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A B S T R A C T   

A mathematical equation model was developed by building the relationship between the fu,b/fu,p 
ratio and the computed physicochemical properties of candidate compounds, thereby predicting 
Kp,uu,brain based on a single experimentally measured Kp,brain value. A total of 256 compounds and 
36 marketed published drugs including acidic, basic, neutral, zwitterionic, CNS-penetrant, and 
non-CNS penetrant compounds with diverse structures and physicochemical properties were 
involved in this study. A strong correlation was demonstrated between the fu,b/fu,p ratio and 
physicochemical parameters (CLogP and ionized fraction). The model showed good performance 
in both internal and external validations. The percentages of compounds with Kp,uu,brain pre-
dictions within 2-fold variability were 80.0 %–83.3 %, and more than 90 % were within a 3-fold 
variability. Meanwhile, “black box” QSAR models constructed by machine learning approaches 
for predicting fu,b/fu,p ratio based on the chemical descriptors are also presented, and the ANN 
model displayed the highest accuracy with an RMSE value of 0.27 and 86.7 % of the test set drugs 
fell within a 2-fold window of linear regression. These models demonstrated strong predictive 
power and could be helpful tools for evaluating the Kp,uu,brain by a single measurement parameter 
of Kp,brain during lead optimization for CNS penetration evaluation and ranking CNS drug 
candidate molecules in the early stages of CNS drug discovery.   

1. Introduction 

In the drug discovery process, the brain-to-plasma concentration ratio (Kp,brain) is commonly used to evaluate drug brain pene-
tration and this parameter has been used as the primary parameter to optimize brain drug delivery in Central Nervous System (CNS) 
drug discovery for many years. However, with the progress in brain penetration evaluation, its relevance has been questioned. Several 
researchers proposed that it is difficult to assess brain penetration based upon Kp,brain alone [1–4] because it is the unbound con-
centration of the pharmacologically active entity that matters. The total concentration could largely be due to molecules bound to the 
brain parenchyma and unable to reach the intended target. It follows that optimizing such parameters may be counterproductive and 
lead to molecules with very high lipophilicity and ultimately detrimental to efficacy. The unbound brain-to-plasma concentration ratio 
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Table 1 
Measured Kp,brain, fu,p, fu,b, Kp,uu,brain, predicted Kp,uu,brain values and physicochemical properties of 36 marketed published drugs in external validation group.  

Drug name MW Class Kp, 

brain 

Kp,uu, 

brain 

fu,p fu,b CLogP 
ADMET 
Predictor 

Acidic_pKa Basic_pKa Ionized fraction TPSA HBD HBA Predicted Kp,uu, 

brain 

Kp,uu,brain Predicted/ 
Observed 

Ref. [1,7] Ref. [1] fanion fcation ADMET Predictor 

Buspirone 386 Basic 1.60 1.29 0.273 0.220 1.78  7.5  0.5573 69.6 0 7 0.80 0.62 
Carisoprodol 260 Neutral 0.66 0.34 0.389 0.202 2.26 11.0  0.0003  90.7 2 6 0.34 1.00 
Carbamazepine 236 Neutral 0.76 0.27 0.324 0.116 2.41 10.9  0.0003  46.3 1 3 0.36 1.32 
Chlorpromazine 319 Basic 23.0 0.65 0.035 0.001 5.31  9.4  0.9901 31.8 0 2 1.07 1.65 
Citalopram 324 Basic 5.10 0.68 0.231 0.031 3.86  9.6  0.9937 36.3 0 3 0.57 0.84 
Clozapine 327 Basic 4.10 1.01 0.038 0.009 3.67  7.1  0.3339 30.9 1 4 0.75 0.74 
Cyclobenzaprine 275 Basic 12.0 1.62 0.054 0.007 4.79  9.2  0.9844 3.2 0 1 0.77 0.47 
Diazepam 285 Neutral 2.00 1.02 0.098 0.050 2.80     32.7 0 3 0.74 0.73 
Fluvoxamine 318 Basic 6.10 1.32 0.039 0.008 3.20  9.4  0.9901 56.8 1 4 1.01 0.76 
Fluoxetine 309 Basic 12.0 0.89 0.031 0.002 4.39  10.1  0.9980 21.3 1 2 0.97 1.09 
Haloperidol 376 Basic 13.0 1.06 0.087 0.007 3.90  8.3  0.8882 40.5 1 3 1.51 1.42 
Hydrocodone 297 Basic 2.10 1.96 0.590 0.550 0.69  8.5  0.9264 38.8 0 4 1.63 0.83 
Hydroxyzine 375 Basic 7.70 1.51 0.052 0.010 2.99  7.1  0.3339 35.9 1 4 2.11 1.40 
Lamotrigine 256 Neutral 1.10 0.64 0.380 0.220 1.98     90.7 2 5 0.67 1.05 
Meprobamate 218 Neutral 0.42 0.42 0.760 0.760 0.93 11.3  0.0001  104.6 2 6 0.48 1.14 
Metoclopramide 300 Basic 1.20 0.52 0.710 0.310 2.32 11.4 9.6 0.0001 0.9937 67.6 2 5 0.34 0.64 
Methylphenidate 233 Basic 12.0 3.43 0.770 0.220 2.25  10.6  0.9994 38.3 1 3 3.50 1.02 
Midazolam 326 Neutral 0.23 0.14 0.046 0.027 2.70     30.2 0 3 0.09 0.67 
Morphine 285 Basic 0.46 0.72 0.320 0.500 1.06 9.82 8.3 0.0038 0.8882 52.9 2 4 0.29 0.41 
Nortriptyline 263 Basic 11.0 1.63 0.031 0.005 3.90  10.1  0.9980 12.0 1 1 1.19 0.73 
9-OH- 

Risperidone 
426 Basic 0.06 0.02 0.330 0.086 2.29  7.9  0.7597 84.4 1 7 0.02 1.25 

Paroxetine 329 Basic 3.30 0.86 0.015 0.004 3.46  10.3  0.9987 39.7 1 4 0.47 0.54 
Phenacetin 179 Neutral 0.87 0.55 0.701 0.442 1.64 11.6  0.0001  38.3 1 3 0.65 1.19 
Phenytoin 252 Acidic 0.63 0.28 0.183 0.081 2.09 8.30  0.1118  58.2 2 4 0.39 1.41 
Propranolol 259 Basic 19.6 3.08 0.140 0.022 3.48  9.48  0.9918 41.5 2 3 2.74 0.89 
Propoxyphene 339 Basic 2.90 0.85 0.111 0.033 4.18  9.2  0.9844 29.5 0 3 0.27 0.32 
Quinidine 324 Basic 0.28 0.05 0.286 0.050 2.65  7.95  0.7801 45.6 1 4 0.07 1.49 
Risperidone 410 Basic 0.78 0.26 0.204 0.067 3.23  8.4  0.9091 64.2 0 6 0.13 0.52 
Selegiline 187 Basic 3.70 1.30 0.160 0.056 2.52  7.5  0.5573 3.2 0 1 1.19 0.92 
Sertraline 306 Basic 24.0 1.44 0.011 0.001 4.96  9.5  0.9921 12.0 1 1 1.39 0.96 
Sulpiride 341 Basic 0.08 0.06 0.760 0.630 0.86 10.2 8.9 0.0017 0.9693 110.1 2 7 0.05 0.83 
Thiopental 242 Acidic 0.36 0.17 0.304 0.146 2.73 7.80  0.2847  90.3 2 4 0.18 1.02 
Trazodone 372 Basic 0.61 0.56 0.051 0.047 3.32  7.2  0.3869 45.8 0 6 0.13 0.24 
Venlafaxine 277 Basic 4.20 0.98 0.900 0.210 3.12  9.3  0.9876 32.7 1 3 0.73 0.75 
Warfarin 308 Acidic 0.07 0.19 0.097 0.281 3.29 5.06  0.9954  67.5 1 4 0.04 0.21 
Zolpidem 307 Basic 0.29 0.24 0.240 0.200 2.79  6.9  0.2403 152.7 0 4 0.09 0.39 

Note: Kp,brain, fu,p and fu,b data of Phenacetin, quinidine, warfarin, and propranolol were determined in-house, CLogP, pKa, TPSA, HBD, HBA data were predicted by ADMET Predictor. All data of the other 
32 compounds were reference reported, except the CLogP values were predicted by ADMET Predictor. 
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(Kp,uu,brain) provides a more meaningful value for the extent of blood-brain barrier (BBB) transport, where brain exposure is normalized 
to systemic exposure [4–6]. In this case, a straightforward method to reliably estimate Kp,uu,brain is essential. The common method to 
estimate Kp,uu,brain in preclinical species is to determine the in vivo Kp,brain, the unbound fraction in plasma (fu,p), and the unbound 
fraction in the brain (fu,b), respectively [7]. However, these experimental approaches are labor-intensive, time-consuming, and offer a 
limited sample throughput capacity, thus limiting their application to support compound optimization in early drug discovery. 

Multiple in silico models for the prediction of Kp,brain or Kp,uu,brain that were built on different datasets have been reported in recent 
years [8–18], but the results were not satisfactory. The development of Kp,uu,brain models is inherently challenging because they must 
account for the roles of all membrane transporters at the BBB [19]. As of today, P-glycoprotein (P-gp) is the only transporter whose role 
in brain penetration is relatively well characterized. Other xenobiotic ATP-binding case (ABC) and solute carrier (SLC) transporters 
such as breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRPs), organic anion transporting poly-
peptides (OATPs), and organic cation transporters (OCTs) are also expressed at the human BBB [20–23], but very little is known about 
their properties and roles in brain penetration. Morena [14] proposed a statistical model by using experimental Kp,brain, in silico 
predicted fu,p and fu,b. Experimentally measured Kp,brain can directly eliminate the concern about the incomplete investigation of the 
transporters. However, the model performed poorly as the prediction variability was as high as 10-fold. It is speculated that the 
prediction bias may be superimposed since the fu,p and fu,b were predicted separately. 

The Kp,uu,brain of a drug versus Kp,brain is described by the following expressions:  

Kp,uu,brain = Kp,brain *factor,                                                                                                                                                               

where factor = fu,b/fu,p 
The connection between Kp,uu,brain and Kp,brain is the brain-to-plasma unbound fraction ratio (fu,b/fu,p). It is important to note that 

due to a very poor correlation, fu,p is not a suitable surrogate for fu,b [24]. In the plasma, albumin and α-1-acid glycoprotein were 
thought to account for the binding of most drugs. While in the brain tissue, phospholipids drive the non-specific binding [25]. Plasma 
has twice as much protein as the brain and the brain has 20-fold more lipids than plasma [26]. The very different lipid and protein 
contents of the two compartments lead to the poor correlation between fu,b and fu,p. There has been much research demonstrating that 
distribution is a function of relative tissue and plasma protein binding, and the protein binding is related to the physicochemical 
properties of the drugs [27–30]. Based on the information above, it is necessary to conduct detailed studies to explore the relationship 
between the physicochemical properties and the difference in the binding to plasma and the brain. 

The main objective of this study is to explore the possibility of building a relationship between fu,b/fu,p ratio and computed 
physicochemical properties such as the lipophilicity (LogP, octanol-water partition coefficient), ionization (pKa), and possibly others 
unknown, thereby developing a mathematical equation model for predicting the Kp,uu,brain of compounds based on a single experi-
mental measured Kp,brain value. To construct the dataset, 256 structurally diverse in-house small molecules were selected, and their Kp, 

Fig. 1. The structures of 36 marketed drugs in external model validation group. The Kp,brain values were from 0.06 to 24.0, and the CLogP ranged 
from 0.69 to 5.31. 
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brain, fu,b and fu,p values were experimentally determined. Various types of physicochemical properties have been computed. Linear and 
nonlinear correlation analysis methods were employed to investigate the correlation and sensitivity of each physicochemical 
parameter with fu,b/fu,p ratio. This work aims at prioritizing the brain penetration potential of discovery compounds at an early stage 
while reducing resource consumption in the determination of fu,b and fu,p. 

2. Materials and Methods 

2.1. Compounds selection 

Three to five compounds were selected from each structural series of different CNS projects in Sironax (Beijing) Co., Ltd, A total of 
256 compounds were selected including acidic, basic, neutral, zwitterionic, CNS-penetrant, and non-CNS penetrant compounds with 
diverse structures and physicochemical properties. This dataset was divided into two parts, 226 compounds for mathematical equation 
model building (Table S1) and 30 compounds for internal model validation (Table S2). In addition, 32 marketed CNS drugs in the 
published literature were used for external validation of the model (Table 1). Phenacetin, quinidine, warfarin, and propranolol, used as 
control drugs in the protein binding assay in-house, comprised in the set of marketed drugs with published structures, were also used 
for external validation of the model (Table 1). The structures of these 36 marketed drugs are shown in Fig. 1. 

2.2. Experimental animals 

To get the Kp,brain values of the studied compounds, CD-1 mice and SD rats of approximately eight weeks of age, weighing about 30g 
and 220g, respectively, were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. The animals were confirmed 
to be healthy before assignment to the study. Upon arrival, the animals were maintained for at least three days on a 12-h light/dark 
cycle in a temperature- and humidity-controlled environment with free access to food and water. The animals were housed in clear 
polycarbonate boxes (three per box) containing sawdust and nesting pads. 

2.3. Determination method of Kp,brain 

The modified Cassette-Dosing Approach of up to three compounds was used for the determination of Kp,brain [31]. Using this 
approach, CD-1 mice (n = 3) were administered a single intraperitoneal dose of a mixture of three compounds at 3–10 mg/kg. One 
plasma and one brain sample were collected at 2 h post-dose. It should be noted that the Kp,brain values for model building in this study 
were determined by a single measurement point of plasma and brain concentration after a single dose, not by the area under the curve 
(AUC). To compare the difference of Kp,uu,brain between the mice and rats, the Kp,brain values of 15 compounds in both mice and rats 
were determined according to the AUC of brain and plasma concentrations at 0.5, 4, 8, and 24hr after a single oral dose. 

2.4. Equilibrium dialysis method for fu,b and fu,p measurement 

An equilibrium dialysis apparatus (HTDialysis, Cat# 1006) was employed to determine the fu,b and fu,p of mice or rats for each 
compound. A dialysis membrane with a molecular cutoff of 13K–14K Da was used for dialysis. Plasma and brain homogenate (10 % w/ 
v in 100 mM sodium phosphate buffer, pH = 7.4) were collected from CD-1 mice. These samples were spiked with a test compound at 1 
μM and dialyzed against an equal volume of the sodium phosphate buffer. Phenacetin, quinidine, and warfarin were selected as control 
drugs in fu,p assay. Propranolol [32] was selected as the control drug in fu,b assay. The 96-well equilibrium dialysis apparatus was 
maintained at 37 ◦C for 5 h. Post dialysis, the plasma and the 10 % (w/v) brain homogenate samples were mixed with equal volumes of 
sodium phosphate buffer. The buffer obtained from the apparatus was mixed with an equal volume of either blank plasma or blank 
brain homogenate. Then these samples were mixed with five volumes of acetonitrile, vortexed, and centrifuged at 3000g for 10 min at 
4 ◦C, the supernatants were analyzed by LC-MS/MS. The fu,p and fu,b were calculated using the equations below: 

fu,p = Conc. buffer/Conc. plasma 
fu,b’ = Conc. buffer/Conc. brain homogenate 

fu,b = 1
/ (

D ∗
(

1
/

fu,b′-1
)
+ 1

)

where D and fu,b’ represent the dilution factor for the brain homogenate and the unbound fraction determined in the 10 % (w/v) brain 
homogenate, respectively. 

2.5. LC-MS/MS detection 

Mice or rats’ plasma, brain homogenate, and sodium phosphate buffer samples for all compounds were processed by protein 
precipitation with methanol-acetonitrile (1:1) and analyzed by an AB Sciex API 5500 plus tandem mass spectrometer equipped with a 
Shimadzu ExionLC AD binary high-pressure gradient pump controlled via PE-Sciex sample control software. Analyst 1.7.1 was used for 
data acquisition and quantitation. 

Y. Ma et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e24304

5

2.6. Physicochemical properties calculation of test compounds 

LogP, pKa, molecular weight (MW), Topological Polar Surface Area (TPSA), number of hydrogen bond acceptors (HBA), and 
number of hydrogen bond donors (HBD) of 256 in-house synthesized small molecule compounds were calculated by ADMET Predictor 
v10.3.0.0 (Simulations Plus, Inc, Lancaster, CA, USA) based on the molecular structure. Molecular structures were imported in batches 
and parameters can be calculated in high throughput. The physicochemical properties of 36 marketed published drugs were taken from 
the literature or calculated by ADMET predictor if data were unavailable from the literature. 

2.7. Statistical analysis and software availability of model development 

t-SNE: t-SNE (t-distributed stochastic neighbor embedding) was used to evaluate structural diversity for 256 in-house compounds 
and 36 marketed drugs. Molecules are represented by Morgan fingerprint (radius 3, 1024 bits) using RDKit (version 2022.09.5, open 
source), and then openTSNE (version 0.7.1, open source) was used to perform t-SNE dimensionality reduction. The t-SNE visualization 
was plotted by Vortex (version 22.1.119751-s, Dotmatics Limited 2007–2022). 

Internal Similarity: Internal similarity was measured by all pairwise molecular similarities in each molecule dataset. The molecular 
similarity was calculated as Tanimoto similarity in RDKit (version 2022.09.5, open source) using Morgan fingerprint (radius 3, 1024 
bits). The density of internal similarity was plotted by Matplotlib (version 3.7.0, open source). 

Parameter Sensitivity Analysis: To evaluate the relevance and importance of each physicochemical parameter (including CLogP, 
TPSA, HBA, HBD, and ionized fraction) in the construction of the mathematical equation model, correlation analysis was performed 
using the techniques of Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) configured in ADMET Predictor 
software. In addition, a single-parameter linear regression analysis was also conducted with the linear coefficient of correlation (R2) as 
an indicator. 

“Black Box” QSAR Models: Several machine learning techniques, including ANN, MLR, Support Vector Machine (SVM), and Kernel 
Partial Least Squares (PLS) methods, were employed to build “black box” Quantitative Structure-Activity Relationship (QSAR) models, 
to ensure the robustness of the models, each model type was run randomly at least 10 times and finally selected the best-performing 
model based on the RMSE value and prediction accuracy. 

K-fold cross-validation: “Black box” QSAR models were validated with the method of “K-fold cross-validation” to safeguard the 
models against random bias caused by the selection of only one training and validation set. K-fold cross-validation was performed by 
Anaconda (version 4.10.3, python version 3.9.7, open source), the molecular descriptor corresponding to the final selected model was 
taken as the independent variable, and the measured value of fub/fup was taken as the dependent variable. The ANN/SVM/PLS/MLR 
model code was customized in Python, and the modeling data was used as input for cross-verification to compare these four modeling 
methods. 

Model performance evaluation: The correlation of the values between the observed and predicted was evaluated using the average 
fold error (AFE) and residual mean squared error (RMSE), which are indicators of accuracy and precision, respectively. AFE and RMSE 
were calculated by using equations Eq. 1 and Eq. (2) [33]. The percentage of compounds within 2-fold or 3-fold variability was also 
used as indicators for prediction accuracy. 

Fig. 2. t-SNE method derived structural diversity for 256 in-house compounds and 36 marketed drugs with Drugbank molecules as background 
(10485 molecules). X (Dim1) and Y (Dim2) are the projections in 2-dimensions from a multidimensional descriptor space. The blue dot represents 
256 in-house compounds, the red dot represents 36 marketed drugs, and the green dot represents the distribution of molecules in Drugbank 
(10485 molecules). 
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AFE= 10
∑n

k=1
log predicted Kp,uu

observed Kp,uu
n (1)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∗ Σn

k=1(predicted Kp, uu − observed Kp, uu)2

√

(2)  

where n represents the size of the dataset and k represents kth data. 

3. Result 

3.1. Data collection 

Kp,brain, fu,b, and fu,p values of 256 compounds were determined as described in the Materials and Methods section and are listed in 
Table S1 (training set) and Table S2 (internal validation set). In the data set for model external validation (Table 1), Kp,brain, fu,b, and fu, 

p values of 32 marketed drugs were obtained from the literature [1,7], while data of phenacetin, quinidine, warfarin, and propranolol 
(control drugs in protein binding assay) were determined in house. The range of Kp,brain values spanned from 0.06 to 28.5. The range of 
fu,b, and fu,p was from 0.1 %~90 %. The CLogP values ranged from 0.655 to 5.31. The lowest acidic pKa and highest basic pKa were 
used for acidic and basic compounds, respectively. The selected compounds/drugs have a wide range of physicochemical properties 
with diverse structures, which meet the requirements of model development. 

3.2. Structural diversity evaluation 

The t-SNE plot was used to evaluate structural diversity for 256 in-house compounds and 36 marketed drugs. As shown in Fig. 2, 
these molecules are almost evenly distributed and have sufficient coverage of the chemical space projected by the drugs in the 
Drugbank (10485 molecules). Furthermore, the distribution of both our in-house compounds and the selected marketed drugs is very 
similar to that of the drugs in the Drugbank (Fig. 3 (A-D), 10485 molecules). Both results indicate reasonable structural diversity of 
these molecules. 

3.3. Parameter Sensitivity Analysis and mathematical equation model exploration 

Two data modeling techniques, MLR and ANN, were employed to assess the importance of each variable. First, 256 compounds 
were involved in the analysis dataset without using the test set setting. CLogP, fcation, and fanion (ionized fraction of bases and acids at 
pH 7.4) showed a good correlation with the fu,b/fu,p ratio (relative sensitivity was more than 0.7), as shown in Table 2. Then, a 10 % 
minimum test set size was defined with the Kohonen self-organizing map selection method [34], taking the RMSE as the evaluation 
indicator to assess the correlation of the fu,b/fu,p ratio with different combinations of variables. This process was repeated 10 times with 
ANN and MLR, respectively, 7 of 10 runs in ANN, and all runs in MLR showed the best RMSE results with the combination including S 
+ LogP, fcation, and fanion. 

In the single-parameter linear regression analysis, the ratio of fu,b/fu,p was negatively correlated with CLogP in an exponential trend 
(R2 = 0.32, n = 256), negatively correlated with basic pKa/fcation (R2 = 0.36, n = 182), and negatively/positively correlated with acidic 
pKa/fanion (R2 = 0.33, n = 49), respectively. While TPSA, HBA, and HBD were less relevant (R2 less than 0.13, n = 256). The correlation 
analysis of the fu,b/fu,p ratio with the computed physicochemical properties of the study compounds is shown in Fig. 4. 

Fig. 3. Similarity distribution for 256 in-house compounds and 36 marketed drugs with Drugbank molecules as background. (A) Drugbank mol-
ecules (B) 36 marked-drugs (C) 256 in-house compounds (D) 256 in-house compounds and 36 marked-drugs. 
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These 256 compounds were randomly divided into two groups. 226 compounds (Table S1) were used for mathematical equation 
model exploration and development (training set), and the other 30 compounds (Table S2) were used for internal validation of the 
model (test set). Based on the results of parameter correlation studies, with 226 compounds as the dataset and taking RMSE as the 
indicator, a correlation between the fu,b/fu,p ratio and the computed physicochemical properties was established by optimizing the 
model equation by adjusting the weight for one of the parameters while fixing the other two (Eq. (3)). Finally, an equation for pre-
diction of the Kp,uu,brain based on experimental Kp,brain and physicochemical properties was developed (Eq. (4)). 

fu, b
fu, p

=
2 ∗ 10(0.35∗fanion)

10(0.25∗fcation) ∗ e(0.6∗CLogP) (3)  

Kp, uu, brain= 2 ∗ Kp, brain ∗
10(0.35∗fanion)

10(0.25∗fcation) ∗ e(0.6∗CLogP) (4)  

where fcation and fanion designate the ionized fraction of basic and acidic compounds at pH 7.4, and were calculated as follows (Eq. (5) 
and Eq. (6)): 

fcation=
100

1 + 10(7.4− basic pKa) (5)  

fanion=
100

1 + 10(acidic pka− 7.4) (6)  

3.4. Predictive performance of the mathematical equation model 

A total of 226 compounds were in the training set, and relevant information used for modeling is summarized in Table S1. The 
correlation of observed and predicted values for Kp,uu,brain is shown in Fig. 5, and the model performance parameters are summarized in 
Table 3. The percentage of compounds with Kp,uu,brain predicted within 2-fold variability was 82.3 %, and 92.5 % within 3-fold 
variability. The models’ accuracy and reliability were further demonstrated by the AFE value of 1.13 and RMSE value of 0.2. The 
predicted Kp,uu,brain was within 2-fold of the observed Kp,uu,brain for 186 of 226 (82.3 %) compounds, which is a significant achievement 
given the physicochemical property differences and the range of Kp,brain that covered two orders of magnitude. This result should 
support the use of the predicted Kp,uu,brain for rank order compounds in the early stage of CNS drug discovery. 

3.5. Internal validation of the mathematical equation model with 30 additional compounds 

Internal validation was performed to assess the predictive performance of the model with 30 additional compounds (Table S2). The 
fcation and fanion were calculated using Eq. (5) and Eq. (6), respectively. When the Kp,brain values and their corresponding physico-
chemical parameters of these 30 compounds were put into Eq. (4), it was observed that 80.0 % of the compounds fell within a 2-fold 
variability, and 93.3 % of the compounds fell within a 3-fold variability (as shown in Table 3 and Fig. 6). The values of RMSE and AFE 
were 0.28 and 0.99, respectively, indicating that limited prediction bias was observed for Kp,uu,brain in the model. 

3.6. External validation of the mathematical equation model with 36 marketed published drugs 

A total of 36 marketed drugs (32 literature-reported drugs and four control drugs in protein binding assay in-house, Table 1) were 
selected to assess the predictive performance of the model. The Kp,brain, fu,p, fu,b, and pKa values of 32 published drugs were from the 
literature [1,7], and the CLogP values were calculated by ADMET Predictor. The Kp,brain values ranged from 0.06 to 24.0, and the 
CLogP ranged from 0.69 to 5.31. The fcation and fanion were calculated using Eq. (5) and Eq. (6), respectively. Put the Kp,brain values and 
the corresponding physicochemical parameters of these 36 compounds into Eq. (4), it was observed that 83.3 % of the drugs fell within 
a 2-fold window of linear regression, and 91.7 % within a 3-fold variability (as shown in Fig. 7 and Table 3). The values of RMSE and 
AFE were 0.30 and 0.80, respectively. 

Table 2 
Relative sensitivity of physicochemical parameters assessed by MLR and ANN.  

Index Parameters Sensitivity Relative Sensitivity 

1 S + LogP 0.478 1 
2 fanion 0.349 0.731 
3 fcation 0.343 0.718 
4 HBD 0.111 0.233 
5 HBA 0.109 0.228 
6 TPSA 0.016 0.033 
7 fzwitterion 0.006 0.013  
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3.7. Development and performance of “black box” QSAR models 

Machine learning approaches have become popular in recent years. It is a field of study in artificial intelligence concerned with the 
development and study of statistical algorithms that can effectively generalize and thus perform tasks without explicit instructions. In 
this study, an attempt was also made to use machine learning approaches to build QSAR models based on the same dataset. A total of 

Fig. 4. Single-parameter linear regression analysis results for studied compounds. A total of 256 compounds including acidic, basic, neutral, and 
zwitterionic compounds with diverse structures and physicochemical properties were involved. The fu,b and fu,p values of studied compounds were 
determined in-house, and the physicochemical properties were calculated by ADMET Predictor v10.3.0.0 (Simulations Plus, Inc, Lancaster, CA, 
USA). The ratio of fu,b/fu,p was negatively correlated with CLogP, especially in an exponential trend (R2 

= 0.32, n = 256), negatively correlated with 
basic pKa/fcation (R2 = 0.36, n = 182), and negatively/positively correlated with acidic pKa/fanion (R2 = 0.33, n = 49), respectively. While TPSA, 
HBA, HBD, and MW were less relevant (R2 < 0.13, n = 256). 
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292 compounds (the same dataset as the Mathematical Equation Model, 256 in-house compounds, and 36 marketed drugs) were 
randomly divided into two groups. Using the training set of 262 compounds to analyze the structure-fu,p/fu,b ratio relationships and 
derive statistical models, the other 30 compounds in the test set (see Table S3) were used for external validation of the models. Several 
machine learning techniques including ANN, SVM, MLR, and PLS, were employed to build “black box” QSAR Models. The internal 
consistency of the resulting models was evaluated by k-fold cross-validation performed in Python, and taking the mean absolute error 
(MAE), the average across experiments, as the scoring parameter of model quality to report. The results are shown in Table 4, the ANN 
model displayed the best performance with an MAE value of 0.16. 

The results obtained from the test set observations are reported in Table 5. Overall, these models had good predictive power, with 
around 80.0 % of the test drugs falling within 2-fold variability. Here, the ANN model displayed the highest accuracy in the predictions 
with an RMSE value of 0.27 and 86.7 % of the test drugs falling within 2-fold variability. The correlation of the observed and predicted 
values for fu,p/fu,b in the ANN model is shown in Fig. 8. 

3.8. Comparison of Kp,uu,brain between mice and rats 

Different brain penetration between rats and non-rodent animals (monkey/dog) has been reported [35]. As mice and rats are the 

Fig. 5. The plot of predicted Kp,uu,brain vs measured Kp,uu,brain for 226 compounds in the training dataset. The percentage of compounds with Kp,uu, 

brain predicted within 2-fold variability was 82.3 %, and 92.5 % within 3-fold variability. The dotted lines represent the 2-fold window of linear 
regression. Solid lines are the result of linear regression analysis of log-transformed data. 

Table 3 
Model performance statistics.   

Number of Compounds AFE RMSE % Within 2-fold % Within 3-fold 

Training dataset 226 1.13 0.23 82.3 % 92.5 % 
Internal validation 30 0.99 0.28 80.0 % 93.3 % 
External validation 36 0.80 0.30 83.3 % 91.7 %  

Fig. 6. The plot of predicted Kp,uu,brain vs measured Kp,uu,brain for 30 additional compounds in the internal validation dataset. The result showed that 
80.0 % of the compounds fell within a 2-fold variability, and 93.3 % of the compounds fell within a 3-fold variability. The dotted lines represent the 
2-fold window of linear regression. Solid lines are the result of linear regression analysis of log-transformed data. 
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most frequently used animals for evaluation of in vivo pharmacological effects, it is interesting to compare whether drug partition to 
mouse and rat brain tissues to different degrees. The default assumption is that mouse and rat Kpuu, brain should be the same. In this 
study, the Kp,uu,brain values were measured in both mice and rats for the same set of compounds with a Kp,uu,brain range from 0.03 to 
1.95 as described in section 2.3. The results are shown in Table S4 and Fig. 9, a tight correlation (RMSE = 0.24, R2 = 0.92, n = 15) of Kp, 

Fig. 7. The plot of predicted Kp,uu,brain vs observed Kp,uu,brain for the 36 marketed published drugs in the external validation dataset. The result 
showed that 83.3 % of the drugs fell within a 2-fold window of linear regression, and 91.7 % within a 3-fold variability. The dotted lines represent 
the 2-fold window of linear regression. Solid lines are the result of linear regression analysis of log-transformed data. 

Table 4 
K-fold (K = 10) cross-validation results for different QSAR models.  

Models Number of Molecular descriptors MAE 

ANN 68 0.16 
SVM 51 0.21 
MLR 85 0.32 
PLS 102 0.23  

Table 5 
Test set results for different QSAR models.  

Models AFE RMSE % Within 2-fold % Within 3-fold 

ANN 0.99 0.27 86.7 % 100 % 
SVM 0.91 0.31 76.7 % 93.3 % 
MLR 1.03 0.32 80 % 100 % 
PLS 0.95 0.31 80 % 100 %  

Fig. 8. The plot of predicted fu,p/fu,b ratio vs observed fu,p/fu,b ratio for 30 compounds in the test set in the ANN model. The result showed that 86.7 
% of the drugs fell within a 2-fold window of linear regression, and 100 % within a 3-fold variability. The dotted lines represent the 2-fold window of 
linear regression. Solid lines are the result of linear regression analysis of log-transformed data. 
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uu,brain between mice and rats was observed, indicating that limited difference between mice and rats based on these 15 compounds 
dataset, which may support Kp,uu,brain data transfer for mice and rats in pre-clinical studies. It is necessary to collect more data and 
extend the dataset to validate this conclusion in the future. 

3.9. Comparison of Kp,brain value across timepoints in mice 

74 compounds with both 1hr and 4hr Kp,brain values in the internal database were available to perform the analysis. As shown in 
Fig. 10, 23 % of the compounds were out of a 2-fold window of linear regression. By analyzing the physicochemical parameters and PK 
data, we found that these compounds have one or more of the following characteristics: 1) basic compounds with high LogP result in 
extensive brain binding and large distribution volume; 2) high plasma CL; 3) unstable in brain homogenate. These properties may 
contribute to the slow equilibrium and non-parallel concentration-time (c-t) profiles in plasma and brain. Thus, the AUC ratio or 
steady-state concentrations ratio is considered an appropriate approach for the Kp,brain determination of these compounds. While 
consistent Kp,brain values were observed for most compounds with high permeability and no/little BBB efflux, which facilitates rapid 
equilibrium and thus obtained parallel c-t profiles in plasma and brain. 

4. Discussion 

Developing in silico models to predict the brain penetration of drugs is a difficult task owing to the intricate involvement of multiple 
transport systems in the blood-brain barrier, and the necessity to consider a combination of multiple pharmacokinetic parameters. 
However, the models developed in this study performed exceptionally well when compared to other models reported in the past decade 
(as shown in Table 6). This is due to the fact that the dataset used in this work possesses reasonable structural diversity, and the 
physicochemical parameters, LogP and ionized fraction, were explored to be the most correlated parameters to the fu,b/fu,p ratio. This 
solid data foundation and robust correlation contribute to the model’s good generalization ability. Additionally, the experimentally 
measured Kp,brain eliminated concerns about incomplete investigation of the transporters. Finally, building a relationship between the 
fu,b/fu,p ratio and the computed physicochemical properties may reduce prediction bias compared to predicting fu,p and fu,b separately. 
Upon analyzing the data of compounds whose accuracy is out of 2- or 3-fold variation, it was found that some of them have very high 
protein binding rates, with a fu,b or fu,p value less than 0.5 %, which may be beyond the precision of the assay itself. This could be a 
possible reason for the discrepancy in predictions. 

One point to note here is that the mice Kp,brain values used in the model development were determined by a single point of plasma 
and brain concentration after a single dose, not based on the AUC or steady-state concentrations. The major goal of the present study is 
to build a relationship between the fu,b/fu,p ratio and the computed physicochemical properties or molecular descriptors. In the process 
of model development, Kp,brain is not a dependent or independent variable, and plays a role that does not affect the model building. In 
addition, the determination of AUC or steady-state concentrations is time-consuming, labor-intensive, and may not be necessary at the 
early screening stage. 

Unsurprisingly, CLogP is the most relevant parameter in the statistical models described in this work due to its evident relationship 
with fu. The statistical analysis indicates a strong relationship between CLogP and the fu,b/fu,p ratio, and therefore CLogP can be 
effectively used as a guideline to roughly judge the numerical gap between Kp,brain and Kp,uu,brain. The higher the CLogP value, the 
greater the gap between Kp,brain and Kp,uu,brain. Compounds with a CLogP value smaller than zero deviate significantly from the 2-fold 
window seen during modeling, with more than a 4-fold deviation from measured values (as shown in Table S5). Numerous studies have 
described the physicochemical properties required for optimal brain exposure, medicinal chemists working in CNS drug discovery 
attempt to modify the LogP of a compound to greater than one (generally between two and four) [36–39]. No additional analysis was 
performed because such compounds should be relatively few in CNS drug discovery. Compounds with a CLogP <0 were deemed not 
applicable and were removed from the model building. 

Fig. 9. The plot of rats Kp,uu,brain vs mice Kp,uu,brain for the 15 compounds. A tight correlation of Kp,uu,brain between mice and rats was observed. The 
dotted lines represent the 2-fold window of linear regression. Solid lines are the result of linear regression analysis of log-transformed data. 
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The most extensive binding to brain tissue observed in this study was observed among the basic compounds with fu,b smaller than 
0.01. As such, the range of fu,b estimates were much wider among basic compounds, which in turn resulted in a wider range of fu,b/fu,p 
ratios for basic compounds than was observed for the weakly acidic or neutral compounds. The degree of ionization can make a big 
difference in the protein binding and distribution of a molecule. Basic compounds, being positively charged at physiological pH, have 
favorable interactions with anionic phospholipid head groups leading to higher tissue affinity [40]. Therefore, basic compounds tend 
to have a higher tissue distribution (Kp) than neutral and acidic compounds. Ion trapping in lysosomes (a condition characterized by 
the accumulation of phospholipids and drugs in lysosomes, cationic amphiphilic drugs with high LogP and basic pKa are well-known 
structural features) is a typical example [41–43]. Acidic drugs exhibit extensive binding to albumin in plasma, typically have a low 
volume of distribution (Vd) value (<1 L*kg− 1), thus a lower Kp,brain value [10,44], and show a relatively high fu,b/fu,p ratio (acidic 
pKa/fanion is negatively/positively correlated with fu,b/fu,p ratio). This study involved 52 acidic compounds (43 in the training dataset, 
6 in the internal validation group, and 3 in the external validation group). Many of them were weak acids (nine compounds with an 
acidic pKa between 5.0 and 7.0, while others were between 7.0 and 9.4), and few strong acids were available. Therefore, prediction 
accuracy is limited and a more extensive validation is required for strong acidic compounds. Further research to collect a larger amount 
of relatively strong acidic drugs will be necessary for both prediction accuracy and to validate the model. In this study, basic and acidic 
compounds are defined as having a basic pKa >5.4 and an acidic pKa <9.4, respectively. All charges were considered separately to 
ensure that, for example, for zwitterionic molecules (basic pKa >5.4 and acidic pKa <9.4), they would not cancel out. 

Of relevance to drug design, the equation in the model can provide a line of sight to chemists in assessing the numerical gap 
between Kp,brain and Kp,uu,brain, and achieving a balance of properties that is necessary for brain penetration success. A basic compound, 
with high LogP and a basic pKa will lead to a large gap between the value of Kp,brain and Kp,uu,brain. Take chlorpromazine as an example, 
a strong basic drug with a basic pKa of 9.4 and a high CLogP value of 5.3, the value of Kp,brain is 35 times that of Kp,uu,brain. While if a 
neutral or weak acidic compound (acidic pKa >7), the numerical gap between Kp,brain and Kp,uu,brain is mainly determined by the LogP, 
the higher the LogP, the larger the gap between the value of Kp,brain and Kp,uu,brain. For the acidic compounds with acidic pKa <7, which 
generally show relatively lower Kp,brain values, however, the ratio of fu,b/fu,p is positively correlated with the ionized fraction, and the 
difference between Kp,brain and Kp,uu,brain are relatively small, sometimes the Kp,brain values are even smaller than Kp,uu,brain. For 
example, warfarin, an acidic drug with an acidic pKa value of 5.2 and a moderate CLogP value of 3.3, showed a low Kp,brain value of 
0.07, but the Kp,uu,brain value was 2.89 times that of Kp,brain. 

In addition, a total of 292 compounds were studied in this work, of which 279 compounds had a Kp,uu,brain value smaller than the Kp, 

brain value, and only 4.8 % (14 compounds) had a Kp,uu,brain value slightly greater than the Kp,brain value (1.04–2.89 folds, the acidic 
drug warfarin produced the fold value of 2.89). This suggests that compounds with a lower Kp,brain value (e.g., smaller than 0.2), 
notably for the basic and neutral compounds, may be less significant to proceed with Kp,uu,brain determinations in CNS drug discovery. 
Alternately, the Kp,brain cutoff value may be changed to better suit the demands of each project. 

5. Conclusion 

A mathematical model through building the relationship between the fu,b/fu,p ratio and the computed physicochemical properties to 
project Kp,uu,brain based on experimental Kp,brain values is presented. A total of 256 compounds and 36 marketed published drugs including 
acidic, basic, neutral, and zwitterionic compounds with diverse structures and physicochemical properties were involved in this study. The 
model showed good performance in both internal and external validations. Some 79.3 %–81.1 % of the compounds with predicted Kp,uu, 

brain values were within 2-fold variability, and more than 90 % were within 3-fold variability. The statistical analysis in this study indicates 
that CLogP and the ionized fraction of the compounds showed a strong correlation with the fu,b/fu,p ratio. ClogP can be effectively used as a 
guideline to roughly judge the numerical gap between Kp,brain and Kp,uu,brain. The effect of the ionization degree of basic and acidic 
compounds on the affinity to plasma proteins and tissue phospholipids is discussed, and the fu,b/fu,p ratio was negatively correlated with 
FCation and positively correlated with FAnion. 

Meanwhile, “black box” QSAR models based on the chemical descriptors are also presented, and the ANN model displayed the 

Fig. 10. The plot of mice Kp,brain at 1hr vs 4hr for 74 compounds. 23 % of the compounds were out of a 2-fold window of linear regression. The 
dotted lines represent the 2-fold window of linear regression. 
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Table 6 
Comparisons of in silico models of Kp,uu,brain prediction within the years of 2013–2023.  

Datasets Experimental approaches to 
generate Kp,uu,brain 

In silico models Model performance Refs/Year 

Training set: 40 
compounds 
Test set: 93 
literature 
compounds 

Kp,brain: mice or rat. fu,b: mice or 
rat, brain homogenate/brain 
slice/microdialysis methods 
fu,p: mice or rat plasma 
equilibrium dialysis 

Indirect regression QSAR model using 
experimental Kp,brain, and in silico 
predictions for fu,b and fu,b 

Poor predictive performance of the 
model as the accuracy within 10-fold 
error: R2 = 0.74–0.89 against 
different test sets. 

[14]/2013 

Training set: 29 
compounds 
Internal test set: 11 
compounds 
External test: 41 
literature 
compounds. 

Kp,brain: rats or mice 
Vu,brain: rat brain slice fu,p: rat or 
mouse plasma 

Direct regression QSAR model using 
the multivariate PLS analysis 

The best model against the test set: 
R2 = 0.82 and RMSE = 0.31. 
However, the model performed 
poorly in the external validation. 

[12]/2014 

Training set: 242 
compounds 
Test set: 104 
compounds 

Kp,brain: rat, 4h intravenous 
infusion. fu,b: rat brain slice 
fu,p: rat plasma equilibrium 
dialysis 

Direct and indirect regression QSAR 
models using two nonlinear machine 
learning algorithms (RF and SVM) 

In the best consensus model: R2 =

0.60 and RMSE = 0.53. 
[11]/2015 

Training set: 677 
compounds 
Test set: 169 
compounds 

Kp,brain from different designs fu,b: 
rat brain homogenate 
fu,p: rat blood or plasma 

Direct binary classification (Kp,uu,brain 

> or < 0.3) QSAR models using 
nonlinear categorical model-building 
algorithms. 

Classification model: accuracy =
0.75–0.79. 

[8]/2016 

Training set: 1030 
compounds 
Test set: 91 
compounds 

Kp,brain: mice fu,b: mouse brain 
homogenate 
fu,p: mouse plasma 

Regression QSAR Models. Regression model: R2 = 0.53 and 
RMSE = 0.57. 

[13]/2016 

Training set/Test set: 
fu,b model: 505/46 
compounds 
fu,p model: 462/45 
compounds 
P-gp NER model: 
397/50 compounds 
Kp,uu,brain: 42 
compounds 

Datasets of fu,brain, fu,p, P-gp NER, 
were constructed from in-house 
experiments, publicly available 
data in ChEMBL, and previous 
study findings 

Built three prediction models for in 
vitro P-gp NER, fu,b and fu,p, and 
validated using additional in-house 
experiment data. Kp,uu,brain was 
calculated based on predicted P-gp 
NER, fu,b and fu,p. 

The percentage of compounds that 
fell within 5- and 10-fold errors were 
66.7 % and 73.8 %, respectively. 

[15]/2021 

Training set: 88 
published 
compounds 
External test: 38 in- 
house compounds 

Kp,uu,brain: mice or rats, published 
data 

An RF model was used for the 
predictive QSAR model. 

Accuracy: RMSE = 0.455, R2 =

0.726. 
External validation: RMSE = 0.491, 
R2 = 0.438. 

[16]/2022 

Rat dataset: 512 
training data and 
128 test data. 
Monkey dataset 51 
compounds. 
Human dataset 14 
compounds. 

Kp,brain: rats or monkeys fast iv fu,b 

and fu,p: equilibrium dialysis 
MDCK-MDR1 or MDCK-BCRP: 
Permeability Assay 

Establish machine-learning models of 
monkeys and rats. Human Kp,uu,brain 

prediction: consider appropriate 
scaling methods based on the animal 
models. 

Accuracy within 2-fold error was 71 
% and 64 % based on rat and monkey 
machine learning models, 
respectively. 

[17]/2023 

241 compounds from 
published articles 
and internal 
programs. 

Kp,brain: mice or rats fu,b and fu,p: 
mice or rats 
Efflux ratios: MDCKII-MDR1 

A strong relationship emerged 
between Solvation-free energy (E-sol) 
and Kp,uu,brain. 

A categorical accuracy of 79 % and an 
R2 of 0.61 from a linear regression 
model. 

[18]/2023 

Mathematical equation 
model: 
Training set: 226 
compounds 
Internal test set: 30 
compounds 
External test: 36 
literature 
compounds. 
ANN model: 
Training set: 262 
compounds 
Test set: 30 
compounds 

Kp,brain: mice, single timepoint fu,b 

and fu,p: equilibrium dialysis 
Mathematical equation model using 
experimental Kp,brain, and in silico 
predicted ratio of fu,b/fu,b. 

ANN model based on the chemical 
descriptors. 

Mathematical equation model: 
RMSE = 0.455, the percentage of 
compounds that fell within 2-fold 
errors were 80 % and 83.3 % for 
internal and external tests, 
respectively. 
ANN model: RMSE = 0.27, external 
test accuracy within 2-fold error was 
86.7 % 

Current 
Work 

Abbreviations: unbound brain-to-plasma concentration ratio (Kp,uu,brain), brain-to-plasma concentration ratio (Kp,brain), unbound fraction in plasma 
(fu,p), unbound fraction in the brain (fu,b), unbound volume of distribution (Vu,brain), Quantitative Structure-Activity Relationship (QSAR), random 
forest (RF), Support Vector Machine (SVM), Kernel Partial Least Squares (PLS), Artificial Neural Network (ANN), net efflux ratio (NER), residual mean 
squared error (RMSE), linear coefficient of correlation (R2). 
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highest accuracy with an RMSE value of 0.27 and 86.7 % of the test set drugs fell within a 2-fold window of linear regression. Another 
contribution of this work is that the observed consistent Kp,uu,brain in mice and rats based on 15 compounds dataset, which may support 
Kp,uu,brain data transfer for the two commonly used species in pre-clinical pharmacology studies. 

To the best of our knowledge, this is the first time that a relationship between the fu,b/fu,p ratio and computed physicochemical 
properties has been demonstrated, thereby predicting the Kp,uu,brain based on a single experimental Kp,brain value. The author believes 
that a mathematical equation model with competitive prediction accuracy has better practicability than “black box” QSAR models that 
rely on statistical software, especially for research institutions where commercial software is unavailable. In summary, the proposed 
new in silico approaches for the rapid assessment of brain penetration for candidate compounds should benefit CNS target projects. 
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