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József Tőzsér 1,2 and Éva Csősz 1,2,*
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Abstract: Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D).
Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were
recruited, and serum and tear samples were collected. The concentration of 23 amino acids and
10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson cor-
relation analysis along with network analysis were carried out. Compared to controls, changes in
the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically
significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis
and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA
and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic
changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine
metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were
characteristic of both conditions and can be relevant pathways to understanding and treating insulin
resistance. By providing potential therapeutic targets and new starting points for mechanistic studies,
our results emphasize the importance of complex data analysis procedures to better understand the
pathomechanism of obesity and diabetes.

Keywords: amino acid; biogenic amine; obesity; type 2 diabetes; network analysis

1. Introduction

One of the most widespread metabolic disorders worldwide is diabetes, and more
than 90% of people with diabetes are diagnosed with type 2 diabetes (T2D). According
to the International Diabetes Federation, 537 million individuals worldwide suffer from
diabetes now, with that figure anticipated to rise to 643 million in 10 years and 783 million
by 2045, according to their prediction in 2021 [1].

Extensive research has proven that obesity is the main leading risk factor for the
development of T2D [2–5]. The probability of developing T2D was seven times higher
in individuals with obesity and three times higher in overweight subjects [6,7]. Most
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people with T2D are overweight and obese with central visceral adiposity [8], indicating an
important role for the adipose tissue and obesity in the development of T2D.

Regarding the pathophysiology of obesity-induced T2D, two main factors have been
implicated: insulin resistance and beta-cell dysfunction. Insulin resistance is defined as an
impaired response of the body to insulin action, despite insulin being at a higher or normal
level [9,10]. This means that the blood plasma insulin level of individuals with T2D can be
in the normal range, but the insulin is not able to stimulate glucose utilization by the cells,
leading to hyperglycemia [11,12].

Being obese for a prolonged period leads to a permanently elevated glucose concentra-
tion in the bloodstream and, subsequently, to increased insulin production in the beta-cells
as a compensatory mechanism for a hyperglycemic state. Over time, beta-cells are retarded
and insulin secretion decreases [3,7].

T2D is generally characterized by hyperglycemia. It can be diagnosed by determining
glucose levels in the bloodstream [13,14], but monitoring blood glucose levels alone may
not be sufficient to better characterize the complex biochemical picture.

For many years, extensive studies on the metabolism of carbohydrates, proteins, and
lipids [15,16] have achieved great success in elucidating the role of these molecules involved
in the pathophysiology of obesity and T2D. Most recently, metabolomics studies have been
conducted to explore the importance of amino acids, which provide us with very specific
information about many cellular functions such as carbohydrate and lipid metabolism, and
protein synthesis involved in the pathophysiology of T2D [13,17–20].

In recent decades, advanced technologies, such as mass spectrometry (MS) coupled
with ultra- or high-performance liquid chromatography (UPLC or HPLC), gas chromatog-
raphy, and nuclear magnetic resonance spectroscopy were intensively applied in many
fields of research areas, including the clinical diagnosis of diseases, biomedical studies,
pharmacology, and food science [21,22]. Thus, the application of technological advances in
the study of T2D and obesity allows us to determine the trace amount of metabolites that
might expand our understanding of the disease [23].

Due to the demand of future prognoses, prevention of complications, and finding
affordable treatment options, researchers have focused on protein and metabolite profiling
in different types of body fluids, including serum, plasma, saliva, tear, or urine samples
from patients with obesity or T2D [13,15,24–28].

Amino acids such as isoleucine, leucine, valine, and glycine were associated with the
risk of development of T2D [29] and obesity [30], and correlations between the level of
some amino acids with insulin resistance or glucose level were demonstrated [31]. Biogenic
amines generated from amino acids by decarboxylation were also studied. The serum level
of putrescine was shown to be elevated in T2D and correlated with the level of glycated
hemoglobin (HbA1C) [32]. In a cell culture study, methylamine, a biogenic amine found
in food, was found to activate glucose uptake in adipocytes [33]. Other biogenic amines
such as spermidine, kynurenine, and creatinine were associated with the transition from
gestational diabetes mellitus to T2D [18], and the level of tyramine in the urine was found
to be decreased in patients with metabolic syndrome compared to controls [34].

It is well known that the chronic metabolic changes characteristic of T2D can lead to
numerous complications, which are generally grouped into macrovascular and microvas-
cular diseases [35]. One of the most common eye-related microvascular complications
of T2D is diabetic retinopathy (DR) which, if untreated, may lead to blindness [36]. Po-
tential biomarkers such as nerve growth factor, apolipoprotein (Apo) A1, lipocalin 1,
lactotransferrin, lacritin, lysozyme C, lipophilin A, immunoglobulin lambda chain, HSP27,
and β2-microglobulin in tears were identified as being specific to DR, associated either
negatively or positively with the condition [27,37–39].

Tear fluid may be an ideal source for biomarker discovery concerning DR due to its
unique composition, easy collection, proximity to the disease location, and minimal cell
contamination [40,41]. Since the sample collection method is non-invasive for patients and
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easy for technicians [42], tears can be an attractive sample choice for metabolite analyses in
diabetic patients.

As amino acids and biogenic amines have an important role in metabolic functions, in
addition to being deeply involved in the pathophysiology of obesity and T2D, we aimed at
profiling amino acids and biogenic amines in serum and tear samples of patients with T2D,
patients with obesity, and of a matched control group. We applied a complex data analysis
workflow and a network model to examine metabolic networks. This type of analysis can
provide a new perspective in the assessment and interpretation of metabolomics data and
the understanding of the pathophysiological mechanism driving obesity and T2D.

2. Results and Discussion

T2D and obesity are pathological conditions affecting the life quality of millions of
people worldwide [43,44]. Metabolomics is a widely used analytical approach to examine the
metabolic alterations reflected at the level of body fluids such as serum or tears [21,40,45–47].

2.1. Serum Metabolomics in Obesity and T2D

The examination of metabolites found in serum is a routinely used method in labo-
ratory diagnostics. The examination of the lipid panel and determination of the level of
some proteins and small molecules are part of the routine diagnostics used to monitor
the well-being of patients or to detect the asymptomatic progression of diabetes or obe-
sity [16,23,34]. In our study, the serum collected from the recruited donors was subjected
to well-established clinical laboratory examinations. The levels of blood glucose, HbA1C,
triglyceride, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL),
ApoA1, ApoB100, insulin, C peptide, C-reactive protein (CRP), and fibrinogen was mea-
sured, and the glomerular filtration rate (GFR) and the homeostatic model assessment of
insulin resistance (HOMA-IR) were checked. The circumference of the abdomen, waist,
and neck was measured in patients, and the body-mass index (BMI) and the waist–to–hip
ratio (WHR) were calculated.

Besides the clinical laboratory tests, the levels of 23 amino acids and 10 biogenic
amines were analyzed. The results of the clinical and laboratory analyses along with the
demographic data are presented in Table S1.

2.1.1. Examination of the Concentration of Amino Acids

In the last decade, several studies were carried out examining the metabolites charac-
teristic of obesity and/or T2D to find predictors of T2D and further complications [13,47–50].
Amino acids were extensively studied and, in all cases, the involvement of branched-chain
amino acids (BCAA) and glycine were concluded. The levels of leucine, isoleucine, and, in
some cases, valine increased, whereas the level of glycine decreased in T2D compared to
controls [51–55].

In our study, we could detect and quantify all the analyzed 23 amino acids in sera from
donors belonging to control, obese, and T2D groups (Figure 1a, Table S1). Using statistical
analysis, the amino acids that showed a statistically significant change between the groups
were determined (Figure 1b). The levels of nine amino acids changed in a statistically
significant manner between the control and disease groups. We observed an increase in the
level of cysteine and a reduction in the levels of aspartate, glutamate, glycine, and serine in
the obese group compared to the control. Regarding the difference between the control and
T2D groups, we noted elevated levels in the cases of cysteine, isoleucine, and leucine, while
the concentrations of aspartate, citrulline, and glutamate, glycine, serine, and threonine
dropped in the T2D group compared to the control group.
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Figure 1. The serum concentration of examined amino acids: (a) The concentration of amino acids in
serum. The y-axis shows the concentration in µmol/L of amino acids shown on the x-axis; (b) The
concentration of amino acids showing statistically significant changes between the groups. The y-axis
represents the concentration of individual amino acids, and the x-axis indicates the examined patient
groups. * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001. The green color refers to the control
group, the blue color represents the obese group, and orange indicates the T2D group.

Our findings are in agreement with data published in the scientific literature; we
observed significantly higher levels of isoleucine and leucine and lower concentrations of
glycine in patients with T2D compared to controls.

To collect all the available information, we searched the scientific literature and col-
lected the studies showing a statistically significant change in the concentration of amino
acids between the control and either obese or T2D groups (Table S2 and references shown
therein). According to the table, the increase in alanine, glutamate, isoleucine, phenylala-
nine, tyrosine, and valine and the decrease in glutamine and serine in T2D compared to
the control was statistically significant in all found studies, while in the cases of arginine,
glutamine, glycine, and leucine most of the studies indicate changes in one direction, but
there is at least one study showing changes in the opposite direction. Two studies indicate
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increased methionine levels, and one shows elevated proline levels in T2D, but regarding
the other amino acids, approximately the same number of studies show an increase or
decrease in T2D compared to controls (Table S2 and references listed there). We found
similar results in studies examining the amino acid levels in obesity.

2.1.2. Examination of the Concentration of Biogenic Amines

In contrast to amino acids, little data is available on the effect of biogenic amines
in diabetes or their potential as biomarkers in obesity or T2D. Studies published in the
scientific literature show a significant increase in serum putrescine concentration in T2D [32],
elevated concentrations of serotonin in the urine of patients with T2D [56], and decreased
concentration of tyramine in the urine of patients with metabolic syndrome compared to
controls [34].

In our study, the level of 10 biogenic amines was examined with regard to T2D and
obesity (Table S1). Ethylamine, putrescine, and serotonin could be detected, but their
level was very low, lower than the limit of quantification, so we could only detect their
presence in serum without being able to quantify them (Table S1). Ethanolamine and,
in some samples, methylamine were present in higher amounts, so their quantification
was possible in the serum of donors (Figure 2). In the case of ethanolamine, we observed
statistically significant differences: its level lowered in both disease groups compared
to control. The decrease in ethanolamine levels was shown to be a cerebrospinal fluid
biomarker for major depressive disorder [57], but no statistically significant change in its
level between T2D and control groups could be detected [58] so far. However, if we consider
that ethanolamine at the same time is a precursor and a metabolite of anandamide, our
findings are not surprising. By its relation to the endocannabinoid signaling implicated in
the pathomechanism of diabetes [59], serum ethanolamine can be considered a biomarker
for insulin resistance, which is present both in obesity and T2D.
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Figure 2. The serum concentration of ethanolamine. The y-axis represents the concentration in
µmol/L of biogenic amine on the x-axis. ***, p-value ≤ 0.001. The green color refers to the control
group, the blue color represents the obese group, and the orange indicates the T2D group.

The quantification of methylamine was possible only in six samples (Table S1), so we
omitted methylamine from further analyses. Other biogenic amines including histamine,
cadaverine, tyramine, and phenethylamine were not detected in the serum.

2.1.3. Correlation Analysis

Having information on the features changing together in a system might help to better
understand the complex metabolic landscape governing the pathology of obesity and
diabetes. To obtain more insights into these subtle associations, a correlation analysis was
carried out. Using Pearson correlation analysis, we examined which of the previously
recorded clinical parameters correlate with the concentration of the examined amino acids
and biogenic amines. As seen in our data (Tables 1 and S3), a negative correlation of
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both serum insulin and C peptide levels with glycine and serine concentrations could be
confirmed. Similarly, there was a negative correlation between HOMA-IR and glycine
levels. These data agreed with previous findings, indicating decreased glycine levels as
characteristic of insulin resistance [60]. The alterations at multiple levels of glycine and
serine metabolism were shown to be important in obesity and T2D [61]. Glycine and
serine can be interconverted into each other via the serine-hydroxymethyl transferase
(SHMT) enzymes, and the change in the level of one of them may lead to a change in the
concentration of the other [61].

Table 1. Correlation analysis of the clinical and demographical parameters with the examined
serum amino acid and biogenic amine concentrations. The table shows the statistically significant
correlations. The correlation coefficient, p-value, and FDR-corrected q value are shown in each
correlation; lines in italics indicate a negative correlation.

Clinical
Parameter Serum Analyte

Correlation
Coefficient

(rho)
p Value FDR-Corrected

q Value

ACR Eth −0.41 0.00213 0.04408
ApoAI Tyr −0.34 0.00169 0.04027

BMI Eth −0.45 0.00006 0.00582
BMI Gly −0.38 0.00077 0.02288
BMI Asp −0.36 0.00166 0.04027
BMI Ser −0.34 0.00251 0.04718
BMI Cys 0.64 0.00000 0.00000

C peptide Gly −0.43 0.00007 0.00593
C peptide Ser −0.37 0.00067 0.02093

CRP Thr −0.33 0.00225 0.04514
CRP Cys 0.36 0.00085 0.02392

Fibrinogen His −0.40 0.00029 0.01289
Fibrinogen Thr −0.37 0.00092 0.02479

GFR Eth −0.42 0.00048 0.01831
GFR Gly −0.38 0.00181 0.04134

HbA1C Ile 0.35 0.00147 0.03804
Hcys Cit 0.33 0.00237 0.04607
HDL Leu −0.50 0.00000 0.00036
HDL Ile −0.49 0.00000 0.00043
HDL Val −0.40 0.00016 0.00920
HDL Phe −0.37 0.00052 0.01831

HOMA Gly −0.50 0.00012 0.00759
Insulin Gly −0.55 0.00000 0.00003
Insulin Ser −0.39 0.00028 0.01289

Triglyceride Gly −0.34 0.00186 0.04134
Triglyceride Ala 0.34 0.00194 0.04158
Triglyceride Cys 0.37 0.00061 0.01983
Triglyceride Leu 0.37 Triglyceride 0.01831
Triglyceride Ile 0.41 0.00012 0.00759

WHR Val 0.45 0.00053 0.01831
WHR Leu 0.48 0.00024 0.01226
WHR Ile 0.51 0.00008 0.00605

The abbreviations are as follows: amino acids are indicated using their three-letter codes, ACR: albumin-creatinine
ratio, ApoA1: apolipoprotein A1, BMI: body mass index, CRP: C-reactive protein, GFR: glomerular filtration rate,
HbA1C: glycated hemoglobin, Hcys: homocysteine, HDL: high-density lipoprotein, HOMA: homeostatic model
assessment of insulin resistance, LDL: low-density lipoprotein, WHR: waist-to-hip circumference ratio.

There was a positive correlation between BMI and serum cysteine level. Other groups
observed this phenomenon as well, indicating that the plasma cysteine level was a sin-
gle, strong determinant of BMI [62]. The levels of aspartate, ethanolamine, glycine, and
serine negatively correlated with BMI. In the case of glycine, this type of correlation was
documented by Badoud et al. [23], but no correlation with the BMI was published so
far, concerning the other amino acids. The WHR can reflect insulin resistance [63] and



Int. J. Mol. Sci. 2022, 23, 4534 7 of 19

positively correlates with the concentration of BCAA: isoleucine, leucine, and valine. These
amino acid levels are markers of insulin resistance according to the data published in
the literature [64]. The level of BCAA was related to hyperlipidemia and obesity-related
insulin resistance as well [64], a phenomenon also present in our datasets. We observed
a positive correlation of isoleucine and leucine levels with the level of triglycerides and
the negative correlation of isoleucine, leucine, and valine with the HDL. These data are in
accordance with the clinical laboratory results of patients with T2D, where high triglyceride
and LDL levels along with low HDL levels were reported [65]. The positive correlation
of triglyceride levels with alanine and cysteine and the negative correlation with glycine
levels were also confirmed in our study.

The cysteine concentration correlated positively, while the threonine concentration
negatively with CRP levels. It was shown that CRP can be a predictor of cardiovascular
risk and may participate actively in atherogenesis [66], and its association with cysteine
concentration was found by other groups as well [67]. Because cysteine is required for
glutathione synthesis and it was shown that glutathione and CRP have synergistic effects
on the progression of liver cirrhosis [68], we can speculate on the possible link between the
cysteine and CRP levels and that they might predict liver-related complications. Regarding
threonine, no significant correlation with CRP has been documented so far.

The level of fibrinogen, which is higher in diabetes [69], negatively correlated with
the levels of histidine and threonine. We observed a positive correlation between the
concentration of homocysteine and citrulline and a negative correlation between the ApoA1
and tyrosine, HDL, and phenylalanine levels. The parameters reflecting kidney functions,
such as albumin/creatinine ratio (ACR) along with the GFR, negatively correlated with
serum ethanolamine levels. The association of some of these parameters such as HDL and
phenylalanine [67] was demonstrated by other groups but, searching the scientific literature,
we could not find similar correlations between fibrinogen, homocysteine, and ApoA1 levels
and the concentration of amino acids in diabetes or obesity. At the moment, we can only
speculate on their importance in these two pathological conditions without being able to
give exact information. The concentration of glycated hemoglobin and isoleucine correlated;
this correlation can be explained by the increased BCAA levels in diabetic patients, where
usually the level of HbA1C is higher [70]. Regarding the GFR, along with the ethanolamine
levels, the negative correlation with glycine levels could also be detected. We could notice
the association of both metabolites with BMI; their levels negatively correlated with it.
It was shown that in obesity, the GFR increases with BMI, and when bariatric surgery is
applied to reduce the BMI, the GFR is also reduced [71].

2.1.4. Network Analysis

Network analysis is a widely used method to examine proteomics, transcriptomics,
and metabolomics datasets and it can provide extensive information on the studied system
and help to better understand the pathophysiological events laying behind the examined
conditions [72–74]. To be able to find the information behind the changes in the amino acid
levels and to better understand the impact of the observed differences, we have carried out
a network analysis.

The metabolic pathways of each amino acid changes in a statistically significant
manner between the control and either obese or T2D groups were considered, and the
enzymes involved in the metabolism of these amino acids were retrieved. The transporters
having a role in transmembrane transport of the respective amino acids were also retrieved,
and a list of proteins was generated containing both the metabolic enzymes and the
transporters modulating the levels of the selected amino acids. The first shell interactors
of the enzymes and transporters were acquired using STRING DB [75], and their protein–
protein interaction networks were generated. To obtain functional information, the enriched
GO terms were examined using the ClueGO v2.5.7 (Figure S1) and the gene interaction
data of CluePedia v.1.5.7. (Figure S2).
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Considerable overlap between the obese and T2D networks could be observed. After
excluding the overlapping GO terms, the functions characteristic of T2D were related to
the metabolism of glutamine and glycine, cellular respiration, and NO synthesis, while the
response to fatty acid and sulfur compound metabolism were specific to obesity (Figure S1).

Considering the gene interaction networks, several distinct clusters were identified.
The cluster of amino acid metabolic enzymes (1), the cluster of proteins having a role in
retrograde transport including sorting nexins and VPS proteins (2), the cluster containing
choline and ethanolamine kinases (3), and the cluster of iron-binding proteins (4) could be
observed in both networks (Figure S2).

We do not have exact information on the role of the retromer complex in diabetes
and obesity, but some findings suggest the involvement of the retrograde transport from
endosomes to Golgi in the recycling of GLUT4 [76,77]. In a mouse model of diabetes,
decreased Vps35 levels were found [78], and a single nucleotide polymorphism at the Vps26
locus was identified in T2D [79]. In addition, the downregulation of sortilin expression was
described in obese humans [80,81]. All these data suggest the importance of the recycling of
GLUT4 from endosomes by sortilin- and retromer-mediated processes in the development
of insulin resistance.

The role of choline and ethanolamine kinases in obesity and diabetes might be related
to the altered phospholipid metabolism observed in insulin resistance [82]. These data give
further evidence to the clinical observation that the patients with obesity recruited into this
study already had insulin resistance.

The proteins FDX1, 2, FXN, ISCU, and LYRM4, with a role in the iron–sulfur cluster
assembly, formed a distinct cluster in the obese network, while the smaller cluster of
FXN, ISCU, and LYRM4 was linked to the NOS-containing cluster in the T2D network
(Figures S2 and S3). The role of the iron–sulfur clusters and their assembly was already
linked to altered energy generation observed in diabetes and obesity [83,84].

Clusters specific to either T2D or obesity were also observed. The cluster of solute
carrier family members was present only in obese networks, while the NOS-containing
cluster and the cluster of beta-oxidation enzymes (ACADVL, ACAA2, HADHB) were only
in T2D networks.

Some of the solute carriers such as SLC7A10, SLC7A11, and SLC7A9 were previously
demonstrated to have importance in obesity [85–87]. Their altered expression might be
responsible for the differences in the serum amino acid levels observed.

A common complication of T2D is endothelial dysfunction having a role in the vascu-
lar complications related to T2D [88]. Inflammation and the dysfunction of NO synthesis
were already linked to endothelial dysfunction, cardiovascular complications, and neu-
ropathy in patients with T2D [89–91]. In diabetic rat models, some groups reported an
enhanced expression of endothelial NO synthase (NOS3) [92], and some described its
downregulation [90,93], indicating the existence of a complex regulatory mechanism. Ac-
cording to our data, a striking difference between the obese and T2D networks was the
presence of a cluster containing NO synthases and the enzymes associated with them. In
this highly interconnected cluster, we could detect multiple mutual activations between
the proteins involved. Calmodulin (CALM1,2), shown earlier to induce diabetes in rodent
models [94,95] activated NOS enzymes, and the NOS1, 2, and 3 activated CALM1 and
CALM2, respectively (Figure 3). The advanced glycation end products elevated in diabetes
can lower the expression of NOS3 and reduce the synthesis of NO [90], but the high glu-
cose level, through the downregulation of caveolin 1 (CAV1), can indirectly decrease the
NOS3 expression [93]. AKT1, a kinase activated during the insulin signaling pathway, was
activated by NOS 1, 2, and 3 and HSP90AA1 according to our data, and AKT1 activated
HSP90AA1, SLC1A2, and caveolin 1 (Figure 3). Some other proteins of this cluster were
associated with T2D: HSP90 can be a target for antidiabetic therapies, as its inhibition
reversed hyperglycemia [96] and DLG4 was implicated in the regulation of hepatic insulin
resistance [97] in rodent models. RELA is a component of the NF-κB, whose activation was
linked to the appearance of diabetic nephropathy, a common complication of T2D [98]. It
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was stated that high glucose levels alone can induce increased NF-κB activity [99], which in
turn will lead to inflammation and fibrosis succumbing finally to diabetic nephropathy [98].
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Figure 3. Gene interaction networks in obesity and diabetes. Partial network view for (A) obese
and (B) T2D networks. The circles represent a gene/protein and the lines indicate interactions.
The lines with an arrow represent activation, blocking lines represent inhibition, and simple lines
represent protein–protein interaction. Line color indicates the type of interaction: green color refers
to activation, red color to inhibition, blue color to binding, brown color to co-expression, and purple
color to catalysis. On all panels, the proteins are labeled with their gene name. The full network
images of these networks are presented in Figure S2.

Regarding the cluster of beta-oxidation enzymes observed in the T2D network, there
is scientific evidence that beta-oxidation is impaired in T2D [100]. A study showed that the
accumulation of fatty acids, such as long-chain acyl-CoAs, can lead to alterations in insulin
signaling [101], which might explain the involvement of beta-oxidation enzymes in T2D.

Besides the clusters, we could observe enzymes specific for either obese or T2D net-
works at the level of individual proteins. DBT, MDH1, and PDK1 enzymes related to energy
production, aldehyde dehydrogenase ALDH9, branched-chain ketoacid dehydrogenase
BCKDBHB, catalase, ferredoxin (FDX)1 and 2, lypoil transferase 1 (LPT1), sirtuin 4, and
sorting nexin 5 were present only in the obese network, while the BCAA-degrading en-
zymes BCAT1 and BCAT2, glutaminases GLS and GLS2, argininosuccinate synthase (ASS1),
and ornithine aminotransferase (OAT) were unique to the T2D network.

To obtain more information on the key proteins of the networks, the top 20 hub
proteins were listed and visualized using the cytoHubba application (Figure S3). These
data are in agreement with the gene interaction network analyses. Apart from the overlaps
observed, the hub proteins having central roles in the obese network were proteins related
to energy production (FH, OGDH, OGDHL, MDH1, DBT, DLST, and BCKDHB), while
enzymes having a role in amino acid metabolism (BCAT1, BCAT2, GLUD1, GLUD2, GOT2,
and GLDC), nucleotide metabolism (GART), and NO synthesis (NOS3) occupied a central
place in the T2D network.

Regarding obesity, in a study carried out by Satapati and coworkers, in the liver
of high-fat-diet-fed mice, elevated gluconeogenesis and mitochondrial citric acid cycle
anaplerosis were reported [102]. In our study, the metabolic alterations observed in obesity
were mainly linked to energy production. The enzymes specific for the obese networks
along with the hub proteins that occupy a central role in the network were all associated
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with the citric acid cycle, giving further evidence to the link of obesity and altered core
metabolic processes.

It is well known that the degradation of BCAAs is impaired in T2D; upon insulin
resistance, the muscle protein degradation is increased, and the degradation of BCAAs is
decreased, leading to higher serum levels of isoleucine, leucine, and valine [13]. Leucine in turn
can help the insulin secretion in pancreatic beta-cells via the mTOR pathway [103], improving
glycemic control [104]. The central role of branched-chain aminotransferase (BCAT1, 2)
enzymes in the T2D network indicates their importance, but according to the network model
applied, we do not have information on the direction of changes. However, taking into
account the results of the correlation analyses and the data published in the scientific literature,
it is very likely that the decreased degradation of BCAA leads to their increased concentration
in serum. Glutamine is a long-studied metabolite in diabetes [105] demonstrated to improve
insulin resistance [106]. Some studies have aimed at improving insulin sensitivity and diabetes-
related metabolic alterations by the supplementation of either leucine or glutamine, but more
studies are needed to clarify their exact effects [107–109]. We could not find any information
on the direct involvement of the urea cycle enzymes in diabetes. The levels of arginine and
ornithine were associated with the risk of T2D in Chinese adults [110]. We can only speculate
whether the urea cycle enzymes reflect the liver-related complications of T2D and hence have
the potential to predict these complications. Of course, further studies are needed to verify
this idea.

The results of the network analyses are consistent with the results of the correla-
tion analyses and the data found in the scientific literature indicating distinct features
characteristic of obesity and T2D, respectively.

2.2. Examination of Tear Metabolome

Besides serum, the tear is an emerging biofluid with a high potential in non-invasive
investigations. We examined tear metabolites, including amino acids from samples of T2D
patients, and observed significant differences between tear samples collected from healthy
and T2D patients [45].

We carried out the same analyses on the tear as we performed on serum samples. The
major difference between the two sample types was that we could not collect tear samples
from the controls. In this way, our setup allows only for the comparison of tear metabolites
between the obese and T2D groups, dividing this latter group into those having DR, the
most common eye-related complication of DR, and those without any signs of DR.

All the previously examined amino acids were identified and quantified in tear sam-
ples from patients with obesity and T2D (Figure 4, Table S1).

Regarding the biogenic amines, 9 out of 10 were identified in tears, but only ethanolamine
concentration was high enough to be quantified in most of the samples (Table S1), showing
no statistically significant change between the studied groups.

Small molecule tear biomarkers characteristic of DR would have high importance
in the routine clinical diagnosis. To identify new potential biomarkers, the concentration
of the examined amino acids and biogenic amines characteristic of the examined groups
was compared using statistical analysis. The values obtained by the examination of tear
samples originating from patients with obesity, diabetes with no signs of DR, or diabetes
with non-proliferative DR were examined, but no statistically significant differences could
be demonstrated between the studied groups.

The correlation analysis performed on serum metabolites was carried out on tear
metabolites as well, but none of the correlations were statistically significant (Table S3).
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Figure 4. The concentration of amino acids in tear. The y-axis shows the concentration in µmol/L
of all 23 amino acids shown on the x-axis. * shows amino acids that were detected but could not be
quantified and an arbitrary value of 1 was assigned. Blue bars represent the obese group, the gray
bar indicates the T2D group without diabetic retinopathy (non-DR), while the red bars represent the
T2D group with diabetic retinopathy (DR).

Comparing the tear and serum results, we could see higher values in serum in the case
of most amino acids, but the level of aspartate in the obese and T2D group and the level
of serine in the T2D group was higher in tear. The level of tryptophan and ethanolamine
in both the obese and T2D group and of citrulline in the T2D group was in the same
range in the two sample types (Table S1). Our data indicate the utility of tear as a body
fluid for metabolomics examinations, and the observed changes are very likely due to
the inherent difference between the two body fluids. Very different factors control the
levels of metabolites in serum and tears, and the differences seen might be the result of the
differential regulation. It also should be mentioned that the method applied in our study is
sensitive enough for amino acids, but its sensitivity toward the biogenic amines should be
further improved to quantify and not only detect their levels.

According to our data, there was no statistically significant difference between the T2D
and obese groups, and tear metabolomics could not distinguish between diabetic patients
with or without DR. Regarding the serum analyses, the observed differences in case of
obese or T2D groups were statistically significant only in comparison to the control group.
Tear proteomics previously published by our group could distinguish various stages of DR,
and the most reliable and highest changes were observed between the group without DR
and the advanced, proliferative stage of DR [27]. In the current patient cohort, none of the
volunteers had a proliferative stage of DR, which might explain our results at the level of
the examined metabolites.

3. Materials and Methods

All the reagents and solvents used during the study were purchased from Sigma
(St. Louis, MO, USA) if not indicated otherwise.



Int. J. Mol. Sci. 2022, 23, 4534 12 of 19

3.1. Study Subjects and Sample Collection

In total, 85 subjects were recruited for this study, with 26 patients with T2D, 31 individuals
with obesity, and 28 healthy volunteers. The study was approved by the Ethics Committee
of the University of Debrecen, and all participants provided written informed consent. The
groups were age- and sex-matched; the diabetic group’s average age was 54 years, with a
“male–to–female” ratio of 1:1; the obese group’s average age was 53 years, with a “male–to–
female” ratio of 1:1; and the healthy group’s average age was 55 years, with a “male–to–female”
ratio of about 1:1.

Fasting blood samples were collected from all participants in tubes without anticoagu-
lants and centrifuged to extract the serum. Sera were aliquoted and stored at −70 ◦C until
they were processed.

Basal tear samples from 40 of the 85 participants (obese: n = 19; T2D without DR
n = 11; T2D with DR: n = 10) were collected using a glass capillary [42] and centrifuged,
and the supernatant was kept at −70 ◦C until the examination.

3.2. Sample Processing

To eliminate macromolecules from the serum, 100 µL of serum sample was filtered
using a Nanosep 3 kDa spin column (Pall Corp, New York, NY, USA) at 12,800× g, 4 ◦C
for 10 min, and the filtered serum was used for the analysis. In the case of tear samples,
3 µL of tear was diluted with Milli-Q (Millipore, Bedford, MA, USA) water to 50 µL,
filtered similarly to the serum sample, and then completely dried in a vacuum centrifuge
(ThermoScientific, San Jose, CA, USA).

3.3. Amino Acid and Biogenic Amine Analysis

Twenty proteinogenic (His, Asn, Ser, Gln, Arg, Gly, Asp, Glu, Thr, Ala, Pro, Cys, Lys,
Tyr, Met, Val, Ile, Leu, Phe, and Trp), three non-proteinogenic amino acids (Tau, Cit, and
Orn), and ten biogenic amines (histamine, ethanolamine, methylamine, ethylamine, pu-
trescine, serotonin, cadaverine, tyramine, tryptamine, and phenethylamine) were analyzed
as described by Guba et. al. [111] after the sample was derivatized with AccQ-Tag Ultra
derivatization kit according to the manufacturer’s protocol (Waters, Milford, MA, USA).

Briefly, 60 µL of AccQ-Tag Ultra borate buffer and 20 µL of AccQ-Tag derivatization
reagent were mixed with 20 µL of analyte-containing solution used for calibration. A
10-point calibration curve was prepared containing 0.25, 0.5, 1.0, 2.5, 5.0, 7.5, 10.0, 15.0, 20.0,
and 30.0 micromol/L of analytes, respectively and used to determine the concentration of
each analyte.

For the derivatization of serum samples, 10 µL of filtered serum was mixed with 70 µL
of AccQ-Tag Ultra borate buffer and 20 µL of AccQ-Tag derivatization reagent. For the
derivatization of the tear samples, the dried samples were resuspended in 80 µL AccQ-Tag
Ultra borate buffer and 20 µL of AccQ-Tag derivatizing reagent was added.

After adding the derivatizing reagent into the glass vials, all samples and calibration
standards were incubated at +55 ◦C degrees for 10 min and analyzed on Acquity H-class
UPLC system (Waters, USA) coupled to 5500 QTRAP (Sciex, Framingham, MA, USA)
mass spectrometer.

One microliter of the sample was injected, and two technical replicates were recorded.
The chromatographic separation was performed on a column (AccQ-TagTM ULTRA C18
1.7 µm, 2.1 × 100 mm) using an in-house developed 11-min gradient [111]. Double detec-
tion was performed; the derivatized analytes were detected at 260 nm wavelength by a
PDA detector and by the mass spectrometer working in MRM mode, respectively [111].

3.4. Data Analysis

The analytes were identified based on their retention time and verified using the MRM
transitions. Where it was possible, the UPLC data were used for quantification with the
Empower.v3 (Waters, USA) software. In the case of analytes with lower concentrations
than the detection limit of the UPLC, the mass spectrometry data exported to the Skyline
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(v.20.2, www.maccosslab.org, downloaded on 21 January 2022) were used. The area under
the curve (AUC) of each analyte was extracted and used for further examinations.

For the statistical analysis of the data, we applied a one-way ANOVA analysis to
test the significantly different analyte quantities between the investigated groups. After
running post-hoc Tukey’s tests to determine the p-values of group differences, we retained
the significant results with an FDR < 0.05 criteria.

For correlation analysis, we applied non-parametric Spearman correlation tests to
study the association between the analytes and the other clinical data of the investigated
population. For considering the Type-I error, we applied FDR corrections for the same data
sources and reported only those associations in which FDR-corrected p-values were less
than 0.05.

3.5. Network Analysis

To create the interaction network of enzymes related to the selected amino acids and
biogenic amine, we first obtained all corresponding degradation and, where applicable,
biosynthesis pathway identifiers from MetCyc (MetaCyc.org) [112] as part of the BioCyc (Bio-
Cyc.org) database collection. We retrieved all available enzyme annotation of the pathways of
interest via MetaCyc’s application programming interface (API) with the brendaDb R package
(v1.6.0) [113]. We used R statistical software (v4.0.3) for table operations and reorganization of
the downloaded data [114]. The enzyme dataset was complemented with the relevant amino
acid transporters based on a comprehensive review article [115]. We queried the STRING
database (v11.5) [75] with the updated protein list. The generated protein network at a 0.9
confidence level, with up to 50 among the first shell of interactors, included physical and
functional associations, documented only in experiments and databases as active interac-
tion sources. We imported the T2D and obesity-related amino acid metabolic enzymes and
transporters and their first shell of interactors into the Cytoscape’s v3.9.0 [116] app ClueGo
v2.5.8 [117] for pathway analysis. ClueGo parameters were set to p-value ≤ 0.05, and the
threshold for CluePedia gene visualization was set to 1000. All proteins were searched using
the GO_biological pathways database. Next, CluePedia v1.5.8 [118] analysis was performed.
We processed the data using CluePedia and examined them for the five interaction types
retrieved from the String-DB v11.5. The interactions examined were activation, inhibition,
catalysis, binding, and co-expression. The Cluepedia network was further investigated
using Cytohubba v0.1 [119] to determine the top hub proteins of the network. Based on the
Matthews correlation coefficient scoring, Cytohubba creates the networks for the top hub
proteins. These top hub proteins were further explored using Cluepedia to determine the
interactions between them. The Style menu was used to visualize the network of top-hub
proteins. We labeled the amino acid modifying enzymes and transporters with a circle and
the first shell of interactors with a triangle.

4. Conclusions

In our metabolomics study, we intended to look behind the statistically significant
metabolite changes and correlation analysis data, and we were eager to know if new path-
ways and functions specific to the disease conditions could be identified using network
models (Figures 3, S2 and S3). With our network analyses, we could further highlight
the common pathological traits observed in both obese and T2D groups, and new path-
ways could also be found. The problems related to ethanolamine metabolism and the
involvement of the retrograde transport via retromer were characteristic of both conditions
(Figure S2). Of course, further studies are needed to test the idea, but the retromer-mediated
retrograde transport, the ethanolamine metabolism, and consequently the endocannabi-
noid signaling [59], and phospholipid metabolism [82] can be important targets for future
therapies aiming to alleviate insulin resistance. This might be the case in the advanced
forms of obesity when insulin resistance has already been developed. However, it would
be interesting to see if these pathways and functions appear in early obesity and whether
their presence has a predictive function in the appearance of insulin resistance.

www.maccosslab.org
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Using the applied network model, we could monitor the differences between obese and
T2D groups. In obesity, the alterations related to energy generation, while in T2D the deep
involvement of the NO synthesis and its relation to insulin signaling and inflammation
were the most prominent functions. The implication of enzymes with a role in amino
acid metabolism, especially the metabolism of BCAA, glutamine, the urea cycle, and
beta-oxidation, were also characteristic of T2D.

With the application of the network model, new functions previously hidden in the
data acquired by the examination of the concentration changes of the amino acid and
biogenic amines emerged. This phenomenon emphasizes the importance of the application
of complex data analysis procedures to better understand pathological conditions.

It is also important to highlight that with our analytical workflow we could obtain
extensive information about the metabolic statuses of the patients. Some of these results
were already available, arising from various, often hard-to-implement experiments. The
current metabolomics analysis along with the network model applied could provide these
data in one study.

We are aware that further studies are needed to test the emerged ideas and to acquire
more information on the complex metabolic dysregulation during obesity leading to insulin
resistance and T2D. One of the main limitations of our study is that more donors need to
be recruited to be able to involve patient stratification. Our data emphasize the importance
of control group in study design, as no difference between the obese and T2D groups
could be detected in the examined sample types. This indicates another limitation of the
current study, namely that the patients with obesity recruited to the study already had
insulin resistance, as was demonstrated by the metabolomics results. In this way, we could
obtain information on the difference between advanced obesity and T2D but not on the
metabolic changes leading to insulin resistance. More studies are needed to examine the
early changes, with potential predictive value, leading to insulin resistance, and the results
should be validated on independent cohorts. It is also important to mention that the current
method worked well for amino acids but was not sensitive enough for biogenic amines.
Three biogenic amines could be detected and two of them could be quantified in serum;
and nine could be detected, but none of them could be quantified, in tears. Although
we could not detect statistically significant differences between the groups in tears, the
levels of some amino acids were in the same range or even higher in tears compared to
serum, further highlighting the utility of tear for metabolomics analyses. The method
applied in our study is very likely not robust enough for tear metabolomics analyses, as the
network analysis could be conducted based on the serum results only. However, it cannot
be excluded that the results of tear analyses are distorted by the relatively low number of
tear samples available, and by recruiting more volunteers for tear analysis, results useful
for network analysis could be generated.

Despite the above-mentioned limitations, our results can provide information that can
be used as potential targets for mechanistic studies aiming at developing future therapies
for insulin resistance observed in advanced obesity and T2D.
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111. Guba, A.; Bába, O.; Tőzsér, J.; Csősz, É.; Kalló, G. Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and
Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites 2022, 12, 272. [CrossRef]

112. Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D.
The MetaCyc database of metabolic pathways and enzymes—A 2019 update. Nucleic Acids Res. 2019, 48, D445–D453. [CrossRef]
[PubMed]

113. Zhou, Y. brendaDb: The BRENDA Enzyme Database. R Package Version 1.6.0. 2021. Available online: https://github.com/y1
zhou/brendaDb (accessed on 6 January 2022).

114. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2020. Available online: https://www.r-project.org/ (accessed on 6 January 2022).

115. Kandasamy, P.; Gyimesi, G.; Kanai, Y.; Hediger, M.A. Amino acid transporters revisited: New views in health and disease. Trends
Biochem. Sci. 2018, 43, 752–789. [CrossRef] [PubMed]

116. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

117. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J.
ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics
2009, 25, 1091–1093. [CrossRef]

118. Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data.
Bioinformatics 2013, 29, 661–663. [CrossRef]

119. Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [CrossRef]

http://doi.org/10.1016/j.bbrc.2012.12.029
http://doi.org/10.1002/pmic.201200210
http://doi.org/10.3389/fphar.2017.00798
http://doi.org/10.3858/emm.2011.43.12.079
http://doi.org/10.1159/000448357
http://doi.org/10.1016/j.bbalip.2009.09.014
http://doi.org/10.1194/jlr.M023382
http://www.ncbi.nlm.nih.gov/pubmed/22493093
http://doi.org/10.1074/jbc.M112.344259
http://www.ncbi.nlm.nih.gov/pubmed/22645144
http://doi.org/10.1111/j.1753-4887.2010.00282.x
http://doi.org/10.1007/s00592-011-0364-z
http://www.ncbi.nlm.nih.gov/pubmed/22218826
http://doi.org/10.1186/1743-7075-7-57
http://www.ncbi.nlm.nih.gov/pubmed/20624298
http://doi.org/10.3945/jn.111.138495
http://doi.org/10.1186/s12986-020-00503-6
http://doi.org/10.3389/fendo.2019.00050
http://doi.org/10.3390/metabo12030272
http://doi.org/10.1093/nar/gkz862
http://www.ncbi.nlm.nih.gov/pubmed/31586394
https://github.com/y1zhou/brendaDb
https://github.com/y1zhou/brendaDb
https://www.r-project.org/
http://doi.org/10.1016/j.tibs.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/30177408
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1093/bioinformatics/btp101
http://doi.org/10.1093/bioinformatics/btt019
http://doi.org/10.1186/1752-0509-8-S4-S11

	Introduction 
	Results and Discussion 
	Serum Metabolomics in Obesity and T2D 
	Examination of the Concentration of Amino Acids 
	Examination of the Concentration of Biogenic Amines 
	Correlation Analysis 
	Network Analysis 

	Examination of Tear Metabolome 

	Materials and Methods 
	Study Subjects and Sample Collection 
	Sample Processing 
	Amino Acid and Biogenic Amine Analysis 
	Data Analysis 
	Network Analysis 

	Conclusions 
	References

