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Abstract
Background: Current scoring functions are not very successful in protein-ligand binding affinity prediction albeit their 
popularity in structure-based drug designs. Here, we propose a general knowledge-guided scoring (KGS) strategy to 
tackle this problem. Our KGS strategy computes the binding constant of a given protein-ligand complex based on the 
known binding constant of an appropriate reference complex. A good training set that includes a sufficient number of 
protein-ligand complexes with known binding data needs to be supplied for finding the reference complex. The 
reference complex is required to share a similar pattern of key protein-ligand interactions to that of the complex of 
interest. Thus, some uncertain factors in protein-ligand binding may cancel out, resulting in a more accurate prediction 
of absolute binding constants.

Results: In our study, an automatic algorithm was developed for summarizing key protein-ligand interactions as a 
pharmacophore model and identifying the reference complex with a maximal similarity to the query complex. Our KGS 
strategy was evaluated in combination with two scoring functions (X-Score and PLP) on three test sets, containing 112 
HIV protease complexes, 44 carbonic anhydrase complexes, and 73 trypsin complexes, respectively. Our results 
obtained on crystal structures as well as computer-generated docking poses indicated that application of the KGS 
strategy produced more accurate predictions especially when X-Score or PLP alone did not perform well.

Conclusions: Compared to other targeted scoring functions, our KGS strategy does not require any re-
parameterization or modification on current scoring methods, and its application is not tied to certain systems. The 
effectiveness of our KGS strategy is in theory proportional to the ever-increasing knowledge of experimental protein-
ligand binding data. Our KGS strategy may serve as a more practical remedy for current scoring functions to improve 
their accuracy in binding affinity prediction.

Background
Molecular recognition plays an important role in many
fundamental processes in biological systems [1,2]. The
basic concept of molecular recognition was first narrated
by Emil Fischer more than 100 years ago. His "lock-and-
key" theory [3], i.e. "... enzyme and glycoside must fit
together like a key and a lock in order to initiate a chemi-
cal action upon each other...", has long been regarded as
the basis for studying the binding between a ligand mole-
cule to its biological receptor. Molecular docking, as a

computational simulation of the ligand-receptor binding
process, is widely applied in many research areas, such as
structure-based drug design. For example, docking-based
virtual screening [4-7] has become a complementary
approach to high-throughput screening for the discovery
of novel lead compounds, which is popular among aca-
demic research groups as well as pharmaceutical compa-
nies. In such a process, a library of small molecules are fit
into the binding pocket of a given target protein through
molecular docking, aiming at achieving an optimal com-
plementarity of steric and physicochemical properties.
Then, a computational method, which is often referred to
as "scoring function", is used to evaluate the fitness
between the ligand and the protein. All of the molecules
are subsequently ranked by their binding scores, and only
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the most promising ones will be examined later in experi-
ments. Obviously, a quantitative prediction of protein-
ligand binding affinities is the key to the success of such
studies.

As demonstrated in many previous studies [8,9], today's
molecular docking programs, such as DOCK [10], Aut-
oDock [11-13], FlexX [14], Surflex [15,16], LigandFit [17],
GOLD [18,19], and Glide [20,21], are able to identify the
correct binding pose of a flexible ligand to its receptor
with a reasonable accuracy. However, binding affinity
prediction (the "scoring problem") is still the Achilles'
heel of molecular docking because in many cases the
binding scores produced by scoring functions do not cor-
relate well with true binding affinities, sometimes even
cannot rank a set of compounds correctly [22-27]. The
relatively disappointing performance of scoring functions
in this aspect may be the result of a compromise between
accuracy and speed since simplifications have to be made
regarding solvation effects, conformational flexibility, and
other factors in protein-ligand binding. A number of
computationally more expensive methods have also been
developed for binding affinity prediction in the past two
decades or so. These methods typically conduct confor-
mational sampling of the protein-ligand complex of inter-
est through extensive molecular dynamics simulation in
explicit solvent. Thus, they are able to address solvation
effect and conformational flexibility in theory. Free
energy pathway methods, such as free energy perturba-
tion [28] and thermodynamics integration [29], some-
times can reproduce protein-ligand binding affinities
within 1~2 kcal/mol. Nevertheless, they are normally
used for the computation of the relative binding affinities
of closely resembled ligand molecules, and thus have
rather limited applications. "End-point" methods, such as
the linear interaction energy (LIE) approximation [30,31]
and the MM-PB/SA method [32], avoid the integration of
free energy pathway in order to save computation cost.
They are normally applied to the modeling of a conge-
neric set of compounds binding to the same target pro-
tein. A number of successful applications of these
methods have already been reported in literature. How-
ever, their success seems to rely on well-selected systems,
and their robustness still needs to be validated more
extensively. Inaccuracy in force field or inadequate sam-
pling may account for their possible failures. In fact, some
comparative tests [33] indicate that such methods are not
necessarily more accurate than scoring functions
although they definitely consume more computational
resources. Technically, these methods are by far too com-
putationally expensive for high-throughput tasks. It is
also complicated to set up a job with such methods. Due
to these concerns, such methods are not likely to be inte-
grated into molecular docking programs for practical
uses.

Considering the balance between accuracy, efficiency,
and applicability, scoring functions are still the best
choice to tackle the scoring problem for molecular dock-
ing and some other tasks in structure-based drug design.
Thus, improving the general performance of scoring
functions is undoubtedly a worthwhile aim. A good num-
ber of scoring functions have already been reported in lit-
erature since 1990s. They can be classified roughly into
three categories: (i) Force field-based methods [10-
13,18,19] rely on established force fields to compute the
non-covalent interactions between protein and ligand,
including van der Waals and electrostatic interactions.
They are often augmented by GB/SA or PB/SA terms in
order to consider solvation effect. (ii) Empirical scoring
functions [20,21,34-43] decompose the protein-ligand
binding free energy into some basic terms, such as hydro-
gen bonding, hydrophobic effect and so on. Each term is
computed with an intuitive algorithm, and the weight fac-
tors of each term are typically derived from a regression
analysis on a set of protein-ligand complexes with known
binding affinities. Hence, empirical scoring functions are
also referred to as regression-based methods. (iii) Meth-
ods based on potentials of mean force [44-52] compute
protein-ligand interactions as a sum of distance-depen-
dent pairwise potentials. A technical advantage of these
methods is that deduction of potentials of mean force
only requires the knowledge of protein-ligand complex
structures.

Most of today's scoring functions are developed as all-
purpose models, which are presumably applicable to all
sorts of protein-ligand complexes. A recent comparative
assessment of 16 popular scoring functions conducted by
us [22] revealed that an accurate prediction of the binding
affinities across a variety of protein-ligand complexes is
still a major challenge for them. Nevertheless, it was also
noticed that on certain classes of complexes, some scor-
ing functions actually produced very promising results.
This observation indicates that it is perhaps more practi-
cal to develop specific scoring functions applicable to cer-
tain classes of protein-ligand complexes in order to
improve the accuracy in binding affinity prediction. In
fact, this idea has been practiced by some researchers.
For instance, Teramoto et al. introduced the supervised
scoring modes as well as an optimized consensus scoring
scheme with feature selection to enhance the enrichment
factor in structure-based virtual screening [53,54].
Recently, Seifert and co-workers published a review arti-
cle on target-specific scoring functions (or "targeted scor-
ing functions") [55]. Current all-purpose scoring
functions can be re-calibrated on certain classes of pro-
tein-ligand complexes to become target-specific, which is
probably the most straightforward approach. For exam-
ple, the DrugScore-RNA [56] adopts the same framework
as DrugScore [45,46], a scoring function based on poten-
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tials of mean force, but is derived from 670 crystal struc-
tures of nucleic acid-ligand and nucleic acid-protein
complexes. Antes proposed the POEM approach (Param-
eter Optimization using Ensemble Methods) [57] and
applied it to the optimization of two scoring functions
(FlexX and ScreenScore) on kinases and ATPases. Seifert
described a statistical method (ProPose) for improving
the signal-to-noise ratio of scoring functions in molecular
docking and successfully customized the Böhm scoring
function on three selected proteins: cyclin dependent
kinase 2, estrogen receptor, and cyclooxygenase 2 [58].

The targeted scoring functions mentioned above typi-
cally require re-parameterization or special customiza-
tion on current scoring functions to become suitable for
specific systems. In this study, we have proposed an alter-
native strategy, namely knowledge-guided scoring (KGS).
This strategy requires no re-parameterization in prior,
and in principle can be applied in combination with any
scoring functions to any classes of protein-ligand com-
plexes. The key idea is that the unknown binding affinity
of a given protein-ligand complex can be estimated more
reliably based on the known binding affinity of an appro-
priate reference complex. The reference complex is
required to share a similar pattern of key protein-ligand
interactions with the given protein-ligand complex. For
this purpose, our KGS strategy utilizes a sufficient num-
ber of relevant protein-ligand complexes with known
structures and binding affinities as a knowledge set. The
key protein-ligand interactions in each complex are sum-
marized as a pharmacophore model, which can be eluci-
dated by an automatic algorithm implemented by us. The
knowledge set is then searched through for the appropri-
ate reference complex for any given protein-ligand com-
plex. Thus, our KGS strategy can take full advantage of
known knowledge, resulting in an improved accuracy in
binding affinity prediction. In our study, the KGS strategy
was tested in combination with two all-purpose scoring
functions, i.e. X-Score [35] and PLP [37,38] on three sets
of protein-ligand complexes. An improved average accu-
racy for both X-Score and PLP was indeed obtained.
Detailed descriptions are given in the following sections.

Methods
Overall strategy
Our basic assumption is that molecular systems with sim-
ilar structures have similar properties, a strategy that has
been applied successfully to the computation of some
physicochemical properties such as partition coefficient
[59] and water solubility [60]. Accordingly, the unknown
binding affinity of a given complex can be estimated more
reliably from the known binding affinity of a reference
complex, which shares a similar pattern of protein-ligand
interactions with the query complex. The binding scores
provided by a reasonable scoring function should corre-

late well with experimentally determined binding data as
follows:

Here,  denotes for the expected binding affinity of

a reference protein-ligand complex (R); Rscore, SF denotes

for the binding score of this complex calculated by a scor-

ing function SF; while b and k, respectively, are the inter-

cept and the slope of the regression line between the

binding scores and experimentally measured binding

data of a set of protein-ligand complexes. Similarly, the

expected binding affinity of a query protein-ligand com-

plex (Q) calculated by the same scoring function is:

By subtracting Equation 1 from Equation 2, one has:

Replacing the expected binding affinity of R with the
known experimental value (Rexp), one has:

Equation 4 indicates how the binding affinity of a given
protein-ligand complex is computed using the known
binding affinity of a proper reference complex as a start-
ing point. For the convenience of narration, this scoring
strategy will be referred to as the KGS strategy, i.e.
Knowledge-Guided Scoring, throughout this article. In
principle, any scoring method may be employed to com-
pute the required binding scores of both the reference
complex and the query complex in Equation 4. Neverthe-
less, it is certainly more reasonable in reality to choose a
capable scoring method for this purpose. The reference
complex can be selected among a database of protein-
ligand complexes with reliable structures and binding
data. The constant k in Equation 4 can be derived
through a regression analysis between the experimental
binding data and the computed binding scores by the
employed scoring method on the same database. It is
introduced to scale the outcomes of scoring functions,
which could be in arbitrary units, to a realistic range
comparable to the experimental binding data of the refer-
ence complex.
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Pharmacophore elucidation
Considering the complicated nature of a protein-ligand
binding process, choosing the proper reference com-
plexes is obviously critical for the success of Equation 4. If
complexes Q and R share a similar pattern of protein-
ligand interactions, our basic assumption of "similar
structures have similar properties" is more likely to be
true. Thus, the core algorithm of our KGS strategy is how
to define the right reference complex. In our study, the
pattern of key protein-ligand interactions is presented as
a pharmacophore model, which is actually the three-
dimensional arrangement of a set of features including
hydrogen bond donor, hydrogen bond acceptor, and
hydrophobic center. Our algorithm for receptor-based
pharmacophore elucidation is similar to the one used by
the Pocket module implemented in the LigBuilder soft-
ware [61,62]. The overall flowchart of our algorithm is
shown in Figure 1. The results produced by this algorithm
on a CDK2-inhibitor complex (PDB entry 1AQ1) are
illustrated in Figure 2 as an example.

The only input needed by our algorithm is the three-
dimensional structure of a given protein-ligand complex,
which can be an experimentally resolved structure or a
computer model generated by molecular docking or
other methods. In either case, the ligand molecule is
required to be inside the binding site on the protein with
the desired binding pose. The very first step of our algo-
rithm is to identify the amino acid residues on the protein
which are in direct contact with the bound ligand mole-
cule. An amino acid residue is considered to be in direct
contact with the ligand if any heavy atom on it is within a

distance of 5.0 Å from any heavy atom on the ligand. This
distance cutoff is adjustable to the users. A box large
enough is then used to enclose all of these residues as well
as the ligand molecule (Figure 1). Next, evenly spaced

Figure 1 Illustration of our algorithm for pharmacophore elucidation.

Figure 2 The pharmacophore mode of the CDK2-staurosporine 
complex (PDB entry 1AQ1) elucidated by our algorithm. (A) Bind-
ing mode of staurosporine to CDK2. (B) The grids with significant con-
tributions to binding. (C) Grids after refinement. (D) The final 
pharmacophore model. In each figure, features of hydrogen bond do-
nor, hydrogen bond acceptor, and hydrophobic center are represent-
ed by dots/balls in green, red, and cyan, respectively.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AQ1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AQ1
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grids are created inside the box with a spacing of 0.5 Å by
default. Each grid is checked for its accessibility by plac-
ing a hydrogen atom on it. If the hydrogen probe bumps
with any protein atom, i.e. when the inter-atom distance
of the two participating atoms is shorter than the sum of
their van der Waals radii minus 0.5 Å, the grid under con-
sideration will be labeled as "ignored". The van der Waals
atomic radii used in our algorithm are cited from the Tri-
pos force field. If a grid is more than 5.0 Å away from any
atom on the protein, it will also be labeled as "ignored", as
there will be no direct interaction between the protein
and any ligand atom placed on this grid. All "ignored"
grids will be removed later on to speed up the following
processes. As result, the remaining grids actually define
the binding pocket for subsequent analyses.

For each remaining grid, three different types of probes
are placed on it and the binding score between each
probe and the protein are evaluated thereby. These
probes include (1) a positively charged sp3 nitrogen atom
(ammonium cation), representing a hydrogen bond
donor; (2) a negatively charged sp2 oxygen atom (as in a
carboxyl group), representing a hydrogen bond acceptor;
and (3) a sp3 carbon atom (methane), representing a
hydrophobic group. The binding scores between each
probe and the protein are calculated by using the corre-
sponding algorithms in the empirical scoring function X-
Score (version 1.2) [35]. Final classification of each grid
will be determined according to the particular probe
which produces the highest binding score, either as
"donor", "acceptor", or "hydrophobic". For example, a grid
labeled as "donor" indicates that a hydrogen bond donor
is mostly preferred on this particular grid. All of the
scored grids are further refined and clustered by a two-
step process. At the first step, the average score is calcu-
lated over all donor grids. The donor grids whose scores
are lower than the average score are re-labeled as
"ignored". The same process is also repeated on the
acceptor grids and the hydrophobic grids. Consequently,
only the grids with significant contributions to protein-
ligand interactions will survive (Figure 1 & Figure 2B). At
the second step, our algorithm checks each remaining
donor grid and counts the total number of its "neighbors",
i.e. the remaining grids of the same type within a range of
2.0 Å. The average number of neighbors for all donor
grids is calculated. Those grids with a total number of
neighbors below the average will be re-labeled as
"ignored" and filtered out. The same process is also
repeated on all acceptor grids and the hydrophobic grids.
After this process, only the grids in aggregation will still
survive, which represent the key interaction sites inside
the binding pocket more clearly (Figure 1 & Figure 2C).

Finally, a pharmacophore model is deduced based on
the outcomes of all previous steps. A pharmacophore fea-
ture is used to represent each group of grids of the same

type (see Figure 2D). The center of each pharmacophore
feature locates on the grid with the highest "pharmacoph-
ore score" (PS), which is computed as follows:

Here, PSi is the pharmacophore score of the i th grid
under consideration, Sj is the binding score of the j th
neighboring grid of this grid, and rij is the distance
between the i th grid and the j th grid. According to this
algorithm, the pharmacophore score of a certain grid
combines the contributions from all its neighboring grids
within 2.0 Å. The spatial distribution of the neighboring
grids also has an impact: a dense group of grids will be
associated with a higher pharmacophore score; whereas
the pharmacophore score for a sparse group of grids will
be somewhat lower. Besides, a correction is introduced in
Equation 5 to favor the pharmacophore features overlap-
ping with the atoms on the ligand: The di in Equation 5 is
the distance between the i th grid and a close non-hydro-
gen atom on the given ligand. Thus, if a pharmacophore
feature overlaps exactly with a certain atom on the ligand,
its pharmacophore score will retain by 100%; otherwise
its pharmacophore score will receive a certain distance-
dependent discount. In order to avoid the generation of
too many pharmacophore features, our algorithm by
default sets the minimal distance between two features to
3.5 Å, approximately the average van der Waals distance
between two non-hydrogen atoms. The above process is
repeated until all groups of grids are attributed to certain
pharmacophore features. Occasionally, too many phar-
macophore features are deduced by our algorithm when
the binding pocket is really large. Thus, an upper limit of
15 features in a pharmacophore model is set for the sake
of subsequent similarity searching. By using our program,
the average computation time consumed by pharma-
cophore elucidation for a typical protein-ligand complex
(with ~30 residues at the binding site) was merely 170 ms
on a low-end laptop with one 2.13 GHz CPU and 2GB
memory inside.

Pharmacophore mapping
As implied above, the key interactions in the formation of
a protein-ligand complex is characterized by a pharma-
cophore model. By our KGS strategy, the reference com-
plex for a given query complex is the one sharing the
maximal similarity in this aspect with the query complex.
Since a pharmacophore model is basically a set of vertices
in space, the problem of defining the similarity between
two pharmacophore models turns out to be equivalent to
finding the common vertices between two sets of verti-
ces. An algorithm was implemented in our program for

PS
di

S j
rij

i

j

=
+( )

× ∑1

1 0 2.
(5)
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this purpose (Figure 3). Firstly, all possible matched pairs
of features between the pharmacophore models P and q
are identified. Two features of the same type are consid-
ered to match each other. For example, feature A in model
P matches feature e in model q. Secondly, a hypothetical
graph G is constructed on-the-fly using each matched
pair of features as a new node. Two nodes, e.g. Ae and Bf,
are connected with an edge if the A-B distance in model P
is close enough to the e-f distance in model q. Here, two
distances d1 and d2 are considered to be close to each
other if d1 <k *d2 (when d1 >d2) or d2 <k *d1 (when d1 <d2).
k is an adjustable parameter with a default value of 1.1.
Then, the Born-Kerbosch [63] clique detection algorithm
is applied to identify the maximal clique in graph G. The
maximal number of common features between models P
and q in turn equals to the number of the nodes in the
maximal clique. Consequently, the similarity index (SI)
between models P and q is calculated by the Tanimoto
method [64]:

Here, NP and Nq are the numbers of pharmacophore
features in models P and q, respectively; while NPq is the
maximal number of common features found between P
and q.

For any given protein-ligand complex, an external data-
base of known protein-ligand complexes supplied by the
user will be examined with the algorithm described
above. The complex with the highest similarity index, if
higher than a user-set cutoff, is chosen as the reference in
Equation 4 for calculating the binding affinity of the
query complex. By using our program, the similarity
search is fairly fast, which took less than 1 ms to map a

pair of pharmacophore models on a low-end laptop with
one 2.13 GHz CPU and 2GB memory inside.

Preparation of test sets
Three sets of protein-ligand complexes selected from the
PDBbind database [65,66] were used as the test sets in
our study. The PDBbind database provides a collection of
experimentally determined binding data of the protein-
ligand complexes deposited in the Protein Data Bank
(PDB) [67]. The protein-ligand complexes considered in
this study were all selected from the "refined set" of the
PDBbind database (version 2007), which consists of 1300
protein-ligand complexes with high-quality structures
and reliable binding data. Compilation of the PDBbind
refined set has been described in one of our recent publi-
cations [22]. Briefly, each qualified protein-ligand com-
plex in this data set has the following features:

(1) The complex structure is resolved through X-ray
crystal diffraction with an overall resolution better or
equal to 2.5 angstroms. Neither the protein nor the
ligand has any missing fragment in the crystal struc-
ture.
(2) Binding data of the complex is experimentally
measured as either dissociation constant (Kd) or inhi-
bition constant (Ki). Both the protein and the ligand
used in binding assay match exactly the ones used in
structure determination.
(3) The complex is formed by one protein molecule
and one ligand molecule in a binary manner, and the
binding is non-covalent in nature. The ligand mole-
cule does not contain any uncommon elements, such
as Be, B, Si and metal atoms, and its molecular weight
does not exceed 1000.

Each test set was composed of a number of protein-
ligand complexes formed by one particular type of pro-
tein, including 112 HIV protease complexes, 44 carbonic
anhydrase complexes, and 73 trypsin complexes, respec-
tively (see Table 1). These three proteins were chosen
since they were the three most populated ones in the
PDBbind refined set. The structural files of all of these
complexes were downloaded from PDB. They were then
processed so that they could be readily utilized by the
modeling software available to us. Firstly, a complete bio-
logical unit of each complex was split into a protein mole-
cule and a ligand molecule. Atomic types and bond types
of the ligand molecule were automatically assigned by the
I-interpret program [68]. They were then visually
inspected and corrected if necessary. Hydrogen atoms
were added to the protein and the ligand by using the
SYBYL [69] software. For the sake of convenience, both
the protein and the ligand were set according to a simple
protonation scheme under neutral pH: all carboxylic acid
and phosphonate groups were deprotonated; while all ali-
phatic amine and guanidino/amidino groups were proto-

SI
Npq

Np Nq Npq
pq =

+ −
(6)

Figure 3 Illustration of the algorithm for finding the common fea-
tures between two pharmacophore models P and q.
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nated. All water molecules included in the crystal
structure were removed. Metal ions, if residing inside the
binding pocket and forming coordinate bonds to the
ligand (such as in the case of carbonic anhydrase), were
kept with the protein molecule. No structural optimiza-
tion was performed on either the protein or the ligand in
order to retain their coordinates exactly the same as those
in the original PDB file.

In addition, a set of putative binding poses were pre-
pared for the ligand molecule in each complex in all three
test sets. These binding poses were generated with the
GOLD software (version 4.1) by docking the native ligand
into its co-crystallized protein target. The parameter "No.
of GA operations" was set to 10000 to get docking poses
as diverse as possible. The ChemScore scoring function
implemented in GOLD was chosen as the scoring engine.
All other parameters were assigned the default values. A
total of 100 top-ranked docking poses were retained for
each ligand. The root-mean-square deviations (RMSD)
from the native ligand pose of each docking pose was cal-
culated using the "rms_analysis" utility in GOLD.

Regarding the HIV protease test set, at least one dock-
ing pose with RMSD < 2 Å from the native binding pose
are found among all GOLD-generated docking poses for

90 ligands out of the total 112. It indicates that near-
native poses were successfully generated for most ligands
with our method. The average RMSD of the docking
poses for these 90 ligands was 5.2 Å, indicating that those
docking poses were also diverse. Another 19 ligands had
at least one docking pose with RMSD falling in the range
of 2~3 Å. Our method failed to produce docking poses
with RMSD < 3 Å only for three ligands in the HIV pro-
tease test set. These three cases were all associated with
large and flexible ligand molecules. As for the carbonic
anhydrase and the trypsin test sets, 39 out of 44 and 64
out of 73 ligands, respectively, had at least one docking
pose with RMSD < 2 Å from the native ligand pose
among all GOLD-generated docking poses. Finally, the
corresponding native binding pose observed in crystal
structure was added to the ensemble of GOLD-generated
docking poses for each ligand to ensure that the most
important point in the conformational space of each
ligand was sampled.

Evaluation of scoring methods
Our recent study [22] revealed that two scoring func-
tions, i.e. X-Score [35] and PLP [37,38], have relatively
better performance in binding affinity prediction than
other scoring functions. They were thus chosen in this
study to test the KGS strategy. Note that X-Score has
three built-in options, i.e. HPScore, HMScore, and HSS-
core. In many cases, the difference in the outcomes of
these three options is marginal. For the sake of conve-
nience, only the average value of these three options in X-
Score was considered in our study. Similarly, PLP also has
two variations, i.e. PLP1 and PLP2. Only PLP1 was con-
sidered in our study. The X-Score program was obtained
from its original authors. PLP1 was implemented by us
according to the descriptions given in the original refer-
ences [37,38] as well as the information given in the user
manual of the Discovery Studio software (version 2.0)
[70]. We compared the results produced by our in-house
implementation of PLP1 and those produced by the one
implemented in Discovery Studio on the entire PDBbind
refined set. These two sets of results were found to be
almost identical (data not shown), indicating that our
own implementation of PLP1 was correct.

For each test set, both X-Score and PLP1 were used to
compute the binding scores of all member protein-ligand
complexes. For each given complex, the pharmacophore
mapping algorithm described in a previous section was
applied to identify a proper reference complex among the
other complexes included in the same test set. If such a
reference complex was found, an adjusted binding score
of the given protein-ligand complex was computed with
Equation 4 based on the known binding constant of the
reference complex. If not, the binding score of the given
protein-ligand complex was unchanged. This process was

Table 1: PDB codes of the protein-ligand complexes in the 
three test sets

HIV protease complexes (N = 112)

1GNM, 1GNN, 1GNO, 1A30, 1A9M, 1AAQ, 1AJV, 1AJX, 1B6J, 1B6K, 
1B6L, 1B6M, 1BDQ, 1BV7, 1BV9, 1BWA, 1BWB, 1C70, 1D4K, 1D4L, 
1D4Y, 1DIF, 1DMP, 1G2K, 1G35, 1HBV, 1HEG, 1HIH, 1HII, 1HOS, 
1HPO, 1HPS, 1HPV, 1HPX, 1HSH, 1HVH, 1HVI, 1HVJ, 1HVK, 1HVL, 
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repeated until all protein-ligand complexes in each test
set had been processed. Then, the Pearson correlation
coefficient (Rp) between the experimentally determined
binding constants and the final binding scores was calcu-
lated. The standard deviations (SD) in fitting the com-
puted binding scores to the experimental binding
constants were used as a quantitative measurement of the
accuracy of each scoring method for comparison. The
smaller is the standard deviation, the better is the accu-
racy.

The computations described above were all based on
experimentally resolved protein-ligand complex struc-
tures, and the corresponding results are referred to as Set
I throughout this article. In the reality of binding affinity
prediction, however, one needs to rely on predicted struc-
tures in most cases. Thus, it is necessary to test our KGS
strategy in such scenarios as well. For this purpose, a total
number of 100 putative docking poses were prepared for
each ligand in all three test sets. For each complex, all of
these docking poses as well as the native binding pose
were computed by X-Score and PLP, respectively, using
the same procedure described in the previous paragraph.
The binding score of each docking pose was adjusted
using Equation 4 whenever applicable. Then, the best
binding score obtained across all docking poses and the
native binding pose for each protein-ligand complex was
considered in the correlation analysis with the experi-
mental data. In other words, the docking poses generated
by the GOLD software were actually rescored by X-Score
and PLP in combination with our KGS strategy. The cor-
responding results are referred to as Set II throughout
this article.

Results and Discussion
Performance on HIV protease complexes
As revealed in our recent evaluation on scoring functions
[22], virtually no scoring function was able to provide
reasonable predictions of the binding affinities of HIV
protease complexes. For example, the correlation coeffi-
cients (R) between the experimental binding constants of
the 112 HIV protease complexes in our test set and the
binding scores computed by X-Score and PLP are 0.329
and 0.190, respectively (Table 2). The disappointing per-
formance of these two scoring functions may be attrib-
uted to the relatively large and flexible binding site of HIV
protease, which remains as a challenge for scoring func-
tions as well as other scoring methods.

The standard deviations produced by X-Score and PLP
by using crystal structures are plotted as a function of the
similarity cutoffs considered in reference searching in
Figure 4A. Detailed statistical results can be found in the
Additional file 1, Table S1. One can see that the standard
deviations produced by X-Score+KGS, i.e. X-Score in
combination with the KGS strategy, are consistently

lower than those produced by X-Score alone, indicating
that the KGS strategy is really helpful to improve the
accuracy in binding affinity prediction. In particular, the
improvement is obvious when the similarity cutoff used
in defining the reference complex is above 0.40, and the
standard deviations of X-Score+KGS drop below 1.00 log
units. This is logical since our KGS strategy is not sup-
posed to be effective if the reference complex does not
share a similarity high enough to the query complex. The
similarity cutoff of 0.40, by which KGS starts to work,
actually can be expected. We noticed that a medium-size
ligand molecule typically occupies four to five pharma-
cophore features in binding pocket (see Figure 2 for an
example). Assuming that both the ligand molecule in the
query complex and the ligand molecule in the reference
complex occupy five pharmacophore features and three
out of the five features match between the query and the
reference, the similarity index would be 3/(5 + 5 - 3) =
0.43 according to Equation 6.

The five pairs of HIV protease complexes with the
highest similarity identified by our algorithm are summa-
rized in Table 3. The chemical structures of the five
ligand molecules in the complexes are shown in Figure 5.
One can see that the ligand in PDB entry 1B6M is actually
identical to the one in its reference, i.e. PDB entry 1MTR;
while the ligands in PDB entries 1HVJ, 1HVK, and 1HVL
are basically stereoisomers to those in their references.
These findings indicate that our algorithms for pharma-
cophore deduction and mapping are capable to identify
complexes sharing similar patterns of protein-ligand
interactions. Note that X-Score underestimated the abso-
lute binding constants of complexes 1HVJ, 1HVK, and
1HVL consistently by 1-2.5 log units. After the applica-
tion of our KGS strategy, this systematic deviation has
been largely corrected, resulting in a much reduced aver-
age error.

The results produced by PLP in combination with the
KGS strategy (Figure 4A) basically reveal the same trend:
at lower similarity cutoffs, the improvements exhibited by
PLP+KGS over PLP alone are not obvious; while at higher
similarity cutoffs, considerable improvements are
observed, demonstrating the success of the KGS strategy
again. An exception is that PLP alone produced accept-
able results on the five complexes listed in Table 3, but
this can be well interpreted as a coincidence. Interest-
ingly, considerable improvements are also observed
above the similarity cutoff of 0.40, exactly the same as the
case of X-Score+KGS. In addition, the corresponding
results produced by X-Score+KGS and PLP+KGS are
really close on all subsets of complexes when the similar-
ity cutoff > 0.40 although the performance of two scoring
functions alone can be very different. These findings fur-
ther support our statement that the success of the KGS

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1B6M
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MTR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVL
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVL
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strategy is in principle independent from the scoring
method employed in computation.

When computer-generated docking poses are consid-
ered in scoring for instead, i.e. Set II, the standard devia-
tions produced by X-Score and PLP as a function of the
cutoffs used in similarity search are plotted in Figure 4B.
Detailed statistical results can be found in the Additional
file 1, Table S2. The same trend as in Set I results are
observed for both X-Score and PLP: the performance of
both scoring functions is improved by the KGS strategy
when the similarity cutoff used in reference searching is
higher than 0.40. The standard deviations of both scoring
functions are lowered by 0.2 units or even more. This
observation indicates that our KGS strategy can be
applied not only to the complexes with experimentally
determined structures but also predicted structures, e.g.
the docking poses generated by a molecular docking pro-
gram. This feature may make KGS a valuable strategy for
"real" drug design tasks, such as structure-based virtual
screening. It should be mentioned that the standard devi-
ations at different similarity cutoffs in Set II results are
somewhat larger than the counterparts in Set I results. It
is understandable since for some complexes in this test
set, the native binding pose of the ligand molecule is not
necessarily the best-scored binding pose selected by scor-
ing function, which is a well-known phenomenon
[22,26,27]. This defective aspect of scoring function of
course introduces extra noises in binding affinity predic-
tion.

Performance on carbonic anhydrase complexes
Compared to the performance on the HIV protease test
set, X-Score and PLP are more successful on this test set.
The standard deviations calculated by these two scoring
functions are 1.06 and 1.01 log units, respectively (Table
2). The standard deviations produced by X-Score, PLP
and those in combination with the KGS strategy on this
test set are plotted as a function of the similarity cutoffs
used in reference searching in Figure 6. Detailed statisti-
cal results are summarized in the Additional file 1, Tables
S3 and S4.

When only the crystal structures are considered in
scoring (Set I), one can see that the standard deviations
produced by X-Score+KGS at various similarity cutoffs
are consistently lower than or comparable to those pro-
duced by X-Score alone (Figure 6A). The same trend
retains when the scoring method is switched to PLP.
When the docking poses are considered in scoring (Set
II), the standard deviations produced by X-Score+KGS
and PLP+KGS are basically lower than those produced by
X-Score and PLP alone when the similarity cutoff is above
0.40 (Figure 6B). In both cases, however, the improve-
ment after the application of the KGS strategy is not as
significant as the one observed on the HIV protease test
set. It is understandable since as mentioned above, the
performance of X-Score and PLP alone is already good on
this test set, leaving not much room for improvement.
Considering the intrinsic accuracy of the employed scor-
ing functions as well as the uncertainties in experimental
binding data, there is certainly a limit on the average

Table 2: Statistical results produced by two scoring functions alone on the three test sets

X-Score PLP

Test set Ra SDb kc Ra SDb kc

HIV protease 
complexes
(N = 112)

0.329 1.55 0.664 0.190 1.61 -0.0099

Carbonic 
anhydrase 
complexes

(N = 44)

0.648 1.06 2.045 0.690 1.01 -0.0833

Trypsin 
complexes

(N = 73)

0.815 0.98 1.988 0.762 1.09 -0.0518

a Pearson correlation coefficient between the experimental binding constants of these complexes and the binding scores produced by the 
given scoring function.
bStandard deviation in regression (in logKd units)
cSlope of the regression line, which is needed in Equation 4.
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accuracy of binding affinity prediction. Note that after
the similarity cutoff in defining the reference complexes
is raised above 0.40, the standard deviations produced by

X-Score+KGS and PLP+KGS are consistently below 0.60
log units (corresponding to ~0.8 kcal/mol in binding free
energy at room temperature). We believe that this level of
accuracy, if having not reached the limit of scoring func-
tions, should be rather close to it.

Another trend observed in Figure 6 is that X-
Score+KGS and PLP+KGS produced comparable statisti-
cal results especially when the similarity cutoffs are rela-
tively high. In contrast, there is noticeable difference in
the statistical results produced by X-Score and PLP alone
under the same circumstances. In fact, exactly the same
trend can be observed on the HIV protease test set as well
(Figure 4). Each scoring function has its own strength and
weakness, and thus one would expect that different scor-
ing functions produce different results on the given sys-
tems. Therefore, the users have to test on their selected
targets a number of scoring functions or even combina-
tions of scoring functions before any prediction can be

Figure 4 Standard deviations (in log Ka units) in fitting the exper-
imentally measured binding constants of the HIV protease com-
plexes and the binding scores computed by X-Score and PLP in 
combination with the KGS strategy. (A) Results obtained based on 
crystal structures (Set I). (B) Results obtained based on docking poses 
(Set II). The X axis indicates the similarity cutoffs used in defining refer-
ence complexes. The numbers indicated on this figure are the total 
numbers of the complexes considered at each similarity cutoff.

Figure 5 Chemical structures of the five ligand molecules in the 
HIV protease complexes listed in Table 3.

Table 3: Information on the five pairs of HIV protease complexes with the highest similarities

The query complex The reference complex

PDB
Code

-logKd (exp) X-Score+
KGS

X-Score PDB
Code

-logKd(exp) Similarity

1B6M 8.40 8.39 8.83 1MTR 8.40 0.67

1MTR 8.40 8.41 8.84 1B6M 8.40 0.67

1HVJ 11.40 10.68 8.86 1HVK 10.96 0.67

1HVK 10.96 11.68 9.28 1HVJ 11.40 0.67

1HVL 9.95 11.43 8.90 1HVJ 11.40 0.67

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1B6M
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MTR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MTR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1B6M
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVL
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HVJ
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made. Our results indicate that once scoring functions
are combined with the KGS strategy, they tend to pro-
duce converged results since the difference between their
outcomes are largely leveled off by the use of a reference.
This feature will bring great convenience to the users in
practice.

Performance on trypsin complexes
Compared to the performance on the HIV protease test
set, X-Score and PLP are also more successful on this test
set, producing standard deviations of 0.98 and 1.09 log
units, respectively (Table 2). The standard deviations pro-
duced by X-Score, PLP and those in combination with the
KGS strategy on this test set are plotted as a function of
the similarity cutoffs used in reference searching in Fig-
ure 7. Detailed statistical results are summarized in the
Additional file 1, Tables S5 and S6. Interestingly, when

only the crystal structures are considered in scoring (Set
I), both X-Score+KGS and PLP+KGS produce marginally
larger standard deviations than X-Score and PLP alone on
this test set (Figure 7A). When the docking poses are con-
sidered in scoring for instead (Set II), X-Score+KGS and
PLP+KGS produce lower standard deviations than X-
Score and PLP alone only when the similarity cutoff
applied to defining reference complexes is really high (>
0.50) (Figure 7B). Unlike the results obtained on HIV pro-
tease complexes and carbonic anhydrase complexes,
these results are quite unexpected, which drove us to look
for the reason.

The six pairs of trypsin complexes with the highest sim-
ilarity in this test set are summarized in Table 4. The
chemical structures of the six ligand molecules in the
complexes are shown in Figure 8. One can see that in one
case (PDB entry 1O2O) X-Score+KGS produced a nota-

Figure 7 Standard deviations (in logKa units) in fitting the experi-
mentally measured binding constants of the trypsin complexes 
and the binding scores computed by X-Score and PLP in combi-
nation with the KGS strategy. (A) Results obtained based on crystal 
structures (Set I). (B) Results obtained based on docking poses (Set II). 
The X axis indicates the similarity cutoffs used in defining reference 
complexes. The numbers indicated on this figure are the total num-
bers of the complexes considered at each similarity cutoff.

Figure 6 Standard deviations (in logKa units) in fitting the experi-
mentally measured binding constants of the carbonic anhydrase 
complexes and the binding scores computed by X-Score and PLP 
in combination with the KGS strategy. (A) Results obtained based 
on crystal structures (Set I). (B) Results obtained based on docking pos-
es (Set II). The X axis indicates the similarity cutoffs used in defining ref-
erence complexes. The numbers indicated on this figure are the total 
numbers of the complexes considered at each similarity cutoff.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
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bly larger error than X-Score alone. The experimental
binding constants of complex 1O2O and its reference
1O2K (similarity = 0.58) are 6.36 and 6.92, respectively.
The ligand molecule in complex 1O2O has one additional
fluorine atom at the ortho-position of the aminidino
group as compared to the ligand in complex 1O2K, which
reduces the binding constant by approximately three
folds. This reduction in binding affinity may be attributed
to the unfavorable dipole-dipole repulsion between this
fluorine atom and a nearby hydroxyl group on the side
chain of Ser190 (F-O distance = 2.85 Å). Such dipole-
dipole repulsions are indeed not taken into account by X-

Score [35]. The binding scores produced by X-Score for
complexes 1O2O and 1O2K are 6.27 and 6.08, respec-
tively, giving a wrong ranking of these two complexes.
Consequently, if X-Score+KGS is applied to predict the
binding constant of 1O2O based on the known binding
constant of 1O2K, it can only produce a binding score
higher than the one of 1O2K, resulting in an even larger
error (0.94 log units) than the one produced by X-Score
alone (0.09 log units). We have observed that X-Score also
produced wrong rankings of some other pairs of trypsin
complexes, but 1O2O/1O2K is the one which contributes
most to the larger deviations produced by X-Score+KGS
on this test set.

The above analysis suggests that failure of the KGS
strategy in this case is caused directly by the intrinsic
inaccuracy of the employed scoring function. In theory,
our KGS strategy can effectively reduce the systematic
errors in the predicted absolute binding constants. It thus
becomes critical for the employed scoring function to
produce correct rankings for the given complexes, a fea-
ture termed as "ranking power" in our recent study [22].
In that study, we demonstrated that today's best scoring
functions are able to provide correct rankings for only 50-
60% of the protein-ligand complex families under consid-
eration. A much improved "ranking power" perhaps
should be the primary aim for future scoring functions.
Technically, developers of scoring functions may want to
examine the ranking coefficient, such as the Spearman
coefficient, more closely than the conventional Pearson
coefficient between experimental binding constants and
computed binding scores.

Another possible reason for the failure of the KGS
strategy in this case lies in our algorithm for pharma-
cophore elucidation. In our study, a pharmacophore
model actually represents a set of key protein-ligand
interactions, and our KGS strategy relies on pharmacoph-
ore models for defining reference complexes. Such a
pharmacophore model is dependent on the compositions
as well as the conformations of both the protein and the

Figure 8 Chemical structures of the six ligand molecules in the 
trypsin complexes listed in Table 4.

Table 4: Information on the six pairs of trypsin complexes with the highest similarities

The query complex The reference complex

PDB
Code

-logKd(exp) X-Score+
KGS

X-Score PDB
Code

-logKd(exp) Similarity

1G3C 5.80 5.54 5.60 1G3E 5.38 0.67

1G3E 5.38 5.64 5.52 1G3C 5.80 0.67

1O2J 6.92 6.92 6.08 1O2K 6.92 0.58

1O2K 6.92 6.92 6.08 1O2J 6.92 0.58

1O2O 6.36 7.30 6.27 1O2K 6.92 0.58

1O38 6.82 6.48 6.33 1O2O 6.36 0.58

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G3C
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G3E
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G3E
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G3C
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2J
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2J
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O38
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2O
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ligand. Our algorithm only considers three types of fea-
tures, i.e. hydrogen bond donor, hydrogen bond acceptor,
and hydrophobic center. Other basic protein-ligand inter-
actions, such as cation-pi interaction, are ignored for
convenience. Besides, a pharmacophore has to contain a
limited number of features to be practical. Therefore,
some aspects in protein-ligand interactions may be miss-
ing. Simplification made in a pharmacophore model may
lead to the choice of an inappropriate reference complex.
Given these flaws, we have observed that our algorithm in
some cases produced results controversial to common-
sense. For example, complexes 1O2J and 1O2K are
formed by an identical protein (trypsin) and an identical
ligand (Figure 8), but the similarity between their phar-
macophore models produced by our algorithm is only
0.58. Although these two complexes do exhibit some con-
formational difference in their binding pockets, one cer-
tainly expects a higher similarity score in this case. Our
algorithm for pharmacophore elucidation certainly can
be improved further.

Comparison with other targeted scoring methods
As mentioned in the Introduction section, current tar-
geted scoring functions [55-58] are developed typically
through re-parameterization or modification on existing
all-purpose scoring functions, which often relies on some
sophisticated statistical procedures. In contrast, our KGS
strategy works in a different fashion. There are two basic
modules in the framework of KGS: one is a scoring
method, and the other is a method for defining the refer-
ence complexes. As for the scoring method, we have
tested X-Score and PLP in this study. But it can be any
well-validated scoring function or other approach. Once
the scoring method is chosen, it can be applied as is with-
out re-parameterization or modification. This is impor-
tant since many programs are available to the end-users
as black boxes. As for the method for defining reference
complexes, our current algorithm is based on comparison
of structure-based pharmacophore models of relevant
protein-ligand complexes. Other algorithms of course
may be considered as well, such as the protein-ligand
interaction fingerprints [71,72]. Thus, these two modules
can be chosen independently, and it is in principle flexible
to combine them. This is a notable technical advantage of
our KGS strategy, and that is why we refer to it as a strat-
egy rather than a particular method.

Compared to most targeted scoring functions, another
technical advantage of our KGS strategy is that its appli-
cation is in principle not limited to certain classes of tar-
gets. In order to apply the KGS strategy, an external
database of protein-ligand complexes with known three-
dimensional structures and experimental binding data
needs to be supplied as a knowledge set. If one needs to
consider protein-ligand complexes of various types, this

knowledge set may consist of a sufficient number of pro-
tein-ligand complexes of various types, such as the PDB-
bind database. Otherwise, if one's study focuses on a
particular class of protein-ligand complexes, one may
want to supply a knowledge set only consisting of rele-
vant protein-ligand complexes, such as the test sets used
in this study. In practice, most researchers study a certain
congeneric class of ligands bound to a common target
protein, and thus the latter approach is more suitable for
this purpose. Note that in such a case, one can even
employ a targeted scoring function, if available, as the
internal scoring method for the KGS strategy to obtain
more accurate results. In this sense, our KGS strategy is
fully compatible with targeted scoring functions.

It should be mentioned that our KGS strategy is similar
to the AutoShim method proposed by Martin and Sulli-
van [73] in certain aspects. AutoShim does not require
re-parameterization of scoring function either, and in
principle does not tie to any specific scoring functions.
According to AutoShim, point-pharmacophore like
"shims" are generated in the binding pocket on the target
protein. These "shims" are then weighted by partial least
squares (PLS) regression to adjust the outcomes of the
Flo+ scoring function in order to better reproduce known
binding data. Nevertheless, AutoShim is basically a 3D-
QSAR model, which integrates the Flo+ score as well as
several hundred of descriptors ("shims"). Such a model
normally needs to be carefully validated to avoid over-fit-
ting since it relies on so many parameters. As a matter of
fact, Martin et al mentioned that their PLS model pro-
duced comparable results with or without the Flo+ score
in the entire descriptor set (R2 = 0.60 vs. R2 = 0.56). In
contrast, the internal scoring function (e.g. X-Score or
PLP) in our KGS strategy plays an indispensable role.
Another common aspect between AutoShim and our
KGS strategy is that both methods require a training set
of protein-ligand complexes with known experimental
binding data. As a QSAR-like method, AutoShim relies
much on this training set for model calibration. For our
KGS strategy, the training set is also used for deriving the
scaling parameter k in Equation 4, but it serves primarily
as a knowledge set for defining appropriate reference
complexes. Using an appropriate reference contributes
most to the improved accuracy of our KGS strategy in
binding affinity prediction.

Finally, as mentioned repeatedly in this article, our KGS
strategy computes the binding constant of a given pro-
tein-ligand complex based on the known binding con-
stant of a reference complex. It is essentially an
interpolation method. We all know that more accurate
results can be obtained through interpolation if more
known data exist in the problem space. The knowledge of
protein-ligand binding data is certainly in a constant
increase. For example, binding data included in the PDB-

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2J
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1O2K
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bind database increase by approximately 25% each year.
Thus, application of the KGS strategy will hopefully pro-
duce more and more accurate results with the increase in
such knowledge. In contrast, other targeted scoring func-
tions benefit indirectly from the increasing knowledge of
binding data since re-calibration on a larger data set does
not necessarily produce a more accurate model. Besides,
the majority of experimental binding data as well as crys-
tal structures are actually owned by pharmaceutical com-
panies, which are not available to the public for
understandable reasons. Researchers from pharmaceuti-
cal companies can supply their in-house data as the exter-
nal knowledge set required by the KGS strategy so that
their own data can be effectively utilized in binding affin-
ity prediction as well.

Conclusions
We have developed a general strategy, i.e. knowledge-
guided scoring (KGS), for improving the accuracy of scor-
ing functions in binding affinity prediction. Our KGS
strategy computes the binding constant of a given pro-
tein-ligand complex based on the known binding con-
stant of an appropriate reference complex. The reference
complex is required to share a similar pattern of protein-
ligand interactions to that of the complex of interest.
Thus, some uncertain factors in protein-ligand binding,
which are difficult to be accurately considered by scoring
functions, may cancel out in computation, resulting in
more accurate prediction of absolute binding affinities.

Our KGS strategy was evaluated in combination with
X-Score and PLP on three sets of protein-ligand com-
plexes. As for the HIV protease complexes, X-Score and
PLP alone failed to provide acceptable prediction of bind-
ing constants; while both X-Score+KGS and PLP+KGS
demonstrated notably improved performance especially
when the similarity cutoff used in reference searching
was relatively high. As for the carbonic anhydrase com-
plexes and trypsin complexes, both X-Score and PLP
were able to provide reasonable results by themselves.
Application of the KGS strategy in these two cases only
produced marginally better or comparable results due to
limited remaining room for improvement. An interesting
observation is that X-Score+KGS and PLP+KGS pro-
duced converged results despite the difference in the out-
comes of X-Score and PLP alone. This prompts that
application of the KGS strategy may save the end-users, at
least to some extents, from the troublesome evaluation
and shopping among different scoring functions. Besides,
the standard deviations between the experimental and
computed binding constants produced by X-Score+KGS
and PLP+KGS are below 1.0 logKd units (corresponding
to 1.36 kcal/mol in binding free energy at room tempera-
ture) on all three test sets when the similarity cutoff is

over 0.40. This level of accuracy is certainly acceptable for
high-throughput tasks in structure-based drug design. It
however remains to be verified if application of KGS is
able to achieve this level accuracy consistently on other
classes of protein-ligand complexes.

In principle, KGS can be applied in combination with
any existing scoring functions. Unlike many other tar-
geted scoring functions, KGS does not require re-param-
eterization of the given scoring function, and its
application is not limited to certain classes of protein-
ligand complexes. In addition, KGS is essentially an inter-
polation method, and thus its effectiveness is in theory
proportional to the ever-increasing knowledge of experi-
mental binding data. In-house collections of binding data
can be effectively utilized by KGS in computation as well.
Compared to other targeted scoring functions, these fea-
tures make our KGS strategy a more practical remedy for
current scoring functions to improve their accuracy in
binding affinity prediction. Nevertheless, we did not
attempt to test the KGS strategy in this study to see if it
also helps with binding mode prediction, or achieves
higher success rates in cross-docking or hit rates in vir-
tual screening. For those purposes, we believe that our
current algorithms for applying KGS may need certain
adjustments.
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