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Immune responses to the adjuvanted recombinant zoster vaccine in 
immunocompromised adults: a comprehensive overview
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ABSTRACT
Immunocompromised (IC) persons are at increased risk for herpes zoster (HZ) and its complications, 
mainly due to impairment of cell-mediated immunity (CMI). The adjuvanted recombinant zoster vaccine 
(RZV) demonstrated efficacy against HZ in autologous hematopoietic stem cell transplant (auto-HSCT) 
recipients and hematologic malignancy (HM) patients. We review immune responses to RZV in 5 adult IC 
populations, 4 of which were receiving multiple, concomitant immunosuppressive medications: auto- 
HSCT and renal transplant recipients, HM and solid tumor patients, and human immunodeficiency virus- 
infected adults. Although administered in most cases when immunosuppression was near its maximum, 
including concomitantly with chemotherapy cycles, RZV induced robust and persistent humoral and, 
more importantly, CMI responses in all 5 IC populations. Based on the overall clinical data generated in 
older adults and IC individuals, RZV is expected to provide benefit in a broad adult population at risk for 
HZ.
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Introduction

Herpes zoster (HZ) results from reactivation of latent varicella- 
zoster virus (VZV) and may occur at any age. Although the 
incidence of HZ and its complications increases with age, it is 
higher in immunocompromised (IC) persons regardless of 
age.1–4 In addition, both HZ and its complications tend to be 
more severe and last longer in IC individuals.

IC populations are heterogeneous and can have different 
levels of immune suppression depending on age, underlying 
disease, and the type, duration, and combination of immuno-
suppressive therapies.5 The increased risk of HZ in IC popula-
tions may be critically influenced by the impairment of cell- 
mediated immunity (CMI) resulting from these specific med-
ical conditions, their treatments, or both.1,2

The risk of HZ in IC populations can be mitigated by 
vaccination. Whereas live-attenuated vaccines are contraindi-
cated in IC populations because of the risk of disseminated 
disease,6,7 non-live HZ vaccines have been evaluated in IC 
adults with the highest incidences of HZ, including chronically 
immunosuppressed renal transplant (RT) recipients,8 hemato-
poietic stem cell transplant (HSCT) recipients,9–12 hematologic 
malignancy (HM) patients,12,13 and solid tumor (ST) 
patients.12,14 Non-live HZ vaccines have also been evaluated 
in human immunodeficiency virus (HIV)-infected adults, 
another IC population at increased risk of HZ.12,15

HIV infection induces immunosuppression that directly 
affects CD4 T-cells. Accordingly, while the incidence of HZ 

ranges between 3–5/1000 person-years in the general 
population,16 the incidence in HIV-infected individuals 
reached 32/1000 person-years in the pre-antiretroviral therapy 
(ART) era, and remains at 10–11/1000 person-years, even in 
the ART era.4,17,18

Solid organ transplant recipients represent a distinct group 
of IC patients. To prevent allograft rejection, their immune 
systems are suppressed by chronic therapies, resulting in 
a mixed immunodeficiency, consisting mainly of T-cell- 
mediated immunity impairment.19 HZ incidences up to 
22–32/1000 person-years have been reported in recipients of 
various solid organ transplants.4,20–23

HSCT recipients are IC as a result of pre-transplant condi-
tioning regimens, which eradicate the disease and create space 
for engraftment, but also increase the risk of HZ. The risk is 
generally highest during the first year following transplantation, 
with incidences of 8%-25% in autologous HSCT (auto-HSCT) 
recipients24–27 and 13%-28% in allogenic HSCT recipients.28,29 

HZ risk decreases within 2–3 years post-HSCT as the transplant 
engrafts, matures, and reconstitutes the immune system.4,24,30

The risk for HZ is also increased in cancer patients under 
treatment, of whom those with HMs appear to be most 
susceptible.4 In patients receiving immunosuppressive cancer 
therapies for HMs or STs, incidences up to 31/1000 and 14/ 
1000 person-years, respectively, have been reported.31,32

The increased HZ risk shows that there is a clear medical 
need to prevent HZ in IC populations.
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Although an investigational inactivated VZV vaccine 
demonstrated efficacy against HZ in auto-HSCT recipients 
and ST patients, it was not efficacious in HM patients11,33 and 
has not been licensed to date.

The adjuvanted recombinant zoster vaccine (RZV, Shingrix, 
GSK) is a recombinant VZV glycoprotein E (gE) non-live sub-
unit vaccine that cannot cause disseminated HZ. RZV is highly 
immunogenic and ≥90% efficacious in preventing HZ in all age 
groups among adults ≥50 years.34,35 Efficacy is also maintained 
in individuals with underlying medical conditions,36 including 
potential immune-mediated diseases.37 RZV has received licen-
sure for use in adults ≥50 years of age (YOA) in many countries 
since 2017, and in adults ≥18 YOA at increased HZ risk in 
Europe since 2020.

RZV was well tolerated in auto-HSCT and RT recipients, 
HM and ST patients, and HIV-infected adults.38 Efficacy of 
RZV was demonstrated in auto-HSCT recipients10 and HM 
patients.13 Here we present a comprehensive overview of 
immune responses to RZV in these 5 severely IC 
populations.8,10,13–15,39

Methods

Design of the reviewed studies with RZV in IC populations

All 5 studies were randomized, observer-blind, placebo- 
controlled, and parallel-group studies (Table 1). The study 
protocols were reviewed and approved by relevant institutional 
review boards or independent ethics committees.

Participants

All 5 studies included participants ≥18 YOA without an 
HZ/varicella episode or vaccination within the year before 
the first dose. Administration of licensed live and other 
non-replicating vaccines were excluded for specific time 
periods. Women of childbearing potential could participate 
if practicing contraception from 30 days prior to study 
vaccination through 2 months (M) (HM and ST patients, 
RT recipients, HIV-infected adults) or 12 M (auto-HSCT 
recipients) post-dose 2.

The use of investigational or non-registered drugs/vac-
cines from 30 days prior to study vaccination to study end 
was not allowed in auto-HSCT and RT recipients, HM 
patients, and HIV-infected adults. However, investiga-
tional use of a registered (auto-HSCT recipients and HM 
patients) or non-registered (auto-HSCT recipients) pro-
duct to treat the underlying disease was allowed. Other, 
study-specific inclusion/exclusion criteria have been 
described previously.8,10,13–15

Procedures

RZV was administered intramuscularly as 3 doses at M0, M2, 
and M6 in HIV-infected adults,15 and as 2 doses 1–2 M apart 
in the other IC populations.8,10,13,14 Each dose contained 
recombinant VZV gE antigen (50 μg) and the AS01B adjuvant 
system (containing 50 μg of 3-O-desacyl-4′-monophosphoryl 
lipid A, 50 μg of Quillaja saponaria Molina fraction 21 

[licensed by GSK from Antigenics LLC, a wholly owned 
subsidiary of Agenus Inc., a Delaware, USA corporation] 
and liposome).

Immunogenicity objectives and outcomes

Anti-gE antibody concentrations and frequencies of CD4[2+] 
T-cells (gE-specific CD4 T-cells expressing ≥2 activation mar-
kers from among interferon-γ, interleukin-2, tumor necrosis 
factor-α, and cluster of differentiation 40 ligand), and the 
vaccine response (VR) in terms of anti-gE antibody and CD4 
[2+] T-cells were evaluated in all populations. Results are 
presented for 1 M and 12 M post-last dose overall and, where 
available, per age group (18–49 and ≥50 YOA). Analyses per 
diagnoses (auto-HSCT recipients, HM patients), timing of 
vaccination in relation to the immunosuppressive therapy 
(HM and ST patients), or immunosuppressive regimen (RT 
recipients) were also performed. The second dose was the last 
in all IC populations except for HIV-infected adults, in whom 
the third dose was the last. Of note, no substantial benefit of the 
third over the second dose was seen in HIV-infected adults in 
terms of humoral or CMI responses.15 Finally, except for the 
study in auto-HSCT recipients, in which efficacy was the pri-
mary outcome, all studies had immunogenicity objectives with 
predefined statistical success criteria (Table 2).

Main statistical considerations for immunogenicity 
assessment

Immunogenicity was evaluated in the according-to-protocol 
(ATP) cohorts for immunogenicity/persistence, which 
included study participants who complied with the protocol 
and had available immunogenicity data. The ATP cohorts for 
humoral immunogenicity originated from a subset (auto- 
HSCT recipients) or the entire study populations. The ATP 
cohorts for CMI originated from the entire study population 
(HIV-infected adults) or from subsets of study populations. 
The cohorts and statistical success criteria used for inferential 
analyses are presented in Table 2. For descriptive analyses, 
anti-gE antibody geometric mean concentrations (GMCs) 
were determined with their exact 2-sided 95% confidence 
intervals (CIs), and frequencies of CD4[2+] T-cells were tabu-
lated using descriptive statistics (minimum, first quartile, med-
ian, third quartile, maximum).

Additional details about the assessment of anti-gE antibo-
dies and CD4[2+] T-cells are presented elsewhere.8,10,13–15,40

Results

Study populations

Within each IC population, demographic characteristics were 
balanced between the RZV and Placebo groups in the ATP 
cohort for immunogenicity. Most RZV recipients were ≥50 
YOA (70%, mean ages at first dose 46.5–57.0 YOA), male 
(58.5%-94.4%) except for ST patients (34.5% males), of White- 
Caucasian/European ancestry (66.1%-96.8%), and of non- 
Hispanic/Latino ethnicity (90.1%-100%).
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In RZV recipients from the ATP cohorts for immunogenicity, 
31.8% of HM patients were vaccinated during the cancer therapy 
course and 68.2% after the cancer therapy course, and 74.7% of 
ST patients were vaccinated PreChemo and 25.3% OnChemo 
(definitions in Table 1). The most frequent diagnoses were 
multiple myeloma (53.7%) in auto-HSCT recipients, breast 
(51.4%) and colorectal (21.1%) cancer in ST patients, and 

multiple myeloma (24.0%), Hodgkin lymphoma (18.0%), 
chronic lymphocytic leukemia (CLL, 16.6%), and non-Hodgkin 
B-cell lymphoma (NHBCL, 15.2%) in HM patients. Among RT 
recipients, 77.3% received a maintenance immunosuppressive 
regimen consisting of calcineurin inhibitors/sirolimus (CIS) + 
mycophenolate compound (MC) + corticosteroids (CS), 17.6% 
received CIS+MC, and 5.0% received CIS+CS.

Table 1. Overview of the reviewed clinical studies with RZV in immunocompromised adults.

Population and schedule
Study countries and years and clinicaltrials.gov 

registration numbers Summary of study design and objectives

Participants 
included in the ATP 
cohort for humoral 

immunogenicity

HIV-infected adults ≥18 YOA stratified in 3 
subgroups: ART/high CD4 (ART duration 
≥1 year, viral load <40 copies/mL, CD4 T-cell 
count ≥200 cells/mm3), ART/low CD4 (ART 
duration ≥1 year, viral load <40 copies/mL, 
CD4 T-cell count 50–199 cells/mm3), ART- 
naïve/high CD4 (ART-naïve and ART not 
anticipated to be used until after 1 month 
post-last dose, viral load 1000–100,000 
copies/mL, and CD4 T-cell count ≥500 cells/ 
mm3) 
3 doses (at months 0, 2, and 6)

Germany, United Kingdom, United States 
2010–2013 
NCT01165203

Phase I/IIa, randomized, observer-blind, 
placebo-controlled study.15 

Objectives included evaluation of safety 
(including hematology and biochemistry 
parameters and worsening of HIV 
condition), humoral and cell-mediated 
immunogenicity, and occurrence, 
duration, and severity of HZ cases and 
complications.

3 RZV doses: 54 
3 placebo doses: 
37

Autologous HSCT recipients ≥18 YOA (ZOE- 
HSCT) 
2 doses (at months 0 and 1–2) with the first 
dose administered within 50–70 days after 
transplant

Australia, Belgium, Bulgaria, Canada, Czech 
Republic, Estonia, Finland, France, Germany, 
Greece, Hong Kong, Israel, Italy, Japan, 
Malaysia, the Netherlands, New Zealand, 
Panama, Poland, Romania, Russian 
Federation, South Africa, South Korea, Spain, 
Taiwan, Turkey, United Kingdom, United 
States 
2012–2017 
NCT01610414

Phase III, randomized, observer-blind, 
placebo-controlled efficacy study.10,39 

Minimization according to the underlying 
disease (multiple myeloma or other 
diagnoses [including non-Hodgkin B-cell 
lymphoma, Hodgkin lymphoma, non- 
Hodgkin T-cell lymphoma, acute myeloid 
leukemia, solid organ malignancies, etc.]). 
Objectives included evaluation of vaccine 
efficacy in preventing HZ and its 
complications, safety, and humoral and 
cell-mediated immunogenicity.

2 RZV doses: 82 
2 placebo doses: 
76

Hematologic malignancy patients ≥18 YOA 
2 doses (at months 0 and 1–2) with 
administration at ≥10 days before or after 
a chemotherapy cycle or 10 days to 
6 months after completion of the full 
chemotherapy course

Australia, Belgium, Canada, Czech Republic, 
Finland, France, Hong Kong, Italy, New 
Zealand, Pakistan, Panama, Poland, Russian 
Federation, Singapore, South Korea, Spain, 
Sweden, Taiwan, Turkey, United Kingdom, 
United States 
2013–2017 
NCT01767467

Phase III, randomized, observer-blind, 
placebo-controlled study.13 

Stratification according to underlying 
disease (non-Hodgkin B-cell lymphoma, 
chronic lymphocytic leukemia, or other 
diseases [multiple myeloma, non-Hodgkin 
T-cell lymphoma, Hodgkin lymphoma, and 
other hematologic malignancies]). 
Objectives included evaluation of safety, 
humoral and cell-mediated 
immunogenicity, and incidence of 
confirmed HZ cases. Efficacy was 
evaluated post hoc.

2 RZV doses: 217 
2 placebo 
doses:198

Solid tumor patients ≥18 YOA on 
chemotherapy 
2 doses (at months 0 and 1–2) with first 
dose at 8–30 days before the first 
(occasionally second) cycle of 
a chemotherapy course (PreChemo) or at 
the start (±1 day) of and concurrently with 
a chemotherapy cycle (OnChemo); 
the second dose was administered to all 
participants at the first day (allowing 
a window of ±1 day) of a subsequent 
chemotherapy cycle

Canada, Czech Republic, France, South Korea, 
Spain, United Kingdom 
2013–2016 
NCT01798056

Phase II/III, randomized, observer-blind, 
placebo-controlled study.14 

Stratification (4:1) in PreChemo or 
OnChemo stratum. 
Objectives included evaluation of safety 
and humoral and cell-mediated 
immunogenicity.

2 RZV doses: 87 
2 placebo doses: 
98

Renal transplant patients ≥18 YOA 
2 doses (at months 0 and 1–2) with the first 
dose administered at 4–18 months post- 
transplant

Belgium, Canada, Czech Republic, Finland, 
Italy, Panama, South Korea, Spain, Taiwan 
2014–2017 
NCT02058589

Phase III, randomized, observer-blind, 
placebo-controlled study.8 

Objectives included evaluation of safety 
(including allograft function and 
rejection), humoral and cell-mediated 
immunogenicity, and incidence of 
suspected HZ cases.

2 RZV doses:121 
2 placebo 
doses:119

ART, antiretroviral therapy; ATP, according-to-protocol; HZ, herpes zoster; RZV, adjuvanted recombinant zoster vaccine; ZOE-HSCT, Zoster efficacy study in autologous 
hematopoietic stem cell transplant recipients; YOA, years of age.
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When assessed in all vaccinated auto-HSCT recipients, the 
median time between transplant and first dose was 61.0 days.

Humoral immune responses to RZV

Across the 5 IC populations, ≥95.1% of RZV recipients were 
seropositive for anti-gE antibody before vaccination,41 and 

pre-vaccination anti-gE antibody GMCs ranged between 
763–1354 milli-international units per milliliter (mIU/mL).

Success criteria were met for all inferential humoral immu-
nogenicity objectives (Figure 1).

At 1 M post-last dose, humoral VR rates (VRRs) ranged 
between 65.4%-96.2% across the 5 IC populations (Figure 2a). 
Anti-gE antibody GMCs at 1 M post-last dose ranged between 

Figure 1. Inferential humoral immunogenicity analyses in the reviewed studies with RZV in immunocompromised populations. CLL, chronic lymphocytic leukemia; gE, 
glycoprotein E; HIV, human immunodeficiency virus; HM, hematologic malignancy; M, month; N, number of participants; NHBCL, non-Hodgkin B-cell lymphoma; RT, 
renal transplant; RZV, adjuvanted recombinant zoster vaccine; ST, solid tumor; VRR, vaccine response rate, defined as the proportion of participants with a ≥ 4-fold 
increase in the anti-gE antibody concentration compared either with the pre-vaccination concentration (initially seropositive participants) or with the anti-gE antibody 
concentration cutoff value for seropositivity (initially seronegative participants); the cutoff for seropositivity was 97 milli-international units per milliliter (mIU/mL) in all 
populations except for HIV-infected adults, in whom it was 18 mIU/mL; black error bars depict two-sided exact 95% confidence intervals; the blue error bar (HIV- 
infected) depicts two-sided exact 90% confidence interval; dashed lines represent predefined statistical criteria (i.e. thresholds that need to be exceeded by the lower 
limits of the confidence intervals for objectives to be considered met). *in ST and HM patients, and in RT recipients

4136 A. F. DAGNEW ET AL.



12,753–19,164 mIU/mL across IC populations, except for HIV- 
infected adults, in whom it was 63,813 mIU/mL; at 12 M post- 
last dose these were 3184–8545 and 25,242 mIU/mL (4.2–6.3 
and 20.7 times higher than pre-vaccination), respectively 
(Figure 2b).

Age (18–49 or ≥50 YOA) did not appear to affect humoral 
immune responses in auto-HSCT recipients and ST patients 
(Figure 2). A slight trend for stronger humoral responses in the 
younger age group was seen in HM patients and RT recipients.

Auto-HSCT recipients and HM patients diagnosed with 
NHBCL had a diminished humoral immune response compared 

with other diagnoses, noting that 97% of HM patients with 
NHBCL were treated with rituximab. HM patients with CLL (of 
whom 81% were treated with rituximab) also had a diminished 
response. At 1 M post-last dose, humoral VRR was 14.2% in auto- 
HSCT recipients with NHBCL compared with 67.1% in the entire 
study population. Similarly, humoral VRR was 45.5% and 22.2% 
in HM patients with NHBCL and CLL, respectively, compared 
with 80.4% in the rest of the study population.

HM patients vaccinated after the cancer therapy course had 
a stronger humoral response than those vaccinated during the 
cancer therapy course. In ST patients, the humoral response to 

Figure 2. Humoral immune responses to RZV in immunocompromised populations. gE, glycoprotein E; GMC, geometric mean concentration; HIV, human immuno-
deficiency virus; HM, hematologic malignancy; HSCT, hematopoietic stem cell transplant; M, month; N, number of participants with available results; RT, renal transplant; 
RZV, adjuvanted recombinant zoster vaccine; ST, solid tumor; VRR, vaccine response rate, defined as the proportion of participants with a ≥ 4-fold increase in the anti-gE 
antibody concentration compared either with the prevaccination concentration (initially seropositive participants) or with the anti-gE antibody concentration cutoff 
value for seropositivity (initially seronegative participants). The cutoff for seropositivity was 97 milli-international units per milliliter (mIU/mL) in all populations except 
for HIV-infected adults, in whom it was 18 mIU/mL; error bars depict two-sided exact 95% confidence intervals. Note: the green rectangles represent findings in non- 
immunocompromised older adults,40 which are only included here for reference.
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RZV was higher in the PreChemo than in the OnChemo 
subgroup (definitions in Table 1) at 1 M post-last dose but 
were similar at 12 M post-last dose. In RT recipients, humoral 
responses at 1 M and 12 M post-last dose 2 were similar 
regardless the type of chronic, daily immunosuppressive regi-
men (CIS+MC+CS, CIS+MC, or CIS+CS).

CMI responses to RZV
In HIV-infected adults, the geometric mean ratio of CD4[2+] 
T-cell frequencies at 1 M post-dose 3 over 1 M post-dose 2 was 
1.0 (95%CI: 0.8–1.3), showing that the third dose had no 
incremental benefit over the second. In the other 4 reviewed 

studies, performed after evaluating the 3-dose schedule in 
HIV-infected adults, 2 doses were administered.

All CMI objectives met predefined statistical success criteria in 
RT recipients and HIV-infected adults. In the PreChemo sub-
group of ST patients, although higher CD4[2+] T-cell frequencies 
were demonstrated in RZV versus placebo recipients, the CMI 
VRR was 50.0% (95%CI: 28.2–71.8) in the RZV group, and the 
success criterion for this objective was not met (Figure 3).

At 1 M post-last dose, CMI VRRs ranged between 71.4%- 
92.9% across IC populations, except for ST patients, as noted 
above (Figure 4a). Median pre-vaccination CD4[2+] T-cell 
frequencies ranged between 21 and 127 across the 5 IC 

Figure 3. Inferential CMI analyses in the reviewed studies with RZV in immunocompromised populations. CD4[2+] T-cells, gE-specific CD4 T-cells expressing ≥2 
activation markers from among interferon-γ, interleukin-2, tumor necrosis factor-α, and cluster of differentiation 40 ligand; CMI, cell-mediated immunity; gE, 
glycoprotein E; HIV, human immunodeficiency virus; M, month; N, number of participants; RT, renal transplant; RZV, adjuvanted recombinant zoster vaccine; ST, 
solid tumor; VRR, vaccine response rate, defined as the proportion of participants with a ≥ 2-fold increase in the frequency of CD4[2+] T-cells compared with 
prevaccination frequency (for participants with prevaccination CD4[2+] T-cell frequency ≥320 per 106 CD4 T-cells) or with the cutoff (for participants with prevaccination 
frequencies below the cutoff); black error bars depict two-sided exact 95% confidence intervals; the blue error bar (HIV-infected) depicts two-sided exact 70% 
confidence interval; dashed lines represent pre-defined statistical criteria (i.e., thresholds that need to be exceeded by the lower limits of the confidence intervals for 
objectives to be considered met). *in ST patients and RT recipients
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populations. At 1 M post-last dose, median CD4[2+] T-cell 
frequencies ranged between 2149–6645 across IC populations, 
except for ST patients, in whom it was 779; at 12 M post-last 
dose, these were 1007–1706 and 333 (13.0–50.3 and 2.6 times 
higher than pre-vaccination), respectively (Figure 4b).

Age (18–49 or ≥50 YOA) did generally not affect the mag-
nitude of CMI responses in auto-HSCT, RT, ST, and HM 
populations (Figure 4).

Underlying diagnoses in auto-HSCT recipients and HM 
patients did not affect CMI responses. At 1 M post-last dose, the 

VRR was 100% in both auto-HSCT recipients and HM patients 
with NHBCL and 71.4% in HM patients with CLL, compared with 
92.9% in all auto-HSCT recipients and 73.7% in HM patients 
excluding those with NHBCL or CLL. CMI responses tended to 
be higher in HM patients vaccinated after the cancer therapy 
course than in those vaccinated during cancer therapy.

Discussion

Prevention of viral infections, including the reactivation of 
latent VZV, in adults with immunodeficiency or 

Figure 4. CMI responses to RZV in immunocompromised populations. CD4[2+] T-cells, gE-specific CD4 T-cells expressing ≥2 activation markers from among interferon-γ, 
interleukin-2, tumor necrosis factor-α, and cluster of differentiation 40 ligand; CMI, cell-mediated immunity; gE, glycoprotein E; HIV, human immunodeficiency virus; HM, 
hematologic malignancy; HSCT, hematopoietic stem cell transplant; M, month; N, number of participants with available results; Q1, Q3, first and third quartiles; RT, renal 
transplant; RZV, adjuvanted recombinant zoster vaccine; ST, solid tumor; VRR, vaccine response rate, defined as the proportion of participants with a ≥ 2-fold increase in 
the frequency of CD4[2+] T-cells compared with prevaccination frequency (for participants with prevaccination CD4[2+] T-cell frequency ≥320 per 106 CD4 T-cells) or 
with the cutoff (for participants with prevaccination frequencies below the cutoff); error bars depict two-sided exact 95% confidence intervals (panel A). Note: the green 
rectangles represent findings in non-immunocompromised older adults,40 which are only included here for reference.
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immunosuppression caused by disease and/or its therapy is 
a large unmet medical need. Immunogenicity data show 
that RZV is able to induce robust and persistent gE- 
specific humoral and CMI responses in different popula-
tions, including adults with severely immunocompromising 
conditions and/or under immunosuppressive treatments. 
This demonstrates that, in addition to being able to over-
come immunosenescence in adults ≥50 YOA,40,42 RZV can 
also overcome severe immunocompromising conditions. 
A plain language summary contextualizing the results and 
potential clinical research relevance and impact is presented 
in Figure 5.

Age did not affect efficacy of RZV in auto-HSCT 
recipients,10 and only had a limited effect on immune 
responses in IC populations with available age-based data. 
This has also been observed in non-IC adults, in whom efficacy 
and immune responses were similar across all age groups 
≥50 years.34,35,40

High proportions (65%-96%) of IC study participants 
mounted a humoral VR to the RZV vaccination course, and 
anti-gE antibody concentrations increased substantially from 

pre-vaccination levels in all 5 IC populations ≥18 YOA, and 
were maintained above pre-vaccination levels through the end 
of a 1-year follow-up period.8,10,13–15

Some underlying diseases in HM patients and auto-HSCT 
recipients, specifically CLL and/or NHBCL, were associated 
with a less robust humoral response to RZV. This is likely 
due to B-cell depletion induced by anti-CD20 monoclonal 
antibody therapy (e.g., rituximab), which was frequently admi-
nistered to HM patients with NHBCL and CLL.13 However, 
this severe B-cell impairment does not appear to affect the 
protection offered by RZV, because the efficacy of RZV against 
HZ was maintained at 60.5% (95%CI: 31.0–78.2) in auto-HSCT 
recipients with NHBCL.39

Unlike humoral immune responses, CMI responses to RZV 
were not affected by underlying diseases in IC populations, and 
were generally maintained through the end of a 1-year follow-up 
period at levels similar to those observed in non-IC adults ≥50 
YOA (Figure 4). CMI responses are regarded as the main mechan-
istic driver for protection against HZ,43 and RZV demonstrated 
protection against HZ and postherpetic neuralgia (PHN) across 
different types of adult populations, including auto-HSCT 

Figure 5. Plain language summary.
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recipients, which is the studied IC population at the greatest risk 
for HZ.4,10,13,34–37 Although the first RZV dose was administered 
early in immune reconstitution, 50–70 days post-auto-HSCT, 
RZV was 68.2% efficacious against HZ and 89.3% efficacious 
against PHN in the overall auto-HSCT population.10 As men-
tioned above, efficacy against HZ was observed in participants 
with any of the underlying diseases, including NHBCL (60.5%), 
despite the less robust humoral response.39 In a post hoc analysis, 
RZV also demonstrated 87.2% efficacy against HZ in HM 
patients, but the sample size did not allow assessment per indi-
vidual underlying disease. Nevertheless, the results in auto- 
HSCT recipients suggest that RZV may remain efficacious in 
HM patients with NHBCL or CLL, in whom humoral responses 
were less robust.13 Although efficacy was not evaluated in ST 
patients and RT recipients, their CMI responses were robust and 
similar to those in auto-HSCT recipients and HM patients, 
suggestive of a similar clinical benefit.

Overall, the high CD4 T-cell responses observed in IC popu-
lations may result from the ability of the AS01 adjuvant system 
to promote a CMI response, regardless of age, underlying med-
ical condition, or treatment.44 CD4 T-cell responses were strong 
in HIV-infected adults ≥18 YOA, and comparable to those 
observed in non-IC adults ≥50 YOA (Figure 4). This might be 
partly because most were receiving ART with immune reconsti-
tution and had CD4 T-cell counts ≥200 cells/mm3.15 The CD4 
T-cell response was particularly high in auto-HSCT recipients, 
which could be explained by the homeostatic proliferation fol-
lowing vaccination or by the low number of total CD4 T-cells, 
which is used as the denominator in the calculation of CD4[2+] 
T-cell frequencies. In auto-HSCT recipients, CD4 T-cell 
responses displayed polyfunctional profiles similar to those in 
adults ≥50 YOA,39 and polyfunctional responses after vaccines 
against tuberculosis, malaria, melanoma, or HIV have been 
shown to correlate with protection.45–48 While data for RZV- 
elicited CD8 T-cell responses are not available for IC 
populations,8,10,13–15 using the same CMI assessment methods, 
only scarce CD8 T-cell responses were detected in older adults, 
which did not increase upon vaccination with RZV.40,42

The use of cytotoxic immunosuppressive chemotherapy is 
expected to interfere with the generation of antigen-specific 
lymphocytes, particularly when vaccination is undertaken con-
currently with a chemotherapy cycle. In ST patients, the first 
dose was administered either 8–30 days before the first 
(occasionally second) cycle of a chemotherapy course 
(PreChemo) or at the start of and concurrently with 
a chemotherapy cycle (OnChemo). The second dose was admi-
nistered concurrently with a chemotherapy cycle in all the ST 
patients. Although in ST patients, CMI responses were less 
robust than in HM patients, to whom RZV was administered 
≥10 days before or after a chemotherapy cycle or 10 days to 6 M 
after completion of the immunosuppressive chemotherapy 
course,13 humoral responses were in similar ranges. In ST 
patients, humoral immune responses tended to be higher in 
the PreChemo than in the OnChemo subgroup shortly after 
vaccination. The 8–30-day time window allowed PreChemo 
RZV recipients to develop an immune response to the first 
dose before immunosuppressive therapy was initiated, which 
likely accounts for this difference.14

In addition to the high efficacy observed in older adults,34,35 

the efficacy of RZV was also remarkable in 2 populations that are 
highly IC and at the highest risk of HZ.10,13 Although vaccine 
efficacy cannot be inferred for all IC populations in the absence 
of a correlate of protection, the overall clinical data generated in 
older adults and IC individuals ≥18 YOA indicate that the 
anticipated benefit-risk profile of RZV for the prevention of 
HZ in adults is favorable.39,49

Limitations of studies evaluating immunogenicity of RZV in 
IC populations result from the heterogeneity of populations 
and of immunosuppressive treatments within studies. In some 
subgroups per age, underlying disease, immunosuppressive 
therapy, or timing of vaccination in relation to the immuno-
suppressive therapy, the number of participants was very small, 
especially for the evaluation of CMI. As for other vaccines, due 
to the ever-growing field of immunosuppressive therapies and 
standard of care, the most beneficial timing and dosing of RZV 
vaccination remains to be determined.

Conclusion

RZV induced robust and persistent humoral and, more 
importantly, CMI responses in patients with a wide variety 
of IC conditions, most of whom were receiving multiple 
immunosuppressive medications. These include auto-HSCT 
recipients, who are at highest risk of HZ. In most cases, 
vaccination was undertaken when immunosuppression was 
near its maximum. Nonetheless, efficacy against HZ has been 
evaluated and demonstrated in auto-HSCT recipients and 
HM patients. Because the mechanisms leading to increased 
risk of HZ are believed to be shared between older adults 
(immunosenescent) and other adults at increased risk of HZ 
(individuals with IC conditions, treatments, autoimmune dis-
eases, stress, depression, family HZ history), and because the 
treatments used in the IC populations studied are also used to 
treat other medical conditions, RZV is expected to benefit 
a broad adult population at risk for HZ by overcoming the 
CMI impairment, which is thought to be the basis for VZV 
reactivation.
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