal matter was collected from mice at the end
of the study for the measurement of corticosterone levels (n = 7-8 samples/group). Values are reported as mean * SEM for 2-3 independent experiments for each protein
of interest performed on 4-8 samples per group. *Significant difference from lean, *Significant treatment effect, P < 0.05.

Discussion

In recent decades, studies have indicated that physical inactivity and the consumption of calorie-rich foods (fat and sugar-
based beverages) increases the prevalence of metabolic disorders, including insulin resistance, obesity, and T2DM.
Physical inactivity and low cardiorespiratory fitness have been linked to increased severity of MAFLD for individuals
with T2DM.?% %% Increasing caloric expenditure in the form of regular exercise with a focus on healthy dietary
intervention is an inexpensive, safe, and effective approach known to mitigate these metabolic consequences and prevent
the development of both insulin resistance and hepatic steatosis.’®>” In this study, we show that a diet rich in fat, sucrose,
and fructose, leads to the development of insulin resistance, increased gluconeogenic profile, severe obesity, and T2DM
with hepatosteatosis in mice.

Exercise training had no dramatic effects on the obese diabetic phenotype induced by HFHS feeding in mice, while
genistein treatment alone provided significant protection. We note that food intake in mice fed HFHS with genistein was
lower (albeit not significantly so) compared to those fed a HFHS diet alone. An anorectic effect of genistein has been
reported by others, and while the mechanism for this is unclear it is possible that genistein may have direct effects on

brain centers regulating satiety or indirectly by enhancing the secretion of incretins from the gastrointestinal tract and
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Figure 4 Effects of 12 weeks of genistein treatment, exercise training, and combined treatment on the expression of key hepatic proteins relating to fatty acid metabolism.
(A) Expression of acetyl-CoA carboxylase, ACCI, in liver. (B) Expression of carnitine palmitoyl transferase, CPTla, in liver. (C) Expression of fatty acid synthase, FAS, in
liver. Protein expression was determined by Western blot analysis. Protein expression was normalized to actin. Values are reported as mean + SEM for 2-3 independent
experiments for each protein of interest performed on 4-8 samples per group. *Significant difference from lean, *Significant treatment effect, P < 0.05.

pancreatic amylin (known to induce satiety). Recent reports show that GLP-1 secretion is enhanced with genistein
treatment.”®>’ We also found that genistein treatment alone decreased adipose tissue weight, which may be the result of
lower food intake and modification of molecular pathways involved in the control adipose tissue stores. Decreased food
intake may lead to reduced feeding and adjustment in the leptin setpoint regulating satiety. A decrease in leptin secretion
from adipose tissue stores is consistent with this effect; indeed, we found that HFHS-fed mice fed genistein had lower
blood leptin levels compared to HFHS-fed mice. Exercise induced a trend for a greater food intake in mice, which could
be attributed to an increased energy expenditure. Our main findings indicate that intervention consisting of regular
exercise training combined with dietary modification is beneficial and prevents several of the detrimental effects of
HFHS feeding in mice. Combined exercise and genistein treatment mitigated the HFHS-induced increase in adipose
tissue weight, improved insulin sensitivity and the hepatic gluconeogenic profile, and importantly, prevented the
development of hepatic steatosis in mice.

In the United States, 1 in 5 adults exhibit the metabolic perturbations of fatty liver disease and even more frequently
in patients with obesity and T2DM.'*%%¢! Obesogenic diets (high fat and/or sucrose/fructose) have been increasingly
utilized to generate NAFLD/MAFLD-like models. However, inconsistent outcomes are likely attributed to variances in
percent fat used and/or the type of fat, inclusion of sugar (or not) and/or the type of sugar utilized (sucrose, fructose, or
both), along with study duration. Nevertheless, use of obesogenic diets has provided useful preclinical models exhibiting
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Table 3 Summary of the Effects of HFHS Feeding and Treatment on Physical Characteristics, Liver
Histology, Serum and Protein Profiles Relating to the Development of MAFDL in Mice

Parameter Group
HFHS HFHS+Ex HFHS+Gen HFHS+Gen+Ex
Physical Characteristics | 1 Body weight | Liver weight | Body weight | Body weight
1 Weight gain | Weight gain | Weight gain
1 Liver weight | Liver weight | Liver weight
1 Fat weight | Fat weight | Fat weight
CMCVD 1 Glucose 1 Resistin | Glucose | Glucose
1 Insulin 1 Triglycerides | Amylin | Insulin
1 Resistin | Cholesterol | Amylin
1 Leptin
1 Amylin
1 Cholesterol
| Triglycerides
MAFLD 1 Fat droplet size | 1 Fat droplet size | Fat area | Fat droplet size
1 Fat area 1 Fat area | Fat area
T ALT T ALT | ALT
Glucose Homeostasis 1 FBG 1 FBG | FBG | FBG
T AUC 1+ AUC | AUC | AUC
T IR T IR LR LR
Liver Protein T GLUT2 | GLUT2 | GR | GR
T GR | FBPI | FBPI
1 FBPI | ACCI | ACCI
1 ACCI | CPTla
1 CPTla
1 FAS
Gastrocnemius Protein 1t CPTIb | CPTIb

Notes: Changes in the metabolic profile of mice in the HFHS group are compared to lean control mice. All other groups (HFHS+Ex,
HFHS+Gen, HFHS+Ex+Gen) are compared to the HFHS group. Changes are expressed as increased (1) or decreased (|). Greatest effect
of treatment was observed with Gen treatment and combination Gen and Ex.

Abbreviations: HFHS, high fat-high sucrose; Gen, genistein; Ex, exercise training; ACC, acetyl-CoA carboxylase; ALT, alanine transfer-
ase; AUC, area under the curve; CMCVD, common markers of cardiovascular disease; CPT, carnitine palmitoyltransferase; Ex, exercise
training; FAS, fatty acid synthase; FBG, fasting blood glucose; FBPI, fructose-|,6-bisphosphate; Gen, genistein; GLUT, glucose transporter
protein; GR, glucocorticoid receptor; HFHS, high fat high sugar; IR, insulin resistance.

human NAFLD/MAFLD metabolic
hyperglycemia).®>®* The progression of nonalcoholic fatty liver disease is thought to start as steatosis, and progress

comparable characteristics  (obesity, inflammation, insulin resistance,
into NASH, fibrosis, cirrhosis, and eventual hepatic carcinoma. Clinically, less than 30% of patients with hepatic steatosis
may continue to develop NASH (inflammation, and oxidative stress).®* Interestingly, comparing clinical evidence to
animal model relevance, liver inflammation and fibrosis are generally noted in either longer duration high fat diet studies
or those including both high fat and high sugar combinations to yield NAFLD/MAFLD and accelerate the progression of
liver fibrosis.®> %

The influence of exercise training on fatty liver is largely dependent on exercise intensity;'®!7-*>?* high intensity
continuous aerobic exercise and high intensity-interval training regimens are known to reduce fatty acid content in
liver.?>®® The mechanism explaining this beneficial effect is an improvement in insulin resistance, which is a contributing
factor in the development of steatosis.” Our results support this idea that prevention of the steatosis is, in part, dependent
on the exercise stimulus since the intensity of exercise utilized was moderate, and mice remained hyperglycemic and
hyperinsulinemic, indicating persistent insulin resistance after exercise training. Histological analysis of liver obtained

from treadmill-trained mice in our study revealed some persistent fat accumulation. It is noteworthy that HFHS-fed mice
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exhibited reduced exercise capacity (attempts to increase exercise intensity of exercise were met with an unwillingness to

52,70

run by mice). This is consistent with our previous studies using the db/db mouse, exhibiting insulin resistance after

exercise training and a reduction in exercise capacity.’>’"’! Reduced exercise capacity, in patients with T2DM is
inversely related to the accumulation of fat in the liver and is a predictor of increased MAFLD severity.'®*"* In
addition, no demonstrable weight loss was observed with exercise training alone.

Lipid accumulation in muscle following HFHS feeding is associated with an increased expression of oxidative
enzymes to facilitate disposal of fatty acids.”> HFHS feeding in mice causes insulin resistance and an increase in the
expression of FATCD36 binding protein and CPT1, reflecting increased fatty acid uptake and mitochondrial oxidation,
respectively, as compensatory mechanisms.’>’> We observed an increased capacity of fatty acid oxidation, expressed as
CPTI1b, in skeletal muscle from mice fed HFHS, which is consistent with other studies.”® In response to combination
treatment, however, CPT1b expression remained at levels seen in lean control mice, suggesting decreased fatty acid
supply and oxidation. Interestingly, a reciprocal ~75% increase in GLUT4 expression in skeletal muscle was observed,
suggesting an improvement in glucose metabolism with combined genistein and exercise training. Although glucose
oxidation was not directly measured in muscle, fasting blood glucose and insulin levels coupled with the rapid return of
blood glucose to baseline following the GTTs with the combination treatment are indicative of increased insulin
sensitivity, consistent with improved glucose metabolism.

Growing evidence indicates that genistein protects against the development of fatty liver in models of obesity and
diabetes induced by high fat feeding alone, or in combination with sucrose or fructose by reducing common cardiovascular
risk factors; obesity, hyperinsulinemia, hyperglycemia, and expression of hepatic proinflammatory markers.*>747¢ Our
results are consistent with those previous studies and support the notion that chronic treatment with this phytoestrogen
improves insulin sensitivity in T2DM, and improves the gluconeogenic profile in HFHS-fed mice.””"”® Glucocorticoids
activate hepatic glucose production and enhance cortisol secretion in T2DM.”>*® Cortisol (or corticosterone in rodents)
binding to the GR receptor increases expression of gluconeogenic genes, including the rate-limiting enzyme FBP1.*' Here,
we demonstrate that total protein expression of GR and FBP1 and fecal corticosterone levels were elevated with HFHS
feeding (consistent with enhanced glucocorticoid activity). We assessed fecal corticosterone as an index of glucocorticoid
status (thereby bypassing issues related to variations in corticosterone levels during the diurnal cycle), and to confirm that
glucocorticoid status (and glucose tolerance) was improved with treatment. We have recently shown that genistein improved
glucose tolerance in obese diabetic ob/ob mice by decreasing corticosterone level and glucocorticoid amplification in tissues
via 11B-HSD-I and I1.°7*

These metabolic perturbations in protein expression were absent in mice treated with genistein alone or in combina-
tion with exercise training, indicating reduced gluconeogenesis. This is consistent with a previous study showing that
inhibition of FBP1 was effective in reducing hepatic gluconeogenesis and plasma glucose concentrations in Zucker
diabetic fatty rats with overt diabetes.®* Inhibiting endogenous glucose production would clearly reduce the long-term
metabolic consequences of persisting hyperglycemia. As with all dietary interventional studies, there are limitations with
respect to the direct translation of animal model data to purported clinical use.

While insulin resistance is the main driving force in the development of lipogenesis in liver and severity of
MAFLD,"" the pathobiology of MAFLD involves several metabolic pathways, including hepatic sterol regulator element
binding protein 1 (SREBP-1) as the main transcription factor controlling lipogenesis and therefore MAFLD.**% Diets
enriched with fructose or saturated fat have been shown to stimulate SREBP-1, FAS and ACCI1 synthesis, leading to lipid
accumulation in liver.>*®*® On the other hand, reports have shown that genistein suppresses hepatic expression of SREBP-
1, ACC1, FAS and as well as genes involved in triglyceride and cholesterol synthesis in whole liver and primary human
hepatocytes.>**”"% Our histological evidence shows a decrease in liver fat area with genistein treatment, accompanied by
a reduction in ACCl1, suggesting decreased conversion of acetyl-CoA to fatty acids. While expression of SREBP-1 was
not determined, based on the effects of HFHS feeding and genistein treatment on ACC1 expression, it is likely that the
changes in hepatic lipid content could be occurring through the mechanisms regulated by SREBP-1. Similarly, evidence
from previously published rodent studies suggests that exercise training also reduces the expression of elongases, FAS

16,9094

and ACCI, thereby preventing hepatosteatosis, although we did not observe this exercise-induced benefit in mice.

Discrepancies may relate to variations in one or more of the following: diet composition (high fat diet alone limit liver
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injury),*' rodent strain, modality/volume/duration of exercise training (using swim training or high-intensity exercise or
voluntary wheel running regimens).”®** Interestingly, in the current study, when exercise was combined with genistein
treatment, greater protection against liver fat accumulation in the presence of HFHS feeding was observed. The
histological improvements in the relevant markers of injury, including ALT activity, with combined treatment reflected
a greater beneficial effect. While experimental studies in rodents clearly show efficacy of combined genistein and
exercise training treatment, future clinical studies will be required to explore whether genistein and exercise can provide
similar protective effects in humans with hepatic steatosis.

Conclusion

In conclusion, increased consumption of diets containing a high content of fat and refined sugars has led to an
unprecedented rise in the prevalence of insulin resistance and diabetes along with an associated development of fatty
liver disease. Using HFHS feeding to mimic these conditions, our results indicate that the isoflavone genistein and
exercise training afford vital protection against obesity-induced dysfunction, preventing insulin resistance, and the
metabolic complication of hepatic steatosis.

Abbreviations

ACC, acetyl CoA carboxylase; ALT, alanine transferase; AUC, area under the curve; CMCVD, common markers of
cardiovascular disease; CPT, carnitine palmitoyltransferase; Ex, exercise training; FAS, fatty acid synthase; FBP,
fructose-1,6-bisphosphate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Gen, genistein; GLUT, glucose trans-
porter protein; GR, glucocorticoid receptor; GTT, glucose tolerance test; HFHF, high fat high fructose; HFHS, high fat
high sugar; MAFLD, metabolic dysfunction-associated liver disease; NAFDL, nonalcoholic associated liver disease;
NASH, nonalcoholic steatohepatitis; SREBP-1, sterol regulator element binding protein 1; T2DM, type 2 diabetes
mellitus.
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