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Abstract

Extracting dynamical information from single-cell transcriptomics
is a novel task with the promise to advance our understanding of
cell state transition and interactions between genes. Yet, theory-
oriented, bottom-up approaches that consider differences among
cell states are largely lacking. Here, we present spliceJAC, a method
to quantify the multivariate mRNA splicing from single-cell RNA
sequencing (scRNA-seq). spliceJAC utilizes the unspliced and
spliced mRNA count matrices to constructs cell state-specific
gene–gene regulatory interactions and applies stability analysis to
predict putative driver genes critical to the transitions between
cell states. By applying spliceJAC to biological systems including
pancreas endothelium development and epithelial–mesenchymal
transition (EMT) in A549 lung cancer cells, we predict genes that
serve specific signaling roles in different cell states, recover impor-
tant differentially expressed genes in agreement with pre-existing
analysis, and predict new transition genes that are either exclusive
or shared between different cell state transitions.
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Introduction

The recent explosion of single-cell transcriptomics methods has pro-

vided unprecedented resolution on studying single-cell processes

(Aldridge & Teichmann, 2020), allowing one to closely inspect the

dynamics of cell-fate decisions (MacLean et al, 2018). To dissect the

state-transition dynamics from single-cell snapshot data(Weinreb

et al, 2018), identify key genes that drive the transitions between

cell types (Chen et al, 2019), and infer cell type-specific gene regula-

tions (Wang et al, 2020), the need of the bottom-up, theory-

oriented, and interpretable frameworks to analyze the dynamical

systems of cell state transitions (Moris et al, 2016; preprint:

Xing, 2022) is becoming increasingly clear. Despite some recent pro-

gresses (Bargaje et al, 2017; Zhou et al, 2021; Qiu et al, 2022), theo-

retical and computational analysis beyond the purely statistical or

machine learning approaches (Luecken & Theis, 2019) remains

largely unexplored.

The possibility to distinguish intronic and mature mRNAs in

single-cell RNA sequencing (scRNA-seq) has improved our ability

to infer dynamical information from static scRNA-seq snapshots

(Tritschler et al, 2019; Li et al, 2021; Gorin et al, 2022). For

instance, the RNA velocity framework models the splicing dynam-

ics of nascent mRNAs to predict future gene expression patterns

and transitions (La Manno et al, 2018; Bergen et al, 2020). This

approach can recapitulate differentiation trajectories in develop-

mental systems such as dentate gyrus neurogenesis and pancreatic

endocrinogenesis (La Manno et al, 2018; Bergen et al, 2020). One

major limitation of this approach is that different cell populations

often exhibit distinct kinetic regimes (preprint: Cui et al, 2022).

An interesting example is the dentate gyrus neurogenesis, where

an endothelial cell population exhibits a distinct slope in the

spliced/unspliced space (Bergen et al, 2021). Another clinically rel-

evant scenario is heterogeneous tumors, where cells can undergo

reversible transitions along different axes including epithelial–mes-

enchymal transition (EMT), acquisition of cancer stem cell (CSC)

traits, metabolic reprogramming and leader-follower during collec-

tive migration (Shibue & Weinberg, 2017; Jia et al, 2019; Faubert

et al, 2020; Mercedes et al, 2021), thus exhibiting multiple coexist-

ing cell states corresponding to different phenotypes. Moreover,

current models consider the splicing of different mRNA species

within the same cell as independent processes, thus disregarding

transcriptional regulation (Bergen et al, 2021). Integrating tran-

scriptional regulation can not only refine current models of

mRNA splicing but also provide a new avenue to learn feedback

regulations between genes.

Currently, several “global” methods aim at reconstructing emer-

gent gene–gene interaction networks using conventional (i.e., only

spliced) mRNA count data (Huynh-Thu et al, 2010; Kim, 2015; Chan

et al, 2017; Matsumoto et al, 2017; Specht & Li, 2017; Gao

et al, 2018; Sanchez-Castillo et al, 2018; Woodhouse et al, 2018;

Moerman et al, 2019; Aubin-Frankowski & Vert, 2020; Deshpande

et al, 2022). A potential drawback of such an approach is that,
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arguably, many key interactions are context-specific and therefore

present only in certain cell states. Moreover, since snapshot

single-cell datasets lack sufficient dynamical information for the

comprehensive inference (Wang & Wang, 2022), many existing

GRN inference methods rely on pseudotime ordering of cells to cre-

ate “trajectories,” which itself require additional assumptions and

may lead to significant problems in performance when compared

with true time series data (Qiu et al, 2020).

To tackle these limitations, we present spliceJAC, a multivariate

analysis of mRNA splicing that account for multiple coexisting cell

states and their state-specific gene regulation. Following a parallel

with the Waddington landscape (Waddington, 1957; Wang

et al, 2011; Zhou et al, 2012; Zhou & Li, 2016) methodology, we

interpret cell states as attractors separated by barriers in an underly-

ing high-dimensional landscape (Huang et al, 2005). Cells within

each attractor are characterized by a unique set of gene–gene inter-

actions that define their specific gene expression pattern and “unsta-

ble” genes capable to drive transitions toward new cell states. One

major advantage of spliceJAC is that the predicted gene–gene inter-

action matrices also encode information about the stability of indi-

vidual cell states. More specifically, spliceJAC characterizes each

cell state with a Jacobian matrix, whose spectral analysis provides

key information about the most unstable genes that potentially drive

transitions toward other cell states.

In this work, we first present a theoretical framework for the

multivariate mRNA splicing. Next, we introduce spliceJAC, an easy-

to-use python package that implements the model and offers several

options for downstream analysis. Furthermore, we test spliceJAC on

several in silico, multistable circuits, where we show it outperforms

several existing methods for GRN inference from scRNA-seq data.

Moreover, we analyze two systems, including mouse pancreas

endothelium development and epithelial–mesenchymal transition of

A549 lung carcinoma cells, where spliceJAC uncovers context-

specific gene regulation and predicts new transition genes not iden-

tified with existing methods based on gene expression.

Results

Modeling stability and cell state-specific regulation with
multivariate mRNA splicing analysis

The spliceJAC is motivated by nonlinear dynamical system model-

ing of gene expression processes in single cells. The interconnec-

tions between genes within a cell can be modeled with a system of

nonlinear ordinary differential equations:

_x ¼ F xð Þ (1)

where x ¼ x1; x2; . . . ; xNð Þ is the vector of protein counts, _x is its

time derivative, and F xð Þ is a generic, nonlinear force field that

models interactions between proteins as well as any other cellular

process of interest. A common explicit form for the force field act-

ing on molecular species (xi) is as follows:

dxi
dt

¼ kif
i x1; x2; . . . ; xNð Þ� γixi (2)

where ki and γi are basal production and degradations rate con-

stants, and f i x1; x2; . . . ; xNð Þ is a nonlinear function of all chemical

species acting on species i. This model can be generalized to

include mRNA splicing dynamics (La Manno et al, 2018; Bergen

et al, 2020), that is, the intermediate step where intronic, noncod-

ing RNA regions are removed from newly produced mRNA tran-

scripts:

dUi

dt
¼ kif

i S1; S2; . . . ; SNð Þ� βUi (3a)

dSi
dt

¼ βUi � γiSi (3b)

where Ui and Si are copy numbers for unspliced and spliced

mRNA of species i, and f i S1; S2; . . . ; SNð Þ is a nonlinear function

that represents the regulatory effect from all molecular species

quantified by the mature mRNAs. Finally, β is a splicing rate con-

stant that is assumed to be equal for all mRNA species. Therefore,

equations (3a) and (3b) can be interpreted as a generalization of

existing mRNA splicing models (La Manno et al, 2018; Bergen

et al, 2020) that includes multivariate mRNA dynamics (Bergen

et al, 2021). Equations (3a) and (3b) can generally exhibit one or

more attractors that are associated with distinct cell states with dif-

ferent gene expression profiles. When close enough to an attractor,

gene regulation functions can be linearized:

f i S1; S2; . . .; SNð Þ≈ f i S1
ss; S2

ss; . . .; SN
ssð Þ þ ∑

N

j¼1

Aij Sj � Sj
ss

� �

þO Sj � Sj
ss

� �2� �
(4)

where superscript ss implies “steady state.” Therefore, nearby each

attractor of equations (3a) and (3b), a linear approximation based

on equation (4) simplify the nonlinear regulation to a summation

of linear terms:

dUi

dt
¼ Ai0 þ ∑

N

j¼1

AijSj � βUi (5a)

dSi
dt

¼ βUi � γiSi (5b)

where Ai0 ¼ f i S1
ss; S2

ss; . . . ; SN
ssð Þ is a basal production rate, and

the coefficients Aij describe the regulation of any given molecular

species Sj on Ui. While equation (5b) is similar to existing RNA

velocity models, equation (5a) includes local (i.e., cell state-

specific) gene–gene regulation. Therefore, while equations (3a) and

(3b) can describe a nonlinear regulatory circuit with potentially

multiple stable states, we linearize the circuit interactions around

each stable cell states that are thus described by different parame-

ters. Assuming steady state near each fixed point (i.e., dUi

dt ¼ 0),

equation (5a) allows to infer an attractor-specific gene–gene inter-

action matrix (Appendix Methods, section 1). To ensure a unique

solution to the regression problem, the number of genes cannot

exceed the number of observations (i.e., cells). Therefore, the size

of the number of cells within a given cell state defines as an upper

limit to the number of inferred interactions. It is worth noting that

equation (5a) and (5b) remain valid even when the multivariate

term f i S1; S2; . . . ; SNð Þ is a product of individual regulatory func-

tions, an often-used modeling strategy in systems biology
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(Appendix Methods, section 1). The following section provides an

overview of spliceJAC, a package that implements this formalism

to infer cell type-specific regulatory interactions and predict critical

transition driver genes.

Overview of spliceJAC

spliceJAC requires mRNA count matrices of unspliced and spliced

mRNA and cell annotations as user input (Fig 1A). In the spliceJAC

framework, it is assumed that cell annotations (i.e., cluster labels)

correspond to stable cell states. This, however, is not necessarily

true, and deciding which cell subpopulations can be effectively con-

sidered as stable states depends on the specific propertied and prior

knowledge on the considered biological system. Downstream stabil-

ity analysis of spliceJAC (described below) can provide the self-

consistent validation for such assumption.

In the inference step, spliceJAC computes cell state-specific

gene–gene interaction matrices (or, more precisely, Jacobian matri-

ces) by modeling the coupled mRNA splicing dynamics (Fig 1B

and C, Methods and Protocols: Inference of cell state specific

gene-gene interactions from multivariate mRNA splicing analysis).

Upon gene–gene interaction inference, spliceJAC performs down-

stream analysis based on dynamical system theory, focusing on

three areas: (i) individual cell states; (ii) transitions between cell

states; and (iii) comparison between transitions stemming from a

shared starting state.

Identifying individual cell states
First, at the level of individual cell states, spliceJAC computes a core

regulatory network with state-specific gene–gene interactions

(Fig 1F). The number of selected key interactions and size of the

network can be controlled by the user based on a quantile selection

feature. From the gene–gene interaction information, signaling

scores can be computed based on the incoming and outgoing inter-

action stemming from each node, which can be visualized in a two-

dimensional scatterplot to identify the key signaling hubs of each

cell type (Methods and Protocols: Quantification of signaling roles

and signaling change upon transition). Moreover, a global compar-

ison between cell types identifies genes with context-specific or con-

served functions across cell types (Methods and Protocols: Signaling

variability of individual genes across cell states and Top differen-

tial/conserved interactions and GRN comparison between cell

states). Finally, from the gene–gene interaction matrix, it is possible

to evaluate the stability of the cell state and potential unstable direc-

tions (Methods and Protocols: Identification of transition driver

genes from Jacobian eigen-space analysis).

Analysis of transitions between cell states
Second, spliceJAC provides information about the transitions

between cell states. A set of transitions of interest can be provided

as a user input. To identify important transition driver genes, spli-

ceJAC projects the starting state’s unstable manifold onto the path

connecting starting and target cell states, thus considering the speci-

fic transition direction in the gene landscape (Fig 1D and E and

Methods and Protocols: Identification of transition driver genes from

Jacobian eigen-space analysis). The propensity of genes to drive the

transition is quantified by an “instability score” bound between 0

(very stable, not inducing the transition) and 1 (very unstable,

drives the transition) (Fig 1E). To elucidate how transition driving

genes connect to key, highly expressed genes, spliceJAC features a

dedicated plotting function that highlights a core GRN including the

top differentially expressed genes (DEGs) of the starting cell state

and the top transition genes leading to the final cell state. Finally,

comparing gene–gene interactions between starting and final states

provides information about the genes with significant changes as

regulators or targets upon transition, which can be visualized as

two-dimensional scatter plots (Fig 1G) or as a GRN of differential

interactions.

Comparison of transitions from the same starting state
In biological scenarios where cells can access one of multiple, dis-

tinct states, spliceJAC compares the individual transition paths to

identify driver genes that are specific to a single transition or shared

between multiple transitions, respectively. Moreover, spliceJAC

applies multiple metrics such as incoming signaling, outgoing sig-

naling, and betweenness centrality (Methods and Protocols: Quan-

tification of signaling roles and signaling change upon transition) to

identify specific genes with standout signaling roles in only one,

some, or all the final cell states.

spliceJAC reconstructs state-specific gene–gene interactions from
in silico circuits

To test spliceJAC’s ability to capture cell state-specific gene–gene
interactions, we evaluate its performance on in silico circuits where

a ground truth can be computed analytically. To generate the in sil-

ico data, we consider small perturbations around each fixed point

and the relaxation to the fixed point thereafter (Methods and Proto-

cols: Simulation of in silico circuits).

First, we consider a bistable toggle switch, an often-used motif to

simulate differentiation processes (Verd et al, 2014; Xu et al, 2014),

composed by two genes (X, Y) that mutually inhibit each other

(Appendix Methods, section 3), resulting in two symmetric fixed

points: (high X, low Y) and (low X, high Y), respectively (Fig 2A).

While both ground truth interaction matrices feature negative off-

diagonal elements corresponding to the mutual inhibition between

X and Y, the amplitude of these interactions is reversed in the two

states. In other words, only the X-to-Y inhibition arrow of the circuit

is strongly activated in the (high X, low Y) state, and vice versa, thus

underscoring the difference between the global network architecture

and the amplitude of state-specific interactions. spliceJAC recon-

structs the interaction matrices from the simulated data with high

degree of precision for both stable fixed points (Fig 2B). Further-

more, we consider a three-gene loop with mutual activation that

exhibits a single stable fixed point (Fig 2C; Appendix Methods, sec-

tion 3). Similarly, spliceJAC correctly recovers the interaction matrix

following the same simulation scheme (Fig 2D).

We further consider a biologically relevant scenario and general-

ize a circuit that regulates epithelial–mesenchymal transition (EMT)

model (Tian et al, 2013) by explicitly including mRNA splicing

(Appendix Methods, section 3). This circuit includes two epithelial

microRNAs (miR-34 and miR-200), two mesenchymal transcription

factors (ZEB and SNAIL), an external TGF-beta signal that induces

EMT, the cellular TGF-beta, and two output nodes for the epithelial

(E-cadherin) and mesenchymal (N-cadherin) phenotypes, respec-

tively (Fig 2E). Increasing TGF-beta levels induce a transition from
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an epithelial state, passing through hybrid E/M state, and finally to

a mesenchymal state (Fig 2F). Given our interest in capturing the

context-specific dynamics of multistable gene regulatory networks,

we select an inducer level resulting in coexistence of the three states

(Fig 2F, red dashed line). From a biological standpoint, this corre-

sponds to a scenario where epithelial, hybrid E/M, and mesenchy-

mal states are accessible. Following the simulation scheme

employed for the toggle switch and 3-gene circuit, we robustly

recover the interaction matrices associated with the epithelial,

hybrid E/M, and mesenchymal states (Fig 2G and H;

Appendix Fig S1). To test spliceJAC’s ability to discern between

stable and unstable cell states, we simulated short trajectories

around the unstable fixed point of the toggle switch synthetic cir-

cuit, where spliceJAC correctly predicts a positive eigenvalue that is

indicative of instability (Fig EV1A). Furthermore, to “simulate” an

erroneous mixing of states that could happen in real datasets, we

ran spliceJAC on mixtures of cells belonging to multiple cell states

of the EMT circuit. In this case, spliceJAC always predicted the

largest eigenvalue to be either positive or extremely close to zero

(Fig EV1B–F). Overall, these simulations demonstrate spliceJAC’s

ability to distinguish between stable and unstable states from simu-

lation of synthetic circuits. Moreover, the inference was relatively

robust even when genes were removed, one at a time, from the spli-

ceJAC count matrix input, and the inference was run on the remain-

ing subset of genes (Appendix Fig S2). This approach confirms the

inference robustness in silico when missing genes might play impor-

tant regulatory roles.

Finally, we compare spliceJAC to other existing tools for GRN in-

ference (Huynh-Thu et al, 2010; Kim, 2015; Chan et al, 2017; Mat-

sumoto et al, 2017; Specht & Li, 2017; Gao et al, 2018; Sanchez-

Castillo et al, 2018; Woodhouse et al, 2018; Moerman et al, 2019;

Aubin-Frankowski & Vert, 2020; Deshpande et al, 2022) using the

Beeline pipeline (Pratapa et al, 2020). The methods’ performance

for interaction recovery in the three states was quantified based on

A

D

F G

E

B C

Figure 1. Overview of spliceJAC and main analysis output.

A As input, spliceJAC requires unspliced and spliced mRNA count matrices as well as cell annotations.
B spliceJAC fits the mRNA count data within each cell state to a multivariate mRNA splicing model.
C The output of the model is a set of gene–gene interaction matrices that encode gene–gene interactions in each cell state.
D The switch between two cell states is interpreted as a transition on a high-dimensional landscape shaped by the underlying state-specific gene regulatory networks.
E By projecting the unstable eigenvalues of the inferred Jacobian matrix, spliceJAC predicts key transition genes (TG).
F Each cell state exhibits specific interactions between genes that are captured in a regulatory network. Downstream analysis of the network identifies important

signaling hubs such as strong regulators that modulate many other genes and strong targets that receive inputs from multiple genes.
G A state transition coincides with a rearrangement of the state-specific regulatory network.
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element-wise absolute difference between the ground truth and esti-

mated Jacobians (Fig 2I) and fraction of incorrect signs in the esti-

mated Jacobian (Fig 2J). spliceJAC consistently performed better in

both metrics and in all three states. To test diverse biological scenar-

ios, we further used the BoolODE simulation tool to generate syn-

thetic data for three cases: a cycling circuit exhibiting a limit cycle, a

bifurcating converging circuit with two stable states, and a trifurcat-

ing circuit with three stable states (Appendix Fig S3) previously

studied in the Beeline GRN inference benchmarking package (Meth-

ods and Protocols: Simulation of in silico circuits). To quantify the

goodness of state-specific GRN inference, we used the Beeline pack-

age to evaluate the area under the precision recall curve (AUPRC,

A

E

I K

J

F G H

B C D

Figure 2. Benchmarking spliceJAC against in silico circuits and comparison with other existing GRN inference methods.

A The phase space of a bistable toggle switch including nullclines (silver lines), stable fixed points (blue dots), and stochastic perturbation around stable fixed points
(red lines). X- and y-coordinates represent unspliced mRNA counts of genes X and Y.

B Ground truth (top) and inferred (bottom) interaction matrices for the two stable fixed.
C The phase space of a monostable circuit of three genes that activate each other in a loop.
D Ground truth and inferred interaction matrix of the three genes circuit.
E The EMT circuit proposed by Tian et al (2013). Green and red nodes highlight epithelial and mesenchymal genes, while pointing and t-shaped arrows represent

activation or inhibition, respectively.
F Bifurcation diagram showing the available attractors as a function of TGF-beta inducer. The red dotted line highlights a value leading to tristability used for spli-

ceJAC testing thereafter.
G, H Ground truth (G) and estimated (H) interaction matrices in the mesenchymal state.
I, J Comparison with existing GRN inference methods based on the absolute difference between ground truth and prediction (I) and maximization of the fraction of

correct matrix element signs (J). Green, orange, and red bars showcase results for the Epithelia, Hybrid E/M and mesenchymal states, respectively.
K The AUPRC ratio for all methods in the Beeline pipeline and spliceJAC. For each circuit state, the AUPRC scores are normalized by the average score achieved for

the state. NA = no output file was generated. NA* = an output file without any predicted edge was generated.
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Methods and Protocols: Benchmarking and comparison with exist-

ing GRN inference methods), showing that spliceJAC consistently

achieved better scores for all the simulated synthetic circuits

(Fig 2K; Appendix Table S1). While the AUPRC calculation does not

penalize incorrect sign detection, the inference of the limit cycle

highlights spliceJAC’s ability to correctly predict not only the circuit

topology but also the correct signs for activation or inhibition

(Appendix Fig S4). While the existing inference methods were

designed to predict a “global” gene regulatory network without con-

sidering potential major differences among different cell states, spli-

ceJAC is specifically tailored to capture cell state-specific

interactions. Overall, the benchmarking analysis reveals the robust

performance of spliceJAC to infer gene regulations.

Identification of cell state-specific regulatory interactions in the
pancreas epithelium

In order to gauge spliceJAC on an experimental dataset, we con-

sider scRNA-seq data from the mouse pancreas epithelium devel-

opment (Bastidas-Ponce et al, 2019). Previous analysis of

transition trajectories with PAGA and RNA velocity modeling

uncovered a transition from Ductal precursor cells and the final

differentiation between four terminal cell states: Alpha, Beta,

Delta, and Epsilon (La Manno et al, 2018; Wolf et al, 2019;

Fig 3A). Delta represents the rarest population, with only 70 iden-

tified cells, thus putting an upper limit to the number of genes

considered in the spliceJAC inference (Methods and protocols:

Analysis of pancreas epithelium data).

First, we investigate the context-specific gene–gene interactions,

resulting in a series of core gene regulatory networks (GRN) that

encode context-specific interactions within each cell state (Fig 3B;

Appendix Fig S5A). The gene regulatory networks associated to

each cell state can be visualized with varying levels of detail based

on quantile weight selection feature (Appendix Fig S5B). The recon-

structed interaction network enables the analysis of the gene signal-

ing roles, which can be quantified with several different metrics,

including betweenness centrality of the gene node in the GRN, over-

all incoming and outgoing signaling through the gene node, and the

“total signaling” defined as the sum of incoming and outgoing sig-

naling scores (Methods and Protocols: Quantification of signaling

roles and signaling change upon transition). The main signaling

hubs can be identified as the genes with higher incoming and outgo-

ing signaling scores (Fig 3C; Appendix Fig S6). Moreover, compar-

ing gene signaling roles across cell states provides information

about genes with highly specialized or conserved functions. For

each gene, the variability in signaling role can be tested in spliceJAC

with three separate metrics, including standard deviation (SD),

range, and interquartile range (Methods and Protocols, section 3).

For example, inspecting the interquartile range of betweenness cen-

trality across cell states highlights a group of genes with high state-

to-state variability, such as Pouf62, Acsl1, Nusap1, Dll3, and Lrpprc

(Fig 3D). We further test the robustness of the gene–gene interaction

inference method by exploring its consistency, response to subsam-

pling, and prediction with different regression methods and parame-

ters (Appendix Fig S7).

Moreover, the state transition analysis offers information about

the most unstable genes that can destabilize cell states and drive

transitions. Applying this analysis to the pancreas epithelium

lineage predicts key transition genes (TGs) associated with each

transition (Appendix Fig S8A). Interestingly, comparing these “in-

stability scores” with standard differentially expressed gene (DEG)

scores highlights that DEGs of the starting cell state tend to have

above average instability scores, thus confirming their important

role in the gene regulation of the specific cell state. Other genes

with high instability score were identified, however, that do not

stand out based on their DEG score, thus potentially offering addi-

tional information on the specific transition dynamics that is not

captured by existing analysis pipelines (Appendix Fig S8A). We

further compared spliceJAC’s instability scores with the cluster-

specific top-likelihood genes identified by scVelo’s dynamical mod-

eling, again confirming that many genes are uniquely predicted by

spliceJAC (Appendix Fig S8B). The key regulatory interactions

between DEGs and TGs can be summarized in a core GRN

(Fig 3E; Appendix Fig S9A). Moreover, comparing the GRNs of

starting and final cell states suggests key genes with substantial

changes in their signaling role during a specific transition (Fig 3F;

Appendix Fig S9B). The implications of cell state transition on

gene regulation can be captured by differential and conserved

GRNs that rank the top gene–gene interactions with largest or

smallest change between the starting and final states (Fig EV2). It

may be expected that adjacent cell states share more similarities

in GRN structure compared with the states that are not directly

connected by a transition. Comparing the GRNs along a develop-

mental trajectory from the Ductal to the Alpha state shows that

the GRNs of adjacent cell states along the transition retain more

similarity compared with GRNs of nonadjacent cell states, as

quantified by the area under the precision-recall curve (AUPRC).

In other words, the GRNs of the “starting states” are typically

good predictors for the GRNs of the “final states” (Fig EV3). The

consistency of GRN inference and transition gene analysis was fur-

ther confirmed when randomly removing subsets of genes from

the dataset, which mimics missing genes that can either be unde-

tected in the dataset or not selected for the spliceJAC analysis

(Appendix Fig S10).

Finally, the transition analysis can be generalized to lineages

where an initial cell state differentiates into multiple different final

states, as seen in the differentiation of pre-endocrine cells into

specific endocrine subtypes, including Alpha, Beta, Delta, and

Epsilon (see black dashed box in Fig 3A). The transition analysis

of all these switches can be merged to identify important TGs that

are exclusive to a single differentiation branch or shared between

multiple differentiation branches (Fig 3G). Moreover, specific

genes that are selectively active in only one of the final endocrine

subtypes can be visualized based on a boxplot (Appendix Fig S9C

and D). To gain biological insight into the role of these genes, we

further perform gene ontology (GO, Methods and protocols: Gene

Ontology analysis) analysis of the top five transition genes leading

to the four final cell states (Fig 3H). This analysis highlights the

involvement in distinct biological processes of genes that drive

transitions toward different terminal states. For example, the

genes associated to the Beta state are well-represented in extracel-

lular space regulation, whereas Delta genes are more represented

in the intracellular region process.

Together, spliceJAC suggests that the significant topological

changes in gene regulations during pancreas epithelium develop-

ment result in the coordinated alternations of transcriptome profiles,
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Figure 3. Identification of cell state-specific regulatory interactions in the pancreas epithelium.

A UMAP embedding of the pancreas epithelium dataset from Bastidas-Ponce et al (2019). Arrows indicate cell transitions identified with PAGA.
B A core gene regulatory network governing gene expression in Ductal state. Node size depicts gene expression level within the Ductal cluster while the color scale

depicts betweenness centrality of the node.
C Scatterplot of the genes based on incoming interaction strength (x-axis) and outgoing interaction strength (y-axis).
D State-to-state variability of gene betweenness centrality across cell states quantified by the interquartile range. Leftmost genes have highest state-to-state variability,

whereas rightmost genes have lowest state-to-state variability.
E A core GRN including the top Differentially Expressed Genes (DEG) of the Ngn3 high EP cell state and the top Transition Genes (TG) for the transition toward the Pre-

endocrine state.
F Change in incoming and outgoing signaling scores during the transitioning from Ngn3 high EP to pre-endocrine.
G Flowchart highlighting the shared and unique Transition Genes (TG) for differentiation from Pre-endocrine to Alpha, Beta, Delta, and Epsilon, respectively.
H Gene Ontology analysis for the top five identified transitioning genes leading to the Alpha, Beta, Delta, and Epsilon cluster, respectively.
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which shapes the directions of transition paths on cell state bifurca-

tion landscape.

Signaling changes and driver genes during partial and complete
EMT in A549 lung carcinoma cells

Next, we consider a time course of A549 lung carcinoma epithelial

cells (n = 3,003 cells) in vitro (Cook & Vanderhyden, 2020) where

epithelial–mesenchymal transition (EMT) was induced by a constant

dosage of TGFβ, and scRNA-seq was performed at successive time

points (t = 0 days, 8 h, 1 day, 3 days). Since we are specifically

interested in the signaling changes associated with EMT-related

genes, we restrict our analysis to a list of well-known epithelial and

mesenchymal genes implicated in TGFβ-driven EMT (Foroutan

et al, 2017), resulting in n = 25 epithelial genes and n = 102 mes-

enchymal genes. Trajectory inference on scRNA-seq time course

datasets has previously shown that TGFβ induces transitions to a

mesenchymal state that pass through one or more intermediate, or

hybrid epithelial/mesenchymal (E/M) cell states (Bocci et al, 2021;

Sha et al, 2021). Therefore, we choose clustering parameters result-

ing in three clusters corresponding to different cell states (Fig 4A

and Methods and Protocols: Analysis of A549 cell line under TGF-

beta induction). Two clusters exhibit clear epithelial and mesenchy-

mal traits, having, respectively, high/low expression of epithelial

genes and low/high expression of mesenchymal genes, while a third

cluster expresses both groups of genes at intermediate levels, and it

is thus identified as a hybrid E/M state (Fig 4B).

First, gene–gene interaction inference on the selected epithelial

and mesenchymal gene sets uncovers the specific regulatory interac-

tions of EMT-related genes. While it is generally difficult to bench-

mark gene regulatory network predictions, mesenchymal genes

tend to suppress the expression of epithelial genes while often acti-

vating other mesenchymal genes. Similarly, epithelial genes tend to

activate other epithelial genes while repressing mesenchymal

genes (Dongre & Weinberg, 2019). Consistently, we find a promising

trend in all cell states where regulation from E to M genes and vice

versa is mostly negative, whereas regulations between epithelial

genes or between mesenchymal genes are mostly positive

(Appendix Fig S11). Moreover, the global analysis of gene signaling

role across clusters identifies genes with selectively high signaling

activity in different clusters (Fig 4C–E). For example, many mes-

enchymal genes such as TMP1, ADAMST6, PTPRK, and DOCK4

exhibit highest signaling scores in the mesenchymal state. Other

genes, such as ANGPTL4, exhibit maximal signaling activity in the

hybrid E/M state and might perhaps be associated with a partial,

rather than a complete EMT (Fig 4D).

Finally, we compare transitions from epithelial to hybrid (or

“partial EMT”) and from hybrid to mesenchymal (or “complete

EMT”). The analysis reveals key genes driving partial and complete

EMT (Fig 4F and G) and their connection with the differentially

expressed genes in the epithelial and hybrid E/M cell states (Fig 4H

and I). Interestingly, a fraction of transition genes is shared between

partial and complete EMT, including TMP1, TGFBI, VIM, IGFBP7,

and AGR2. To gain biological insight into the role of these genes, we

performed Gene Ontology analysis (Wu et al, 2021) on the top 10

transition genes identified for the partial and complete transitions

(Methods and protocols: Gene Ontology analysis). Interestingly, the

shared TGs play an important role in the organelle and extracellular

region processes, whereas the complete EMT genes are more highly

represented in endomembrane systems (Fig 4J). Overall, most bio-

logical processes in the GO analysis exhibit similar representation

for partial and complete EMT transition genes, perhaps unexpect-

edly when considering that these are two steps of the same trans-

differentiation process.

To sum up, our analysis highlights the specific role of transition-

driver genes that regulate the partial and complete EMT process and

regulate distinct biological processes.

Discussion

We have presented spliceJAC, a method to analyze the attractor

basin structures of gene expression and RNA splicing dynamics,

which allows to predict critical transition driving genes and cell

state-specific interactions between genes. Compared with existing

frameworks for mRNA splicing and gene–gene reconstruction meth-

ods, spliceJAC incorporates multiple kinetic regimes characterized

by state-specific kinetic parameters, thus enabling to tackle complex

scenarios where multiple, stable cell states can coexist. Moreover, it

considers a multivariate mRNA splicing framework where the pro-

duction of nascent mRNA is regulated by other species. This key

feature enables to obtain information about the stability of cell

states, and prediction of “unstable” genes that induce state transi-

tions. The identification of transition driver genes is rooted in the

theory of attractor linear stability, thus providing a potentially more

interpretable alternative to existing approaches to single-cell tran-

scriptomics. Together, spliceJAC has three important functions that

allow novel biological insights: (i) distinguishing transition driver

genes leading to different final states that stem from a common ini-

tial state, such as the differentiation of pre-endocrine cells into

either Alpha, Beta, Delta, and Epsilon cells in during pancreas

endocrinogenesis; (ii) characterizing gene regulation in intermediate

cell states that are not transitory but rather act as stable attractors,

such as the hybrid epithelial/mesenchymal state during EMT; and

(iii) quantifying the differences in gene signaling roles between dis-

tinct cell states.

Reconstructing interactions between genes from single-cell tran-

scriptomic data, and scRNA-seq data specifically, is an important

problem that has been tackled with various techniques (Pratapa

et al, 2020; Nguyen et al, 2021). Learning causal relations between

genes can unlock novel biological insights and even predict the

effect of molecular perturbations such as mutations or therapeutic

interventions (Heydari et al, 2022). Several available GRN inference

methods, such as SCODE (Matsumoto et al, 2017), SCNS (Wood-

house et al, 2018), and GRISLI (Aubin-Frankowski & Vert, 2020),

rely on pseudotime ordering. When considering only cells from a

unique cell state, however, it is reasonable to assume that pseudo-

time variations between cells are small. Therefore, while these

methods are useful in biological situations where intermediate cell

states do not satisfy a steady state assumption, spliceJAC describes

scenarios where multiple stable attractors exists, as seen for

instance in reversible EMT (such as during wound healing) and in

many diseases such as cancer (Brabletz et al, 2018; Mercedes

et al, 2021). Furthermore, a second class of methods such as GINIE3

(Huynh-Thu et al, 2010) and GRNboost2 (Moerman et al, 2019)

assumes steady state, similarly to spliceJAC; the lack of dynamical
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information provided by the unspliced/spliced mRNA classification,

however, potentially leads to incorrect sign estimation and often

hampers the ability to predict causal relations between genes

(Appendix Methods, section 4). Finally, the recent RNA-ODE

employs the existing RNA velocity framework to calculate a gene

force field, from which a gene regulatory network and transition

paths are inferred(Liu et al, 2022).

Moreover, the majority of existing GRN inference methods

focuses on “global” gene–gene interaction networks. Recently, other

interesting methods started to focus on the cell state specificity of

gene regulation. The cell type-specific gene networks in the develop-

ing fetal brain and in autistic patient samples has been developed,

relying on a local independent test, which is carried out on a cell

type-basis (Wang et al, 2021); GRNs of distinct cell types have been

constructed by integrating prior knowledge and gene activity (Gibbs

et al, 2022); a fine-grained method has been developed to infer cell-

specific networks (CSN) and predict important genes that are

neglected by traditional differential gene expression analysis (Dai

A

C

J

H I

D E

B F G

Figure 4. Analysis of partial and complete EMT in A549 cells.

A UMAP embedding of the A549 cells under TGFB induction(Cook & Vanderhyden, 2020). Arrows indicate cell transitions for partial and complete EMT.
B Average expression of epithelial and mesenchymal genes in the three identified cell states.
C Variability of total signaling across cell states quantified by the total signaling range across the three identified cell states. Leftmost genes have high state-to-state

variability in their regulatory behavior, whereas rightmost genes have low state-to-state variability.
D Detail for the top five variable genes identified in panel (C). The bar plot showcases the total signaling of the genes in each of the three cell states.
E Same as (D) for the top five least variable genes.
F Top 10 transitioning genes in the “partial EMT” transition from epithelial to hybrid E/M states.
G Same as (F) for the “complete EMT” transition from hybrid E/M to mesenchymal states.
H A core GRN indicating the inferred interactions between top differentially expressed genes (DEG) of the epithelial state and the top transition genes of partial EM

Transition.
I Same as (H) for the complete EMT transition.
J Gene Ontology analysis for the top 10 identified transitioning genes for partial and complete EMT. The analysis compares transitioning genes that are exclusive to

partial EMT, exclusive to complete EMT, and shared between the two transitions.
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et al, 2019). One common trait of these methods is to adjust the

global GRN inference strategies, such as correlation, mutual infor-

mation, and regression, and apply them to specific cells or subpopu-

lations of cells (Akers & Murali, 2021). In the present work, the

terms “cell state” and “cell type” are largely considered as synony-

mous. While the term “cell state” has a clear relation with well-

defined mathematical concepts (such as attractors and stability), the

term “cell type” is more loosely defined, and types are usually asso-

ciated with expression of well-known markers. spliceJAC users can

adjust their analysis by modifying the cell annotations input to spli-

ceJAC, for instance by merging or excluding certain cell states based

on the prior knowledge on the specific biological system.

Existing methods identify important genes that play relevant

roles during cell transitions based on gene expression—such as dif-

ferentially expressed genes (DEG; Soneson & Robinson, 2018; Wang

et al, 2019)—and trajectory inference—such as genes that are highly

variable during transitions (Sha et al, 2020). Conversely, spliceJAC

predicts transition driver genes based on the instability inferred

from the cell state’s Jacobian matrix. Our analysis of the pancreas

endothelium and EMT in A549 cells showed a partial overlap

between spliceJAC and standard DEG analysis, but also predicted

novel transition driver genes that could not be identified with exist-

ing techniques, thus offering predictions that can be tested experi-

mentally.

Finally, we acknowledge several aspects to further improve the

model and analysis of spliceJAC. First, incorporating additional lay-

ers of datasets such as chromatin accessibility or proteomics (Gorin

et al, 2020) could significantly enhance the accuracy of gene-

interaction terms. Furthermore, prior knowledge of gene interactions

may help to reduce the false positives of regulation recovery (Dong

et al, 2022). In the future, these additional measurements can be

incorporated with spliceJAC to generate more data-driven and robust

predictions. Moreover, spliceJAC models linear interactions between

genes, an assumption motivated by the linear stability theory. Both

technical and biological noise, however, might result in significant

deviations between cells of same state. The stochastic and dynamical

modeling of gene regulation and splicing, compared with determinis-

tic and steady-state approaches in spliceJAC, could in the future

improve the goodness of fitting toward low-expressed genes and

strengthen the inference of gene auto-regulations (preprint: Wang &

He, 2022). Finally, like other models of gene regulation based on

scRNA-seq data, spliceJAC assumes that mRNA counts provide a

consistent approximation for protein copy numbers, which might

not necessarily be true due to post-translations regulations.

Overall, spliceJAC represents a step forward in the biophysical

modeling of scRNA-seq data and a power tool that unlocks novel

biological insights about the context-specificity and stability of mul-

tistable biological systems.

Materials and Methods

Reagents and tools

Reagent/Resource Reference or Source Identifier or Catalog Number

Software

Numpy v1.23.2 Harris et al (2020) N/A

Matplotlib v3.5.3 Hunter (2007) N/A

Pandas v1.4.4 McKinney (2010) N/A

Networkx v2.8.6 Hagberg et al (2008) N/A

Scipy v1.9.9 Virtanen et al (2020) N/A

Plotly v5.10.0 Plotly Technologies Inc (2015) N/A

Scanpy v1.9.1 Wolf et al (2018) N/A

scVelo v0.2.4 Bergen et al (2020) N/A

BoolODE Pratapa et al (2020) N/A

Beeline Pratapa et al (2020) N/A

Methods and protocols

Inference of cell state-specific gene–gene interactions from
multivariate mRNA splicing analysis
Based on the local mRNA splicing model of equation (5a) and (5b),

and assuming steady state around a given fixed point, equation (5a)

and (5b) can be set to zero, and the unspliced RNA counts for gene

i is (assume β ¼ 1 for simplicity):

Ui
c ¼ Ai0 þ∑

j≠i
AijSj

c (6)

For each gene (i), the basal constant (Ai0) and set of coefficients

Aij are calculated using linear regression:

Ai0
�; Aij

�� � ¼ min
Ai0 ; Aijf g

∑
c

Ai0 þ∑
j≠i
AijSj

c � βiUi
c

 !2

þ λ F Ai0; Aij

� �� �
(7)

where all cells (denoted by sub/superscript c) within the specific

cell state are considered. The input unspliced and spliced mRNA

counts can be recovered from raw data using publicly available
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scRNA-seq processing pipelines including Velocyto and Kallisto (La

Manno et al, 2018; Melsted et al, 2021). Compared with equa-

tion (5a), the summations in equations (6) and (7) do not consider

the self-regulatory term Aii to avoid possible collinearity caused by

the linear relationship between Ui and Si in equation (5b).

Repeating the regression procedure for each gene yields a gene–
gene interaction matrix A whose entry Aij represents the causal,

non-symmetric regulation from gene j to gene i. For robust parame-

ter estimation, the spliceJAC package offers linear, ridge and lasso

regressions as potential options for the shrinkage term F Ai0; Aij

� �� �
.

In the cases of ridge and lasso, the shrinkage coefficient λ can be set

by the user (default λ ¼ 1). To further enhance the robustness of the

inferred interaction coefficients, spliceJAC infers the interaction

matrix (A) multiple times (default n ¼ 10) using bootstrapping strat-

egy, each time randomly selecting only a fraction of cells in the cell

state (default ρ ¼ 0:9), and then averaging the results for ensemble

estimation. The value of all inference parameters can be adjusted by

the user.

It is worth noting that the set of considered genes can be selected

automatically based on standard metrics (such as highly expressed

genes) or provided by the user as a list. Regardless of the selection

method, the number of cells within each cell state provides an upper

bound to the size of the selected gene list. In a dataset with N

selected genes, each gene is characterized by N parameters that rep-

resent the regulation from the other N–1 genes (with the addition of

a basal production rate). Therefore, at least N independent observa-

tions (i.e., cells) are required within each cell state to guarantee a

unique solution to the regression problem. spliceJAC includes a

built-in checkpoint to determine to maximum number of genes that

can be considered in the inference.

Quantification of signaling roles and signaling change upon
transition
For any given cell state (k), the “Incoming” and “Outgoing” signal-

ing scores are defined as the weighted sums of incoming and outgo-

ing edges in the inferred gene regulatory network (GRN). In other

words, the incoming and outgoing scores of gene i in cell state k are

defined as the sums of the absolute-valued i-th row and i-th column

of the gene–gene interaction matrix of cell state k (Ak):

Ii
k ¼ ∑

N

i¼1

Ak
ij

��� ��� (8a)

Oi
k ¼ ∑

N

j¼1

Ak
ji

��� ��� (8b)

where the absolute value prevents large positive and negative

matrix term from canceling each other. The “total signaling” score

is defined as the sum of Incoming and Outgoing score. From the

interaction matrix Ak, an interaction graph is constructed using the

NetworkX python library. To quantify the topological importance

of genes in GRN, the betweenness centrality of each gene is calcu-

lated from the graph using the built-in NetworkX centrality method

(Hagberg et al, 2008).

Signaling variability of individual genes across cell states
The signaling variability of a given gene quantifies whether the gene

retains a similar signaling role or instead assumes different roles

across cell states. The signaling role in each cell state can be defined

based on incoming signaling, outgoing signaling, total signaling, or

betweenness centrality (all defined in the previous section). There-

fore, a vector gi with K elements, where K is the number of cell

states in the dataset, is constructed for each gene i. The comparison

across clusters is based on three different methods: standard devia-

tion, range, and interquartile range. Standard deviation simply com-

putes the standard deviation of gi; the range is defined as the

difference between largest and smallest elements of gi; and

interquartile range is defined as the length of the middle 50% inter-

val of space in the distribution of gi elements. In the spliceJAC

workflow, both the measure of signaling and the comparison

method can be selected by the user.

Top differential/conserved interactions and GRN comparison
between cell states
Given the gene–gene interactions matrices of two cell states, the top

differential/conserved interactions are identified based on maximal/

minimal absolute change in edge weight. Moreover, the similarity

between GRNs of two cell states connected by a transition is quanti-

fied using AUROC/AUPRC scores, where the GRN of the final cell

state is considered as “ground truth” and the GRN of the starting cell

state is considered as the observable. With this definition, the

AUROC/AUPRC score quantifies how well the GRN of the starting

cell state predicts the GRN of the final cell state. This definition is

generalized to pairs of states that are not connected by a transition

to generate a similarity matrix S∈RK�K where K is the number of

cell states in the dataset.

Identification of transition driver genes from Jacobian eigen-space
analysis
Given a transition from an initial cell state toward a final cell state,

the transition driving genes are identified based on the initial state’s

Jacobian spectral properties and path connecting the two cell states.

In general, for the mRNA splicing model of equation (5a) and (5b)

with N selected genes, the Jacobian matrix is a 2N × 2N matrix to

account for both unspliced and spliced mRNA species. The Jacobian

matrix of the starting state J ∈R2N�2N is reconstructed from the

gene–gene interaction matrix A and inference of spliced mRNA

degradation rates (Appendix Methods, section 2). From linear stabil-

ity theory of dynamical systems, the attractor stability of equa-

tions (3a) and (3b) or equivalently (5a) and (5b), and associated

stable or unstable manifold (i.e., possible directions to make the

transition) can be analyzed through the eigen-space of Jacobian J.

We propose to quantify the importance of genes during cell state

transition based on such theory.

First, the spectral analysis of the Jacobian matrix associated with

the starting cell state provides information about the possible unsta-

ble directions, or unstable manifold, of the state. The set of most

unstable directions is defined by the eigenvectors vm ∈R2N of the

Jacobian matrix associates with the top largest eigenvalues (default

n ¼ 10 largest eigenvalues).

Jvm ¼ λmvm; λ1 ≥ λ2 ≥ . . . ≥ λn . . . ≥ λ2N (9)

It should be noted that, depending on the geometry of the attrac-

tor, all or some of the selected eigenvalues can be positive (i.e., the

cell state is a saddle point) or they can all be negative (i.e., the cell
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state is a truly stable fixed point). This set of unstable directions is

then projected onto the transition path connecting the starting and

final cell states, as schematically illustrated in Fig 1D. The initial

and final cell states (identified from pseudotime, dimensionality or

prior knowledge) are assumed to be connected by a linear path in

the gene space, so that the path displacement vector can be defined

as Δx ¼ Uk; Skð Þ� Uw; Swð Þ, where w and k denote the starting and

final cell states, respectively. The unstable manifold projection onto

the transition path ensures that, even though unstable eigenvectors

might point in different directions in the gene space, the directional-

ity of cell state transition is preserved. The spliceJAC package fea-

tures a built-in function to analyze transitions identified with the

PAGA package(Wolf et al, 2019).

We then decompose the actual transition Δx from data into the n

top unstable (aka transition) directions of state w:

Δx≈∑n
m¼1 Δx; vmh ivm ¼ ∑n

m¼1kmvm (10)

where ∙h i denotes inner product.

Finally, the instability score ISj of each gene j is defined as the

sum of squared loadings score of the gene on the eigenvector projec-

tion (including both unspliced and spliced components) on the tran-

sition path, that is,

ISj ¼ ∑n
m¼1k

2
m v2m;j þ v2m;jþN

� �
(11)

where vm;j denotes the j-th element of vm. Intuitively, a gene with

large instability score indicates its large loadings in the unstable

directions that are significant in the actual transitions.

Simulation of in silico circuits
The bistable toggle switch, monostable 3-gene circuit, and tristable

EMT circuit (Tian et al, 2013) were simulated with stochastic differ-

ential equations and using custom-built code (Appendix Methods,

section 3). In each case, we simulate small perturbations around

each stable fixed point. First, the system is initialized exactly on the

fixed point; afterward, a small, gaussian perturbation is added.

Finally, the relaxation trajectories are merged and provided as input

to the spliceJAC inference function.

The cycle, bifurcating converging, and trifurcating circuits were

simulated with the BoolODE package downloaded from https://

github.com/Murali-group/BoolODE. All simulation parameters were

fixed based on their original values. Input files and simulation

results for BoolODE simulations are deposited at https://github.

com/cliffzhou92/jacobian-inference-benchmarking.

Benchmarking and comparison with existing GRN inference
methods
We used the Beeline pipeline (Pratapa et al, 2020) to benchmark

the performance of existing GRN inference algorithms on the

EMT, cycle, bifurcating and trifurcating synthetic dataset. In each

algorithm, the GRNs were inferred for all stable states and/or

limit cycle separately, for a total of nine cell states. For each state,

spliced gene counts were taken as the input gene expression

matrices, since existing algorithms do not take RNA splicing pro-

cess into account. For the cycle, bifurcating and trifurcating cir-

cuits simulated with BoolODE, both mRNA and protein counts

were provided as inputs for spliceJAC inference, corresponding to

the unspliced and spliced counts. For algorithms that also require

pseudotime ordering as the input, we calculated the cell’s individ-

ual diffusion pseudotime time (Haghverdi et al, 2016) in each

state using the scanpy (Wolf et al, 2018) package, with the root

selected as cell expressing minimal value of E-cad gene, and

hyper-parameters selected as n_neighbors = 4 and n_pcs = 20. All

other algorithm parameters were set as default as in Beeline

pipeline.

For the EMT circuit, the Jacobian matrices computed analytically

were used as reference ground truth. For the cycle, bifurcating, and

trifurcating circuits, a ground truth Jacobian could not be generated

analytically. Therefore, the circuit network topologies were used as

ground truth, were positive and negative edges were assigned

weights of 1 and −1, respectively. The goodness of GRN inference

was quantified using Beeline’s built-in area under the operator-

receiver curve (AUROC) and area under the precision-recall charac-

teristic (AUPRC). All Beeline parameters for AUROC/AUPRC calcu-

lation were fixed to their default values. All Beeline input and

output files are deposited at https://github.com/cliffzhou92/

jacobian-inference-benchmarking. Moreover, we quantified the

inference on the EMT circuit based on (i) absolute difference and

(ii) fraction of correct signs between ground truth and inferred GRN

matrices. To compute the absolute difference, both ground truth

(Jtrue) and inferred (Jinf ) GRN matrix elements are normalized

between −1 and 1; the absolute difference is then defined as the

element-wise sum of Jtrue � Jinf
�� ��.

Analysis of pancreas epithelium data
The dataset for pancreas epithelium development was originally

generated by Bastidas-Ponce et al (2019) and was directly obtained

through the scVelo library with the datasets.pancreas() function

(Bergen et al, 2020). The size of the Delta cell population (n = 70

cells) defines the upper limit for the number of selected genes for

spliceJAC inference. Moreover, since spliceJAC employs a boot-

strapping method where the gene–gene interaction inference is

repeated multiple times (nsim = 10 by default) using only a fraction

p of cells (p = 0.9 by default), the inference is limited to a theoretical

maximum of pn = 63 genes. Therefore, the 50 top highly expressed

genes were selected. spliceJAC inference and downstream analysis

were performed on the selected dataset.

Analysis of A549 cell line under TGF-beta induction
The time course of A549 cells under TGF-beta induction performed

by Cook & Vanderhyden (2020) were downloaded from the GSE

repository under the accession number GSE147405. The original

dataset already included counts matrices for unspliced and spliced

mRNAs. To focus the analysis on EMT-related genes, we selected

genes from epithelial and mesenchymal gene signatures previously

identified in the context of TGFβ-driven EMT (Foroutan et al, 2017),

resulting in a selected dataset with 127 total genes (n = 25 epithelial

genes and n = 102 mesenchymal genes). spliceJAC inference and

downstream analysis were performed on the selected dataset. Cell

clusters were identified with the Scanpy Leiden clustering algo-

rithm; a resolution parameter of r = 0.3 was chosen resulting in

three clusters. The average expression of epithelial and mesenchy-

mal genes presented in Fig 4B in each cluster was computed as the

expression average of all epithelial/mesenchymal genes in all the

cluster cells.

12 of 15 Molecular Systems Biology 18: e11176 | 2022 � 2022 The Authors

Molecular Systems Biology Federico Bocci et al

https://github.com/Murali-group/BoolODE
https://github.com/Murali-group/BoolODE
https://github.com/cliffzhou92/jacobian-inference-benchmarking
https://github.com/cliffzhou92/jacobian-inference-benchmarking
https://github.com/cliffzhou92/jacobian-inference-benchmarking
https://github.com/cliffzhou92/jacobian-inference-benchmarking


Gene Ontology analysis
Gene Ontology analysis was performed using the ClusterProfiler R

library (Wu et al, 2021). For the GO analysis of the pancreas epithe-

lium transitioning genes, GO analysis was executed on the top five

transitioning genes leading to transitions from the Pre-endocrine

state toward the Alpha, Beta, Delta, and Epsilon states, respectively.

Results were aggregated and plotted together (Fig 3H) for direct

comparison between transitions. For the GO analysis of the A549

cell line, the top 10 predicted transitioning genes were selected for

the partial EMT and complete EMT transitions. The genes were

divided into three categories: (i) gene specific to partial EMT transi-

tion, (ii) genes specific to complete EMT transition, and (iii) genes

shared by the two transitions. GO analysis was executed for the

three gene sets separately, and results were normalized based on

the number of genes in each gene set before comparison.

Software availability
spliceJAC is available as a python package at https://github.com/

federicobocci/spliceJAC.

Data availability

This study did not generate new data. The pancreas endocrinogene-

sis dataset is available in Gene Expression Omnibus under accession

number GSE132188 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE132188). The A549 time series dataset is available in

Gene Expression Omnibus under the accession GSE147405 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147405). The

spliceJAC package and source code are available at: https://github.

com/federicobocci/spliceJAC. The benchmarking scripts and results

are available at: https://github.com/cliffzhou92/jacobian-inference-

benchmarking.
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