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Abstract

Interferon (IFN)-y—producing CD8* T cells are important for the successful resolution of the
obligate intracellular parasite Toxoplasma gondii by preventing the reactivation or controlling a
repeat infection. Previous reports from our laboratory have shown that exogenous interleukin
(IL)-15 treatment augments the CD8" T cell response against the parasite. However, the role
of endogenous IL-15 in the proliferation of activated/memory CD8* T cells during toxo-
plasma or any other infection is unknown. In this study, we treated T. gondii immune mice
with soluble IL-15 receptor a (SIL-15Ra) to block the host endogenous IL-15. The treatment
markedly reduced the ability of the immune animals to control a lethal infection. CD8" T cell
activities in the sIL-15Ra—administered mice were severely reduced as determined by IFN-y
release and target cell lysis assays. The loss of CD8" T cell immunity due to sIL-15Ra treat-
ment was further demonstrated by adoptive transfer experiments. Naive recipients transferred
with CD44h activated/memory CD8" T cells and treated with sIL-15Ra failed to resist a le-
thal T. gondii infection. Moreover, sIL-15Ra treatment of the recipients blocked the ability of
donor CD44" activated/memory CD8" T cells to replicate in response to T. gondii challenge.
To our knowledge, this is the first demonstration of the important role of host IL-15 in the de-

velopment of antigen-specific memory CD8* T cells against an intracellular infection.
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Introduction

The generation of an effective cellular immune response is
key to the survival against intracellular pathogens (1) and
therefore critical for vaccination strategies for the protec-
tion against initial and repeated infections. A prime exam-
ple is infection with Toxoplasma gondii, an intracellular pro-
tozoan parasite against which T cell immunity plays a
pivotal role for long-term host survival (2). Both CD4* and
CD8* T cells have been reported to be important for pro-
tection against the infection (3). However, CD8% T cells
are known to be the primary effector cells with CD4* T
cells providing the necessary help (4, 5). Immune CD8* T
cells from mice and humans secrete [FN-y and exhibit in
vitro cytotoxicity against infected target cells (6—9). Neu-
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tralization of either IFN-y or CD8* T cells reversed the
protective immunity against the parasite (4, 9, 10).

Studies from our laboratory have shown that exogenous
treatment with IL-15 augmented the CD8* T cell response
of mice against T. gondii infection (11). In a subsequent
study, using a vaccine strain of T. gondii, we demonstrated
that IL-15 treatment prolonged the duration of CD8* T
cell immunity against T. gondii (12). The role of IL-15 in
the proliferation and maintenance of long-term CD8* T
cell response has been emphasized by the recent observa-
tions with IL-15 knockout mice. Mice lacking IL-15 or its
receptor IL-15Ra are unable to generate a full memory
CD8* T cell response (13, 14). Furthermore, IL-15 trans-
genic mice exhibited accelerated long-term CD8* T cell
response by selectively propagating memory CD8* T cells
(15, 16). However, the role of endogenous IL-15 in the in-
duction and maintenance of memory CD8* T cells during
a natural infection is unknown. In this study, we evaluated
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the effect of treatment with soluble IL-15Ra (sIL-15Ra)*
on the ability of mice infected with T. gondii to survive a
lethal secondary challenge.

IL-15 signals through a trimeric receptor complex that
consists of a unique high affinity o chain, the IL-2R
chain, and the common vy chain (17-19). We have previ-
ously cloned and expressed a soluble fragment of IL-15Ra,
which neutralizes IL-15 activity in vitro and in vivo. After
a short period of administration, this protein profoundly
suppressed the induction of collagen-induced arthritis in
DBA/1 mice (20) and markedly prolonged the survival of
allogenic heart grafts (21). Here we report that mice treated
with sIL-15Ra developed a significantly more severe T.
gondii infection. More importantly, sIL-15Ra exacerbated
the disease by blocking the proliferation of antigen-specific
memory CD87 cells crucial to the protective immunity
against toxoplasmosis. These results clearly show that en-
dogenous IL-15 plays a critical role in host defense against
intracellular infection via the maintenance of specific mem-

ory CD8* T cells.

Materials and Methods

Mice, Parasites, and Challenge. 5—6-wk-old female C57BL/6
and congenic Thy1.1 mice were obtained from The Jackson Lab-
oratory. They were maintained in a pathogen-free environment in
the Animal Research Facility at Louisiana State University Medi-
cal Center (New Orleans, LA). Mice were challenged perorally
with cysts of 76K strain of T. gondii (provided by D. Bout, UFR
Sciences Pharma Centiques, Tours, France). This strain is main-
tained by continuous oral passage of cysts. For primary infection, a
dose of 10-15 cysts was used. Unless otherwise stated, the animals
were infected orally with 100 cysts for secondary challenge.

sIL-15Ra Treatment. sIL-15Ra (T1) and its control mutant
protein (M4; ref 20) were prepared as previously described (22).
T1 span the entire extracellular domain of the murine IL-15R «
chain, whereas M4 was constructed by a single site-directed mu-
tation replacing the third cysteine of the “Sushi domain” of the a
chain with aspartic acid (22). The recombinant 6-histidine—
tagged proteins were expressed in Escherischia coli (XL-1 Blue;
Stratagene) after isopropyl b-p-thioglactoside (Stratagene) induc-
tion and purified by a nickel-agarose purification system
(QIAGEN) according to the manufacturer’s recommendations.
Purified proteins were analyzed by SDS-PAGE. The purity was
>97% for all recombinant proteins. LPS was not detected by the
Limulus amebocyte test (<0.01 ng/mg, E-toxate; Sigma-Aldrich).
1 d before secondary challenge, 4 wk after the primary infection,
infected animals were injected intraperitoneally with T1 (40 mg/
mouse). The treatment continued daily for a 10-d period. The
control mice were treated with an equivalent amount of M4. In
previous experiments, we failed to detect any anti—sIL-15Ra in
mice treated under this regimen (unpublished data).

Quantitation of Parasite Burden.  Gut, spleen, liver, and lung
tissues from T. gondii—infected animals were collected on day 7
and 14 after secondary infection. DNA was extracted from tissues
using the Qiamp tissue kit (QIAGEN), and 400 ng of each sam-
ple were analyzed by quantitative PCR. Amplification of parasite
DNA was performed using primers specific for a 35-fold repeti-

* Abbreviations used in this paper: FCM, flow cytometry buffer; pCTL, pre-
cursor cytotoxic T lymphocyte; sIL-15Ra, soluble IL-15 receptor a.
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tive sequence of the toxoplasma B1 gene, 5'-GGAACTG-
CATCCGTTCATGAG-3" and 5'-TCTTTAAAGCTTCGTG-
GTC-3', which is found in all known parasite strains (23). A
134-bp competitive internal standard containing the same primer
template sequences as the 194-bp B1 PCR fragment was also
synthesized (24). Amplification of this 194-bp segment of the B1
gene and the 134-bp segment of the internal standard was per-
formed using a 50-ml reaction mixture containing 1.25 U of
Amplitag DNA polymerase, 1X buffer (PerkinElmer), 0.2 mM
each of dGTP, dATP, dTTP, and dCTP, and 0.4 mM each B1
primer. For each reaction, a known amount of DNA from the
tissues was amplified with varying amounts of the internal stan-
dard. The levels of parasite load were estimated by comparison to
the internal controls. To determine the parasite load in infected
tissues, PCR was performed under the same conditions using a
known number of parasites. The level of internal control was cal-
culated per parasite (24).

Histopathological Analysis.  Tissues from sIL-15R a—treated and
control animals were fixed in 10% buffered formalin and paraffin
processed. 5-pm histological sections were stained with hema-
toxylin and eosin and photographed on an Olympus Van Ox mi-
croscope with Kodak Elite 100 film. The resulting images were
digitized with a Polaroid Sprint scanner and processed using
Adobe Photoshop™ software.

IFN-y Production. Intracellular cytokine staining was used to
determine IFN-y production by CD4% and CD8" T cells at the
single cell level as previously described (25). Spleen cells from day
7— and 14—infected mice were isolated and resuspended in RPMI
1640 containing 10% FCS. The cells (10° cells/well) were cultured
in 96-well plates and stimulated with PMA (10 ng/ml; Sigma-
Aldrich), ionomycin (500 ng/ml; Sigma-Aldrich), and monensin
(2 uM, GolgiStop; BD PharMingen). Cultures were incubated for
4 h at 37°C in 5% CO, in a humidified incubator. Cells were then
washed with PBS containing 1% FCS and stained with anti-CD8
or anti-CD4 antibody conjugated with fluorescein (BD PharMin-
gen) for 30 min at 4°C. Intracellular staining was performed using
a Cytofix/Cytoperm kit (BD PharMingen) according to the man-
ufacturer’s recommendations. In brief, after cell surface staining,
cells were washed and then treated with formaldehyde and sapo-
nin to fix and permeabilize them. Intracellular staining was then
performed using anti-IFN-y or an irrelevant isotype-matched
control antibody conjugated with phycoerythrin (BD PharMin-
gen). Samples were resuspended in PBS containing 2% formalde-
hyde, acquired on a FACScan™ flow cytometer, and analyzed us-
ing CELLQuest™ software (Becton Dickinson).

Precursor Cytotoxic T Lymphocyte (pCTL) Frequency Analysis.
CD8* cytotoxic T cells were quantified by pCTL frequency
analysis using limiting dilution assays (26). CD8* T cells from in-
fected mice were purified by magnetic separation using micro-
beads coated with anti-CD8 antibody (Miltenyi Biotech). Puri-
fied CD8" T cells (>95% pure) were cultured by limiting
dilution in 96-well round-bottom plates in RPMI 1640 medium
(Life Technologies) containing appropriate growth factors, in-
cluding 15 U/ml of recombinant IL-2 (R&D Systems), irradiated
tachyzoites of the RH strain, and feeder cells. The dilutions
ranged from 10,000 to 50,000 purified CD8* T cells/well. Con-
trol wells contained only irradiated parasites and feeder cells.
After 1 wk, the cells were harvested and incubated with >!Cr-
labeled parasite-infected or -uninfected macrophages. The mac-
rophages were collected and labeled as previously described (26).
In brief, mouse peritoneal macrophages were obtained by a lav-
age 2 d after intraperitoneal inoculation with 1 ml thioglycollate.
The cells were washed three times in PBS and dispensed at a con-
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centration of 2 X 10* cells/well in 96-well U-bottom tissue cul-
ture plates. After overnight incubation, they were radiolabeled
with 3'Cr (0.5 wCi/well; New England Nuclear Research Prod-
ucts) for 3 h at 37°C. After several washes in PBS, macrophages
were infected with 10* freshly obtained RH parasites. The next
morning, spontaneous lysis caused by overnight parasite infection
was measured and wells exhibiting >250 cpm in the supernatant
were excluded from the assay. Macrophages were washed in PBS
and incubated with cultured CD8* T cells. The amount of radio-
isotope released was measured after a 4-h incubation. The wells
were considered positive for lytic activity if the total counts per
minute released were >3X SD over the control wells (mean
counts per minute released by the target cells incubated with
feeder cells and irradiated parasites alone). The pCTL frequency
was calculated according to a standard formula (27).

Monoclonal Antibodies. Directly conjugated mAbs recogniz-
ing the following murine determinants were obtained from BD
PharMingen: CD8-FITC (53-6.7, rat IgG,,), CD90.1-PE (Thy1.1,
OX-7, murine IgG,), and CD44-PE-labeled (clone IM7) and iso-
type controls (A95-1-FITC, rat IgG,,-FITC, and A112-2-PE,
murine IgG;). All mAbs were titrated and used at saturating con-
centrations.

Adoptive Trangfer of Activated/Memory CD8™ T Cells. C57BL/6
mice were infected with 10-15 cysts of T. gondii. The animals
were killed 2 wk after infection and spleen cell suspensions were
prepared. Red blood cells were lysed with a lysis buffer (ACK
lysing buffer; Sigma-Aldrich). Cells were then centrifuged,
washed twice with RPMI 1640, and counted on a hemocytome-
ter using trypan blue exclusion to assess viability. CD8% T cells
were purified by magnetic purification as previously described.
Purified CD8* T cells were stained with PE-labeled anti-CD44
and the cells were separated into CD44" and CD44% population
by flow cytometry. Before the transfer, the purity of the trans-
ferred cells was assayed by FACS® analysis. All preparations were
fixed with 1% methanol-free formalin (Polysciences, Inc.), kept
at 4°C, and analyzed within 7 d using a FACStar™ Plus (Becton
Dickinson). For sorting experiments, CD8* T cells were stained
on ice-cold sodium azide—free FCM (flow cytometry buffer) and
analyzed immediately after labeling without fixation. CD44M
CD8* T cells (99.9% pure) were injected intravenously into na-
ive syngeneic mice (10° cells/mouse). The recipients were then
divided into two groups injected with either T1 or M4. The
treatment, consisting of daily intraperitoneal injections of 40 pg/
mouse for 10 d, began 14 d after cell transfer. The recipients were
challenged with 100 cysts of 76K strain of T. gondii 24 h after the
termination of treatment.

Spleen Cell Preparation and BrdU Staining. Congenic C57BL/6
Thy1.1 mice were infected perorally with 10-15 cysts of T.
gondii. The mice (n = 5) were killed and spleen cells were col-
lected 2 wk after infection. CD8% T cells from the spleens were
isolated and then separated into CD44M and CD44!" populations
as previously described. Purified CD8% CD44" T cells (10°) were
injected intravenously into naive Thyl.2 mice. The recipients
were challenged orally 10 d later with 80 cysts of T. gondii.
Groups of mice were injected intraperitoneally with 40 pg/
mouse of T1 or M4 1 d before challenge. The treatment contin-
ued daily for 7 d. The animals were given BrdU (0.8 mg/ml;
Sigma-Aldrich) in the drinking water starting on the day of chal-
lenge. The proliferation of Thy1.1% cells in the splenic and he-
patic populations was analyzed by flow cytometry. Hepatic lym-
phocytes were isolated as previously described (28). In brief, the
livers were perfused with 10 ml cold PBS, excised minced, and
passed through a meshed screen. The cells were washed in cold
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PBS, and one liver equivalent was suspended in 15 ml Percoll in
the presence of 100 IU/ml heparin. The suspension was centri-
fuged for 10 min at 500 g and the pellets were pooled and resus-
pended in cold FCM and counted on hematocytometer. After
washing in FCM, the spleen and liver cell preparations (2.5 X
10°/well) were labeled with PE-labeled anti-Thy1.1 antibody in
96-well round-bottom polypropylene microtiter plates (Costar
Corp.), incubated for 30 min on ice, and then washed twice with
200-pl changes of FCM bufter. After extracellular staining, the
intracellular staining for BrdU was performed using a commer-
cially available BrdU flow kit (BD PharMingen)

Statistical Analysis.  Statistical analysis of the data was per-
formed by Student’s f test (29).

Results

SIL-15Ro Abrogated the Protection Against a Secondary
Challenge with T. gondii. 'We have reported earlier that
exogenous IL-15 treatment enhanced CD8* T cell re-
sponse against T. gondii in the infected mice (11). How-
ever, the importance of endogenous IL-15 during the
infection in a normal host is unclear. Therefore, we deter-
mined the role of endogenous host IL-15 in the protection
of immune animals against a lethal toxoplasma infection.
C57BL/6 mice were immunized orally with 10-15 cysts of
76K strain of T. gondii and challenged 4 wk later with a le-
thal dose of 100 cysts. 1 d before the challenge infection,
the mice were injected intraperitoneally with 40 pwg/mouse
sIL-15Ra (T1) or the control mutant protein (M4). The
treatment continued daily for 10 d. As shown in Fig. 1, al-
though all of the mice treated with M4 recovered from the
infection, 80% of the animals treated with T1 succumbed
to T. gondii challenge infection.

To confirm that sIL-15Ra—treated mice had a reduced
ability to clear T. gondii parasites, gut, spleen, liver, and
lung tissues from these animals were analyzed for parasite
load by quantitative PCR at day 7 and 14 after challenge.
As shown in Fig. 2 A, mice treated with T1 had severalfold
higher parasite numbers compared with M4-treated ani-
mals in all the tissues examined. By day 14 after infection,
the parasite load in tissues from the T1-treated animals in-
creased or stayed high, whereas the M4-administered con-
trol animals were able to clear the infection (Fig. 2 B).

Histopathological analysis of the infected mice was per-
formed at day 14 after secondary challenge. The liver of the
control mice showed modest fatty infiltration of hepato-
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DNA in the tissues of sSIL-15Ro—
treated mice. C57BL/6 mice
were immunized and subse-
quently challenged with T. gon-
dii. Animals were administered
sIL-15Ra (T1) or the mutant
protein (M4) as described in Fig.
1. (A) At day 7 and (B) 14 after
challenge, the mice (three per
group) were killed and tissues
were analyzed for the level of
parasite: DNA by quantitative
PCR. Data are mean = SD and
representative of two separate
experiments. ND, not detected.
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cytes consistent with a mild inflammatory response, which
suggests rapid clearance of parasites as is the case with im-
mune animals (30). Multiple mixed lymphocytic inflamma-
tory nodules of 50—100-wm diameter were found through-
out the parenchyma and no intracellular T. gondii were
detected (Fig. 3 A). In contrast, mice treated with sIL15Ra
(T1) showed marked fatty infiltration of hepatocytes with
numerous scattered inflaimmatory nodules throughout the
hepatic parenchyma made up of lymphocytes and granulo-
cytes (Fig. 3 B). The small bowel of the T1-treated mice
showed severe necrosis and hemorrhage, whereas only
patchy superficial necrosis was seen in that of the control
mice (Fig. 3, C and D). Toxoplasma induced immunopa-
thology by IFN-y—producing CD4* T cells in the gut and
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Figure 3. Histological analysis of tissue from mice infected with T. gon-
dii and treated with sIL-15Ra (T1) or the mutant protein (M4). C57BL/6
mice were immunized with a low dose of T. gondii and challenged 4 wk
later. The mice were treated with T1 or M4 as described in Fig. 1. 14 d
after challenge, animals were killed and gut and liver tissue sections were
stained with hematoxylin and eosin. (A) Liver of M4-treated mice. Bar,
100 pm. (B) Liver of T1-treated mice. Bar, 50 pm. (C) Gut of M4~
treated mice. Bar, 100 pm. (D) Gut of T1-treated mice. Bar, 50 pm.
Data are representative of three mice per group.
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liver tissues of naive animals during acute infection has
been previously reported (31). However, due to the rapid
clearance of parasites, the immune animals do not develop
an inflammatory response (12). Our results demonstrate
that sIL-15Ra (T1) treatment reduces the ability of the im-
munized mice to clear T. gondii infection. Uncontrolled
parasite replication in these animals might have caused im-
munopathology similar to that seen in naive mice.

sIL-15Ra Treatment Reduced Memory CD8* T Cell Re-
sponse.  As IL-15 is considered important for CD8* T cell
maintenance (32), we analyzed the effect of sIL-15Ra
treatment on the T. gondii—specific CD8" T cell memory
response. This was performed by first estimating the levels
of CD87 cytotoxic T cells using a pCTL assay. Mice were
immunized with T. gondii cysts and challenged 4 wk later
with the same strain of parasite. sIL-15Ra (T1) treatment
started 1 d before challenge and continued daily for 10 d as
previously described. At day 7 and 14 after challenge, mice
were killed and CD8* T cells were separated by magnetic
isolation. Purified CD8" T cells were cultured by limiting
dilution and pCTL assay was performed. As shown in Fig.
4, the treatment of immune mice with T1 led to a signifi-
cant reduction (P < 0.05 on day 7 and P < 0.005 on day
14) in pCTL frequency compared with treatment with the
control protein, M4.

In addition to their direct cytolytic activity on infected
targets, memory CD8F T cells also secrete IFN-y (33). The
memory CD8" T cell profile in the sIL-15Ra—treated mice
was further evaluated by estimating the number of IFN-y—
producing CD8* T cells. On day 7 and 14 after secondary
challenge, the mice were killed and the CD8% and CD4* T
cell populations were analyzed for IFN-y production by in-
tracellular staining. Treatment with T1 significantly re-
duced the number of IFN-y—producing CD8* T cells in
the T. gondii—infected animals (P < 0.01 on day 7 and P <
0.001 on day 14 after infection) compared with mice
treated with M4 (Fig. 5, A and B). It is interesting to note
that the number of IFN-y* CD4* T cells was not affected
by treatment with T1. These observations further confirm
that IL-15R« selectively blocks the development of mem-
ory CD8" T cells in T. gondii—infected mice.
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. Figure 5. Analysis of IFN-y—
25 producing T cells from mice in-
oo fected with T. gondii and treated
with sIL-15Ra. C57BL/6 mice
immunized and subsequently
challenged with 76K strain were
1 treated with sIL-15Ra (T1) or
5 . the control protein (M4) as de-
scribed in Fig. 1. (A) Spleen cells
were harvested on day 7 and (B)
14 after challenge infection,
pooled (n = 3), and cultured in
vitro with PMA, ionomycin, and
20 monensin for 4 h. The cultured
cells were then labeled for CD4
1 or CD8 before intracellular
10 « staining for IFN-y. Data are pre-
sented as number (mean * SD)
s . of CD4* or CD8* T cells posi-
tive for IFN-y and are pooled

from two different experiments.
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SIL-15Ra Abrogates the Protective Effect of Donor CD8* T
Cells.  Adoptive transfer of immune CD8* T cells protects
naive recipient animals from a lethal T. gondii infection (9).
Therefore, we determined whether the CD8% T cell im-
munity against 1. gondii infection could be adoptively
transferred to sIL-15Ra (T1)—treated animals. Activated/
memory CD8" T cells from C57BL/6 mice infected 2 wk
earlier with T. gondii were isolated by affinity purification.
Purified CD8" CD44" T cells (99% pure) were injected in-
travenously into naive C57BL/6 mice. 2 wk after cell
transfer, the recipients were injected intraperitoneally with
T1 or M4 daily for 10 d. 1 d after beginning the treatment,
the animals were challenged with 100 cysts of T. gondii.
Fig. 6 shows that adoptive transfer of activated/memory
CD8" T cells failed to protect the recipients treated with
T1, but provided normal protection to M4-treated mice.

To determine whether sIL-15Ra aftects the prolifera-
tion of memory CD8* cells, we monitored the number of
donor activated/memory CD8* T cells recovered after T.
gondii challenge in the recipient animals. CD44" CD8* T
cells (109 isolated from T. gondii-immunized congenic
Thy1.1 mice were injected into Thy1.2 mice. 2 wk later,
the mice were injected daily for 8 d with T1 or M4. 1 d af-

100 Figure 6. The effect of sIL-
15Ra treatment on the antitoxo-

80 . . -
plasma protection of naive mice

B —— M4

£ 60 transferred with immune CD8"
< T cells. C57BL/6 mice were in-
g 40 fected with 10-15 cysts of 76K
o

strain of 1. gondii. Mice were
killed 2 wk later and spleen cells
0 were pooled (n = 5). CD8* T
14 7 10 13 16 19 22 25 28 cells were isolated by magnetic
separation (>95% pure) and
were stained with PE-labeled
anti-CD44 and separated into CD44" (activated/memory) and CD44
naive population by flow cytometry. CD8+ CD44M T cells (10) were in-
jected intravenously into naive syngeneic mice. Mice were challenged
orally with 100 cysts 15 d after the cell transfer. The recipients were in-
jected intraperitoneally daily for 10 d with T1 or M4 from the day before
challenge infection. Data are pooled from two experiments (n = 10).
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1467 Khan et al.

o
S

*% Hspleen

Figure 7. 'The effect of sSIL-15R.
treatment on the proliferation of
adoptively transferred memory
CD8* T cells. Congenic Thyl.1
mice (n = 5) were infected orally
with 10-15 cysts of 1. gondii and
CD44M CD8* T cells were iso-
lated on day 14 and transferred
intravenously  (10°/mouse) to
naive Thy1.2 animals. 2 wk after
the transfer, the recipient animals (n = 4) were challenged with 80 cysts
of T. gondii and treated with T1 or M4 as described in Fig. 6. The animals
were given BrdU via drinking water (0.8 mg/ml) for 7 d. Recipients
were killed on day 8 and spleen and liver were analyzed for BrdU*
Thy1.1* T cells by flow cytometry. Data are mean £ SD (n = 4). *, P <
0.01; **, P < 0.001.
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ter the start of treatment, the mice were challenged with 80
cysts of T. gondii and given BrdU via drinking water for
7 d. On day 8 after challenge, the animals were killed and
the proliferation of donor Thyl.1 cells in the spleen and
liver was analyzed by determining the BrdU* donor CD8*
T cell population. The number of donor Thyl.1* CD8* T
cells recovered from the T1-treated mice was significantly
lower in comparison to both spleens (P < 0.01) and livers
(P < 0.001) of control M4-injected animals (Fig. 7).
Therefore, these findings confirm that sIL-15Ra treatment
blocked the proliferation of activated/memory CD8* T
cells in response to challenge infection.

We then evaluated the effect of sIL-15Ra treatment on
CD8* CD44" T cell populations in naive and immune
mice infected with a low dose of parasite but not recipients
of a secondary T. gondii challenge. As expected, a relatively
low number of CD8% CD44" T cells was observed in the
naive mice. This was not affected by the T1 treatment (Fig.
8). In contrast, the administration of T'1 caused a significant
decrease (P < 0.002) in the CD8* CD44"M population of
the immune animals (Fig. 8). Therefore, these results dem-
onstrate that treatment with sIL-15Ra inhibited the expan-
sion of memory CD8" T cells and had little or no effect on
resting cells.

Discussion

Immunologic memory is a hallmark of the immune sys-
tem and its maintenance is necessary for the host to resist
recurrent infections or the reactivation of chronic disease

" Figure 8. The effect of sIL-
. oT1 15R o on activated/memory and
resting memory CD8* T cells.
3 C57BL/6 mice were either in-
] fected orally with 10-15 cysts or
2 uninfected. 2 wk after the infec-
tion, mice (n = 3) were treated
daily with T1 or M4 for 12 d as
o previously described. Mice were
killed on day 13 and the spleen
cells were analyzed for CD8*
CD44" population. sIL-15Ra markedly reduced the expansion of CD8*
CD44"% T cells from infected mice but not uninfected mice. Results are
mean * SD. *, P < 0.002.

Number of CD8:+/CD44ni (x10E6)

uninfected infected



(34). An essential role for memory CD8% T cells in the
long-term protection against several intracellular pathogens
and tumors has been previously described (35, 36). For ex-
ample, on recovery from acute infection with influenza,
Sendai, or Lymphochoriomeningitis virus, mice develop
lifelong CD8* T cell memory (33, 37, 38). Memory CD8*
T cells have also been reported to be important for intra-
cellular bacterial infections such as Listeria monocytogenes and
Salmonella (39, 40). Similarly, lack of CD8* T cells com-
promises the host’s ability to clear malarial infection (41). A
crucial role of CD8* T cells in the protection against reac-
tivating and recurrent 1. gondii infection has been docu-
mented (3, 12). However, the factors responsible for the
induction or maintenance of a robust memory CD8* T cell
immunity against these infectious agents have not been ex-
tensively studied. Understanding the mechanism involved
in the generation and maintenance of memory CD8* T
cell response is crucial for the development of therapeutic
agents against these pathogens.

Recently, attention has been drawn to the role of cyto-
kines in the maintenance of memory CD8* T cells (12, 42—
44). Studies conducted by difterent laboratories suggest that
IL-15, a cytokine closely related to IL-2, is crucial for the
maintenance of CD8" memory T cells (13, 44). The speci-
ficity for IL-15 versus IL-2 is provided by the cytokine-
specific a chain receptors that complete the IL-15avy and
IL-2037y heterotrimeric high affinity receptor complexes
and thereby allow differential responsiveness (19). Al-
though IL-2 is produced primarily by CD4* T cells (45),
IL-15 is secreted by multiple cell types, including both im-
mune and nonimmune cells such as dendritic cells, mac-
rophages, and placental cells (17, 46).

We previously reported that exogenous IL-15 treatment
enhanced CD8* memory T cell response against T. gondii
infection (11). Subsequently, an important role for IL-15 in
the selective stimulation of CD8* T cells was demonstrated
(47). Mice lacking IL-15 or IL-15Ra gene had markedly
reduced CD8" memory T cell response (13, 14). Recent
investigations from our laboratory have shown that optimal
CD8* T cell immunity in the mice immunized with a vac-
cine (nonpersistent) strain of the parasite could not be
maintained beyond a 9-mo period (12). The exogenous
treatment with IL-15 restored the declining CD8* T cell
protective response in these vaccinated animals. However,
the role of IL-15 in the regulation of CD8* T cells directed
against infection is unknown. Our current observations
clearly demonstrate that the blockade of IL-15 by IL-15Ra
in mice infected with a natural (persistent or cyst forming)
strain of toxoplasma abrogates the host’s ability to survive a
challenge infection. This could be attributed to the down-
regulation of memory CD8* T cell response in these ani-
mals. The treated animals exhibited poor CD8* T cell
response manifested by decreased pCTL frequency and re-
duced IFN-y production within this population. An im-
portant role of [IL-15 in the maintenance of memory CD8*
T cells is its ability to induce the proliferation of these cells
upon a challenge infection. This was demonstrated by
adoptive cell transfer experiments in which the transfer of
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protection against a lethal infection by activated/memory
CD8™ T cells into naive syngeneic recipients was blocked
by sIL-15Ra treatment. Moreover, the donor CD8" T
cells in the sIL-15Ro—treated recipient mice proliferated
poorly in response to infection compared with controls.
The sIL-15R  treatment affected the activated/memory
(CD44") CD8™ T cell population in the immune animals
but not in resting CD8* T cells. These results clearly show
that IL-15 is critical for the expansion of memory CD8* T
cells both during primary and recurrent toxoplasma infec-
tion. The blockade of IL-15 activity inhibits the expansion
of the memory CD8" T cell population during repeat in-
fection, which leads to unchecked infection and a fatal
outcome. It should also be noted that IL-15 also serves as a
growth factor for NK (14) and CD4* T cells (48), although
CD8* memory cells appear to be particularly sensitive to
IL-15 activation (13, 44). Although our results do not ex-
clude the effect of sIL-15Ra on NK and CD47 cells, the
role of these cells in T. gondii infection appears to be sec-
ondary to CD8* T cells (3, 12).

The first event that takes place during an intracellular 7.
gondii infection, in which long-term protection is highly
dependent on CD8" T cells, might be that during the early
phase of infection there is a marked increase in activated
CD8* T cells. After this initial expansion, as the infection is
resolved or reaches chronicity (15-30 d after infection), a
period of cell death ensues during which 90-95% of acti-
vated T cells undergo apoptosis (49). The next phase is
characterized by a pool of memory CD8* T cells that are
important for immune surveillance, protecting the host
against recurrent T. gondii infections (12). IL-15 plays an
important role in the generation of optimal memory CD8*
T cells, as blockade of IL-15Ra causes a decrease in the
CD8" CD44M T cell population during the infection.
When recurrent infection does take place, memory CD8*
T cells proliferate vigorously causing a quick resolution of
the infection. Thus, the rapid proliferation of memory
CD8* T cells is highly dependent on IL-15, the absence or
neutralization of which severely compromises the immu-
nity against the pathogen. This is consistent with a recent
report by Weninger et al. (50) that naive CD8* T cells
stimulated with IL-15 developed into “central memory
cells” homing avidly to lymphoid organs and mediated
rapid recall responses.
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