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Abstract
N6-Methyladenosine (m6A) is the most common mRNA modification; it occurs in a wide

range of taxon and is associated with many key biological processes. High-throughput

experiments have identified m6A-peaks and sites across the transcriptome, but studies of

m6A sites at the transcriptome-wide scale are limited to a few species and tissue types.

Therefore, the computational prediction of mRNA m6A sites has become an important strat-

egy. In this study, we integrated multiple features of mRNA (flanking sequences, local sec-

ondary structure information, and relative position information) and trained a SVM classifier

to predict m6A sites in mammalian mRNA sequences. Our method achieves ideal perfor-

mance in both cross-validation tests and rigorous independent dataset tests. The server

also provides a comprehensive database of predicted transcriptome-wide m6A sites and

curated m6A-seq peaks from the literature for both human and mouse, and these can be

queried and visualized in a genome browser. The RNAMethPre web server provides a

user-friendly tool for the prediction and query of mRNA m6A sites, which is freely accessible

for public use at http://bioinfo.tsinghua.edu.cn/RNAMethPre/index.html.

Introduction

N6-Methylated-adenosine (m6A) is the most common and abundant modification on RNA
molecules and exists in various species [1]. Although it was first detected in poly-A mRNA
about 4 decades ago [2], m6A has not been characterized until the recent development of a
transcriptome-wide mapping method called m6A-seq or MeRIP-seq [3, 4]. Using this method,
the first m6A profiles were obtained for human and mouse. Based on mapping data, each
mRNA contains, on average, 3–5 m6A modifications within DRACH (where D = A, G or U;
R = A or G; H = A, C or U) consensus sequences, which are located in the coding sequence,
UTRs, and introns of mRNAs and are especially enriched around stop codons [3–5]. Subse-
quent studies have found that m6A plays important roles in various biological processes,
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including splicing [4], mRNA stability [6], miRNA biogenesis [7], circadian clock regulation
[8], and the developmental regulation of mammalian embryonic stem cells [9].

The m6A-seq method generates 100–200-nt peaks, but cannot be used to locate specific sites
of m6A modification [3, 4]. Regev et al. improved the method and generated the transcrip-
tome-wide m6A profile for yeast at nearly single-base resolution [10]. Using the high-resolu-
tion yeast dataset, two m6A site prediction servers, m6Apred [11] and iRNA-Methyl [12], have
been developed based on different features. Both prediction methods exhibit acceptable perfor-
mance in cross-validation tests using yeast datasets, but they cannot be applied to other taxon.
More recently, Linder et al. developed a new method termed miCLIP and produced a single-
nucleotide resolution map of the m6A sites across the human and mouse transcriptomes [13].
The availability of accurate m6A site datasets led to the first mammalian m6A site prediction
server, SRAMP, established by Zhou et al. SRAMP employs a random forest machine learning
framework using only sequence-derived features, including a positional binary encoding of
flanking nucleotide sequences, the K-nearest neighbor (KNN), and the nucleotide pair spec-
trum [14]. The predictor achieved good performance in full transcript mode. However, there is
still room for improvement, e.g., the performance in mature mRNA mode can be enhanced
and increasingly user-friendly interfaces can be developed.

Here, we developed a user-friendly web server for m6A site prediction and query, named
RNAMethPre, for human, mouse, and mammal, broadly. A support vector machine (SVM)
was used to build the model with all features combined in a single classifier. The predictors
achieved ideal performance not only in full transcript mode, but also in mature mRNA mode.
Users can submit one or more mRNA sequences for prediction and tasks are completed rapidly
owing to the high efficiency of our SVM method. To enhance the web-server, we applied the
SVM model to predict all human and mouse transcripts. Experimental m6A-seq peaks and
sites reported in previous publications were collected. As a result, a comprehensive database of
transcriptome-wide m6A sites from prediction results and experimental data was created and
integrated into the web server to provide a query service. Furthermore, a genome browser was
established to visualize the m6A sites across the whole transcriptome.

Methods

Datasets

Positive dataset. Single-base resolution m6A site data generated using the miCLIP
approach were collected from the literature [13, 15]. Most of the m6A sites were located in the
consensus motif DRA�CH (where D denotes A, G, or U, R denotes A or G, A� denotes methyl-
ated A, and H denotes A, C, or U), consistent with previous m6A maps obtained using m6A-
seq [4, 13]. Methylated adenosines within DRACH motifs were kept as positive samples. These
sites were mapped to the longest isoforms of Ensembl coding genes (using the hg19 and mm9
assemblies). The resulting positive dataset contained 39396 human m6A sites and 30320 mouse
m6A sites in mature mRNAs. A part of the m6A sites were not mapped to mature mRNAs, so
we mapped them to full transcripts. The number of human sites that mapped to full transcripts
was 42304, while for mouse the number of sites was 32940.

Negative dataset. To obtain non-methylated m6A sites, adenosines that conform to the
DRACH motif were randomly selected from both mature mRNAs and full transcripts of the
longest isoforms of Ensembl coding genes. Sites that overlapped with not only the positive sam-
ples, but also the curated previously identified human and mouse m6A peaks were removed.

Training and testing dataset. For human, 75% (29547) of all the positive sites that mapped
to mature mRNAs and 75% (31728) of all the positive sites that mapped to full transcripts,
along with the same number of negative samples were randomly selected as training datasets.
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The remaining 25% (9849 sites that mapped to mature mRNAs and 10576 that mapped to full
transcripts) of all the positive sites were allocated to the independent testing datasets.

For mouse, the number of positive sites in training datasets was 22740 that mapped to
mature mRNAs and 24705 that mapped to full transcripts. The mouse testing datasets con-
cluded 7580 positive sites that mapped to mature mRNAs and 8235 positive sites that mapped
to full transcripts.

Obviously, there are far more non-m6A sites than m6A sites across the transcriptome. Accord-
ingly, an unbalanced 1:10 positive-to-negative ratio was maintained in our independent datasets
for human and mouse (see S1–S8 Tables for these datasets). To build classifiers for mammalian
m6A site prediction, the human and mouse training and testing datasets were joined.

Features of RNAMethPre

For nucleotide sequence positioning around the adenosine sites, the mRNA sequence around
the site was extracted and encoded as a binary vector according to a simple rule: ‘A’ -> 0001,
‘T’ -> 0010, ‘C’ -> 0100, and ‘G’ -> 1000. When the sites were located at the beginning or ter-
minus of an mRNA, the gap character “N” was assigned to fill the sequence termini. Therefore,
a W-nt flanking window of the sequence was encoded as a W�4-dimensional feature vector.

Nucleotide k-mer frequency was also considered. To represent the sequence context of an
m6A/non-m6A site, the frequencies of all possible k-mer (k = 3, 4) nucleotides in a 101-nt
flanking window centered around the sites were calculated.

With respect to the relative distribution of sites in transcripts, it has been reported that m6A
sites are biased towards the 3’ ends of transcripts. Given a site, the absolute distance from the
transcript start site was calculated and then scaled to obtain a relative position value (between 0
and 1).

Stability of the local structure was also considered. For each site, RNAFold [16] was used to
fold the 101-bp mRNA fragment (from -50 to +50 with respect to the central N6-methyladeno-
sine), yielding an MFE (minimum free energy) value. Then, the fragment sequence was shuf-
fled 100 times and the MFE was calculated for each of the shuffled sequences. The Z-score of
the MFE value for the original fragment was calculated to measure the secondary structure
strength of the region harboring the site.

Finally, the feature vectors were combined and added to a single SVM.

Support vector machine learning model training

SVM models were trained with the ‘RBF’ kernel function for the classifier. Parameters were
optimized by a grid search on the training data. The SVM models were implemented in
libsvm-3.21 [17].

Evaluation of SVM prediction models

Seven-fold cross validation and independent tests were used to check the performance of our
method with four frequently used measurements: specificity, sensitivity, AUROC (area under
the ROC curve), and AUPR (area under the PR curve). The first three measurements were
defined as follows:

Sensitivity ¼
TP

TP þ FN

Specificity ¼
TN

TN þ FP

Prediction and Query of m6A Sites
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MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p

where TP represents the number of true positive sites, defined as the correctly predicted m6A
sites, TN represents the number of true negative sites, defined as the correctly predicted non-
m6A sites, FP represents the number of false positive sites, defined as non-m6A sites predicted
as m6A sites, and FN represents the number of false positive sites, defined as m6A sites pre-
dicted as non-m6A sites.

The ROC curve was obtained by plotting the false positive rate against the true positive rate
at various threshold settings. The true positive rate is the same as sensitivity or recall, while the
false positive rate can be calculated as (1-specificity). An area of 1.00 indicates a perfect predic-
tor, and an area of 0.50 corresponds to a random model. The larger the area under the ROC
curve, the more robust the model is. ROC curves can present an overly optimistic view of an
algorithm’s performance if there is a skew of the dataset. To give a more informative picture of
the predictors’ performance we introduced the area under precision-recall curve (AUPR). The
Precision-Recall curves plot precision (the fraction of TP in all predicted positives) against
recall (sensitivity) at various threshold settings. This curve is more sensitive to false positives
than ROC curve.

To further test the sensitivity of our current predictor, the model was used to predict the
curated previously identified m6A peaks from the literature [3, 4, 18, 19]. To identify specific
methylated sites in known m6A peaks from m6A-seq, the sequences of the reported peaks were
retrieved when the peak summit was reported, and a 200-bp flanking window centered around
the peak summit was obtained. These peak sequences were added to our web server and the
proportion of peaks that contain at least one predicted m6A site was calculated.

Web Server construction

PHP and SQLite were used to construct the RNAMethPre web-server, which implements the
method described above. Given an mRNA and its corresponding species information, the
server returns all predicted m6A sites to users. The results are also downloadable for further
analysis. The SVM model was also applied to predict transcriptome-wide m6A sites. Experi-
mental m6A-seq peaks were collected from the literature. The web server was built to provide
both prediction and query services for m6A sites. A genome browser was also built based on
JBrowse [20] to visualize the query results. Fig 1 illustrates the workflow for the development
of RNAMethPre.

Results and Discussion

Model establishment

We built two prediction modes within our web server, i.e., the full transcript mode and the
mature mRNA mode, consistent with SRAMP. Recent studies have shown that m6A exhibits
both a nuclear role in pre-mRNA processing and a cytoplasmic role in the regulation of mRNA
stability and translation, consistent with the findings that m6A occurs in both mature mRNA
regions and introns [21, 22]. This suggests that the modification can be added at either the pre-
mRNA level or the mature mRNA level, before or after RNA splicing. It is convenient to input
either genomic sequences or mRNA sequences according to user needs. Therefore, both mature
mRNA and full transcript modes were necessary. Classifiers for mammal, human, and mouse
were built. The mammalian datasets included a combination of human and mouse datasets.
We focus on the establishment of the predictor for mammal in both modes, as the human and
mouse predictors were established in the same way.

Prediction and Query of m6A Sites
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The positional binary specifying nucleotide sequence was used as the first feature to dis-
criminate methylated DRACH motifs from un-methylated motifs. We optimized the length of
the flanking window by building models for different sequence lengths. The optimized length
was 11 nt (5 on each side of the focal sites) for mature mRNA mode and 31 nt (15 on each side
of the focal sites) for full transcript mode. We trained the SVM classifier using the binary

Fig 1. RNAMethPre Workflow. Positive and negative datasets were obtained (Step 1). Features of the

datasets were extracted to obtain 366-dimensional vectors for each site as training data. The SVM classifier

was trained to generate the SVM model and the performance of the model was evaluated (Step 2). Human

transcriptome-wide m6A sites were predicted and a web server was constructed (Step 3).

doi:10.1371/journal.pone.0162707.g001

Prediction and Query of m6A Sites

PLOS ONE | DOI:10.1371/journal.pone.0162707 October 10, 2016 5 / 13



encoding and observed encouraging performance on the training dataset based on 5-fold
cross-validation (Fig 2A; AUROC = 0.782, 0.847), indicating that the positional sequence pat-
tern is a strong feature of m6A sites. It is notable that the flanking window length was shorter
than that of SRAMP, but we achieved better performance on the training dataset by 5-fold
cross-validation.

To illustrate the position-independent sequence pattern, we introduced the spectrum of k-
mer nucleotide frequencies, which is widely employed to characterize bio-sequences [23, 24].
We calculated the k-mer (k = 3, 4) frequencies of 101-nt flanking windows centered around the
methylated and non-methylated sites. The performance was improved substantially by incor-
porating the spectrum feature in the model training (Fig 2; AUROC = 0.818, 0.890), indicating
this position-independent sequence feature indeed supplements the position-dependent
encodings.

The AUROC for full transcript mode reached approximately 90%, but the AUROC for
mature mRNA mode was unsatisfactory. To improve the performance of mature mRNA
mode, we added two additional features to the model. In 2013, Schwartz et al. used nucleotide
composition, local secondary structure stability, and relative position in the gene as features in
their classifier to predict m6A sites in yeast and achieved promising performance results [11].
We applied the same strategy to incorporate the predicted secondary structure strength for
each site and the distances from the transcription start and end sites to our model. Using these
features, the AUROC increased to 85.5% for mature mRNA mode, but the full transcript mode
showed little improvement. Therefore, we integrated all four features to the mature mRNA
mode, but included only the two sequence features in the full transcript model (Fig 2).

In addition to the broad mammalian models, we built specific human and mouse predictors
for both modes following the same procedure, and the predictors achieved good performance
on the training dataset based on 5-fold cross-validation (S1 Fig). From S1 Fig, we can see that
in full transcript mode, the AUROC of human and mouse are good and comparable. In mature
mRNA mode, the AUROC of mouse is 0.924, which is far better than the AUROC of human

Fig 2. Overall Performances of Mammalian Classifiers Based on 5-fold Cross-validation Tests. (A) The ROC curve

illustrating the performance for full transcript mode. (B) The ROC curve illustrating the performance for mature mRNA mode.

doi:10.1371/journal.pone.0162707.g002
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(0.830). To check if the predictors for human and mouse sequences can be applied across spe-
cies for either mode, we tested each predictor using independent datasets from the species.
From the result shown in S9 and S10 Tables, we can see that in both modes, the performances
of cross-species tests are lower than that of the intra-species tests, indicating the specificity of
models for each species. As a result, based on the current dataset, we built unified predictors
for mammals and species-specific predictors for human and mouse, which are all available in
our RNAMethPre web server.

Performance of the predictors on independent datasets

In order to validate the method, we tested the model on independent datasets. Since there are
far more non-methylated sites than methylated sites in the transcriptome, we set the ratio of
m6A sites to non-m6A sites to 1:10 in our independent datasets. The results of the independent
tests generally agreed well with those from the cross-validation tests. The full transcript mode
and mature mRNA mode models for mammal achieved AUROCs of 0.886 and 0.856, respec-
tively (Fig 3). For more precise analyses of performance, we applied four stringency thresholds
corresponding to 90%, 85%, and 80% specificities in the independent dataset tests (Table 1).

Moreover, we tested the model on previously identified human m6A peaks for which spe-
cific methylated sites were not assigned. We identified specific m6A sites in previously detected
peaks using the mature mRNA mode since almost all of the peaks are located in mature
mRNA. And we chose the moderate threshold during the prediction. For human, low-resolu-
tion human m6A data were downloaded from literature, yielding 389282 m6A peaks of 25 dif-
ferent tissues and conditions, ranging from 100 to 200 bp in length. After removing peaks that
did not contain the DRACH motif, 310423 peaks were retained for performance analyses. We
found that 68.1% (211403 peaks) of the peaks were predicted to be an m6A site by human pre-
dictor, demonstrating that our method is sensitive. For mouse, 207971 peaks were downloaded.
Among the 176770 peaks with at least one DRACH motif, 70.4% were predicted to contain at
least one m6A site by the mouse predictor. What should also be noticed is that a considerable
fraction (51% for human and 53% for mouse) of the peaks were predicted to harbor multiple
m6A sites. This observation is quite consistent with the previous report that multiple m6A sites
can appear in clusters and may be detected underneath the same m6A peak [4].

To further evaluate the performance of RNAMethPre, we compared it with the predictors
in the recently developed web server SRAMP [14]. Since SRAMP only includes mammalian
predictors, the comparison was limited to mammals for both prediction modes. As shown in
Table 2, AUROC and AUPR for RNAMethPre were comparable to those of SRAMP for full
transcript mode. However, for mature mRNA mode, AUROC of RNAMethPre was 5% higher
and AUPR was 6% higher than those of SRAMP. The sensitivity and MCC of RNAMethPre
were also higher than those of SRAMP for the same specificities in either mode (Table 1).
These results clearly indicated that the performance of RNAMethPre is superior to that of its
counterpart in predicting methylated sites of mRNA

Application of the method to identify transcriptome-wide m6A sites

A limited number of experiments have identified m6A peaks or sites using high-throughput
methods, but these do not capture all m6A sites because the m6A modification is dynamic and
tissue-specific. Here, we applied RNAMethPre to identify all potential sites that can be methyl-
ated across the human transcriptome using a moderate confidence threshold in mature mRNA
mode. A total of 203106 confident m6A sites were identified for 58939 human mRNA
sequences (refSeq, hg19). For mouse, 267521 confident m6A sites were identified for 35842
mRNA sequences (refSeq, mm9). The prediction results uncovered all potential m6A sites

Prediction and Query of m6A Sites
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Fig 3. Performances of the Mammalian Classifiers on Independent Testing Datasets. (A) ROC curve illustrating the

performance on the unbalanced independent testing dataset in full transcript mode. (B) Precision-recall curve illustrating the

performance on the unbalanced independent testing dataset of full transcript mode. (C) ROC curve illustrating the

performance on the unbalanced independent testing dataset of mature mRNA mode. (D) Precision-recall curve illustrating

the performance on the unbalanced independent testing dataset of mature mRNA mode.

doi:10.1371/journal.pone.0162707.g003

Table 1. Performance of RNAMethPre for various stringency thresholds and comparison with SRAMP.

Predictor Confidence Specificity Sensitivity MCC

Rnamethpre Sramp Rnamethpre Sramp

Mature mRNA mode High 90.0% 46.8% 44.0% 0.311 0.293

Moderate 85.2% 56.0% 54.2% 0.305 0.294

Low 80.0% 63.8% - 0.298 -

Full transcript mode High 93.0% 64.0% 50.3% 0.496 0.405

Moderate 88.0% 74.0% 64.5% 0.465 0.385

Low 83.0% 81.0% 72.8% 0.435 0.414

doi:10.1371/journal.pone.0162707.t001
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across the transcriptome and provided a powerful supplement to current high-throughput
data. All these predicted sites are available for query or download on our web server.

We also applied the prediction method to assign specific methylated sites in previously
identified m6A-seq peaks. Typically, m6A-seq peaks are 100–200 nt, and previous identifica-
tions of m6A residues are limited to one site per peak, i.e., the site in the consensus motif that is
nearest to the peak summit or center. This approach misses a substantial portion of clustered
m6A sites. However, it is not appropriate to classify all sites in DRACH motifs in peaks as
methylated, since not all DRACH motifs are methylated. We identified specific m6A sites in
previously detected peaks, and a considerable fraction of the peaks were predicted to harbor
multiple m6A sites.

Web server

As described on the home page of RNAMethPre (Fig 4), the web server contains two parts:
“Query” and “Predict.” In the “Predict” section, the input is the RNA or DNA sequence in

Table 2. Comparison of RNAMethPre with the Existing Web Server SRAMP using Independent Unbalanced Datasets.

Predictor Mode AUROC AUPR

RNAMethPre full transcript 0.886 0.560

SRAMP full transcript 0.891 0.523

RNAMethPre mature mRNA 0.856 0.488

SRAMP mature mRNA 0.797 0.312

doi:10.1371/journal.pone.0162707.t002

Fig 4. The user interface of the RNAMethPre web server.

doi:10.1371/journal.pone.0162707.g004
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FASTA format. Users have the option to choose the full transcript mode or the mature mRNA
mode, for genomic or mature mRNA sequence data. Users can select the taxon, i.e., human,
mouse, or mammal, as appropriate. The results table reports the ID of the input sequence, posi-
tion of the predicted site, flanking sequence, and prediction threshold. A link to download the
prediction results is provided on the top of the results table. The prediction speed is fast. There-
fore, RNAMethPre was suitable for batch operation; users can submit more than one mRNA
sequence for prediction simultaneously and obtain fast prediction results.

The database of predicted as well as experimentally determined high-throughput m6A sites
or peaks across the whole transcriptome is built at the back end of the server. For the predicted
sites part, there are 443485 human m6A sites and 406519 mouse m6A sites. For the experimen-
tally peaks part, the database contains 25 m6A peaks datasets of human and 18 m6A peak data-
sets of mouse which are the m6A peaks identified in different tissues or conditions.
Accordingly, in the “Query” section, users can view the m6A sites in a queried gene within sec-
onds. In addition to the detailed results table describing each predicted m6A site in the query
gene, a genome browser based on JBrowse [20] was built to visualize all query results (Fig 5). In
the browser, users can select a particular tissue type and can conveniently check predicted or
experimental m6A sites and peaks.

Conclusion

RNAMethPre employed SVM methods to build classifiers to predict m6A modifications of
mammalian mRNA and was effective for both full transcript mode and mature mRNA
mode. The web server is user-friendly and comprehensive, providing not only a highly effi-
cient m6A prediction service, but also a database of predicted m6A sites as well as experimen-
tal m6A sites and peaks across the transcriptome for query and visualization. Future
developments include the improvement of performance by incorporating more effective fea-
tures and the support of data from additional species with single-nucleotide resolution m6A
sites. RNAMethPre provides a basis for understanding the broad functional effects and gen-
eral properties of m6A modifications.

Fig 5. The genome browser to visualize the query results.

doi:10.1371/journal.pone.0162707.g005
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