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Waldenström’s macroglobulinemia (WM) is characterized by recurring MYD88 (95%-97%) and
CXCR4 (40%) mutations.1 Mutated MYD88 (MYD88Mut) triggers hemtopoietic cell kinase transcrip-
tion, which enables Bruton tyrosine kinase (BTK) activation.2,3 BTK triggers nuclear factor kappa-light-
chain enhancer of activated B-cells prosurvival signaling, as well as extracellular signal regulated kinase
(ERK) 1/2 activation leading to inflammatory cytokine release supporting autocrine- and paracrine-
mediated growth and survival signaling.3,4 More than 40 frameshift and nonsense variants have been
reported in CXCR4Mut patients.1,5 CXCR4Mut are subclonal to MYD88Mut and show heterogeneous
clonality in patients with WM.5 WM cells expressing CXCR4Mut show enhanced BTK, protein kinase B,
and ERK1/2 signaling in response to the CXCR4 ligand CXCL12.6,7 These findings supported the
development of BTK-inhibitors, and regulatory approval for ibrutinib and zanubrutinib for treating WM.

Differences in treatment outcomes have been reported in patients with WM receiving ibrutinib and
zanubrutinib by CXCR4Mut status.8-12 CXCR4Mut patients with WM can show a longer time to major
response, fewer major and very good partial response responses, and/or shorter progression-free
survival (PFS) in response to BTK inhibitors.8-13 The effect is particularly noteworthy in patients with
WM treated with ibrutinib who carry nonsense CXCR4 variants.14 Clonality of CXCR4Mut can also
contribute to inferior responses and shorter PFS in patients with WM receiving ibrutinib.15 Detecting
CXCR4Mut in patients with WM can be problematic, particularly by next-generation sequencing.15

CXCR4Mut were missed in two-thirds of patients with WM using next-generation sequencing, partic-
ularly in those with lower bone marrow (BM) disease involvement and clonality.16 Although presence of
CXCR4Mut can predict inferior outcomes with BTK inhibitors, many wild-type CXCR4 (CXCR4WT)
patients can also have inferior outcomes. Conversely, some patients with CXCR4Mut disease can have
robust responses to BTK inhibitors. Thus, we sought to identify more robust biomarker(s) to better
predict BTK inhibitor response activity using a multiomic approach. Such biomarkers may help position
BTK inhibitors relative to other available therapeutics such as bendamustine or proteasome-inhibitor–
based regimens. For these studies, we focused on ibrutinib, using BM samples obtained in a pro-
spective clinical trial with long-term follow-up in symptomatic, treatment-naïve patients with WM.

We used CD19-selected BM samples obtained at baseline from a prospective clinical trial of ibrutinib
monotherapy (NCT02604511). Thirty symptomatic, treatment-naïve patients were enrolled whose
MYD88 and CXCR4 mutation status and treatment outcomes are published.9 Samples were available
for whole exome sequencing (WES), RNA sequencing (RNA-seq), and assay for transposase-acces-
sible chromatin using sequencing (ATAC) sequencing (ATAC-seq) for 23, 27, and 20 patients,
respectively. Methods for WES, RNA-seq, and ATAC-seq appear in the supplemental Material. We
used a previous validated model for PFS prediction in patients with WM treated with ibrutinib.17

ElasticNet regression using the glmnet package was used for feature selection with the response
variable defined as responders (partial response [PR], or better) vs nonresponders with predictors from
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the relevant combined features of the WES, RNA-seq and ATAC-
seq analyses.18 To determine the most robust predictors, this
analysis was bootstrapped 500 times, and only features identified
in >95% of the bootstraps were considered further. Raw counts
were used to run the default DESeq2 pipeline to obtain differen-
tially expressed (DE) ATAC regions and transcripts between
response groups using a l2fc > |1| and adjusted P value (adj P)
of < .1. Adjusted P values for false discovery rate (Benjamini-
Hochberg)-corrected P values determined by DESeq2 are
reported.19 Survival and survminer R modules were used to
perform Kaplan-Meier time to response (TTR) and PFS analyses.
The study was approved by our Institutional Review Board, and
written consent was obtained from all patients for their sample use.

The baseline characteristics for the 27 patients appear in
supplemental Table 1. All 27 were MYD88Mut; 13 were CXCR4Mut

of whom 12 had nonsense variants, and 1 a frameshift mutation.
Their median follow-up was 50.1 months. At best response, the
overall (minor response or better), major (partial response or bet-
ter), and very good partial response rates were 100%, 87%, and
30%, respectively. The median time to major response was
significantly longer in CXCR4Mut vs CXCR4WT patients (7.3 vs
1.8 months; P = .01). The median PFS was not reached. At 4
NR R

Figure 1. Top gene candidates from ElasticNet analysis distinguishing response g

with WM who received ibrutinib monotherapy on a clinical trial, and who attained a major

scaled VST gene expression levels selected by ElasticNet, which best predicts differences o

shown above the heat map. FS, frameshift mutation; NS, nonsense mutation; VST, varianc
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years, the PFS rate was 76% for all study patients and was shorter
for CXCR4Mut vs CXCR4WT patients (59% vs 92%; P = .06).
Among the 27 patients with WM included in this study, PFS
showed a trend for being longer among those who attained a major
vs less than a major response at 6 months (median not reached vs
64.5 months; P = .10).

We next compared multiomic findings between the 2 response
groups to identify factors influencing ibrutinib response. By WES,
the only somatic mutation that showed significant association with
major response attainment at 6 months was CXCR4. CXCR4Mut

patients showed fewer major responses at 6 months (16.7% vs
93%; P < .0002) and shorter PFS (36.4 months vs not reached;
P = .046) vsCXCR4WT patients. While the presence of CXCR4Mut

associated with nonresponse status at 6 months and shorter PFS,
3 of 13 (23%) CXCR4Mut patients were major responders at
6 months. By RNA-seq, 64 DE genes were identified that included
WNK2 (adj P = .00005), DUSP22 (adj P = .0008), and GPER1
(adj P = .0008) as the top hits expressed in CXCR4WT and
CXCR4Mut patients who attained a major response at 6 months
(supplemental Table 2). Other top DE genes identified by RNA-seq
in major responders included OSBPL3, PRDM15, GPLD1,
GPR18, NEB, and DDR1 (supplemental Table 2). ATAC-seq
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revealed 1 differentially open genomic region at chr12, which
mapped to the 5′ region of the KIF21A locus. This region was
found to be more open or accessible in the 16 patients with WM
who attained a major response at 6 months. KIF21A was also a
significant gene in the DE RNA-seq data as being upregulated for
those who attained a major response at 6 months (supplemental
Tables 2 and 3).

Elasticnet analysis, using the significant hits from WES, RNA, and
ATAC-seq analysis, identified a set of 19 RNA transcripts that best
distinguished major and nonmajor 6-month responders. Notably,
many of these are known regulators of ERK1/2 signaling including
WNK2, DUSP22, GPR18, GPER1, and PRDM15 (Figure 1).20-24

The suppression of ERK1/2 signaling has emerged as an important
signaling pathway for ibrutinib response, as well as acquired
P = .013
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Figure 2. Multiomic identified biomarkers and progression-free survival in patien
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resistance related to its role in inflammatory cytokine release and
microenvironmental support.4,6 A TTR analysis revealed that the
attainment of a major response at 6 months was most strongly
associated with baseline expression of DUSP22, GPER1,
CHST15, GPR18, ACVR2B, KIF21A, and WNK2 (supplemental
Table 4). To identify which of these candidates might also influ-
ence long-term response, a PFS analysis was performed. At
baseline, only GPR18 (P = .013) significantly impacted PFS, with
low GPR18 transcript levels predicting longer PFS. A trend for
longer PFS was also notable in those with high vs low levels of
WNK2 expression (P = .097). Differential gene expression of
CHST15, KIF21A, PRDM15, DUSP22, and KIF21A also showed
an impact on PFS but were not statistically significant. The small
sample size of our study may have contributed to these findings
(Figure 2).
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Figure 2 (continued)
In summary, by use of comprehensive multiomics, we identified
putative biomarkers for clinical investigation to predict ibrutinib
major responders at 6 months, TTR, and PFS outcomes in
MYD88Mut patients with WM. Low baseline expression of GPR18
as well as high levels of WNK2 showed the strongest associations
with major response attainment at 6 months, shorter TTR, and
longer PFS in this study. In addition, differential gene expression of
CHST15, KIF21A, PRDM15, DUSP22, S100A6, and KIF21A also
associated with major response attainment at 6 months and TTR
but showed more marginal association with predicting PFS out-
comes to ibrutinib. Many of these biomarkers including GPR18 and
WNK2 are known modulators of ERK1/2 signaling.20-24 Further
validation of these findings in a larger cohort will be required, as
well as their potential use as predictors with other covalent and
noncovalent BTK inhibitors. The applied use of such validated
biomarkers may better BTK inhibitors over other available treatment
options in WM. The findings may also be relevant for other B-cell
malignancies in which BTK inhibitors are used. Our studies thereby
2136 RESEARCH LETTER
provide a framework for the clinical investigation of novel,
multiomic-identified genes as predictive biomarkers for BTK inhib-
itors in WM.
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