Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-[(3-Bromo-4-hydroxy-5-methoxyphenyl)methylidene]bis(3-hydroxy-5,5dimethylcyclohex-2-en-1-one)

V. Sughanya* and N. Sureshbabu

Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu India

Correspondence e-mail: saisukanyashri@gmail.com

Received 25 August 2012; accepted 3 September 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.095; data-to-parameter ratio = 15.1.

In the title compound, $C_{24}H_{29}BrO_6$, the dihedral angle between the cyclohexenone mean planes is $57.63 (2)^{\circ}$ while the dihedral angles between the benzene ring and the cyclohexenone mean planes are 58.42(2) and $69.08(3)^{\circ}$. The two cyclohexenone rings both show an envelope conformation, with the C atom bearing two methyl groups as the flap atom in each ring. Two intramolecular O-H···O hydrogen bonds occur. In the crystal, molecules are linked via pairs of $O-H \cdots O$ hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis of bisdimedones, see: Vanag & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996); Jonathan et al. (1988). For crystal structures of related xanthene derivatives, see: Odabaşoğlu et al. (2008); Mehdi et al. (2011); Ravikumar et al. (2012); Sureshbabu & Sughanya (2012). For the assignment of ring conformations, see: Cremer & Pople (1975).

 \times 0.20 mm

22187 measured reflections

 $R_{\rm int} = 0.031$

4313 independent reflections

3395 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{24}H_{29}BrO_6$	$V = 2321.97 (13) \text{ Å}^3$
$M_r = 493.38$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.7479 (4) Å	$\mu = 1.81 \text{ mm}^{-1}$
b = 19.3706 (6) Å	T = 296 K
c = 11.5958 (4) Å	$0.30 \times 0.20 \times 0.20$ r
$\beta = 118.365 \ (1)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.604, \ T_{\max} = 0.765$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	285 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4313 reflections	$\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline O5-H5A\cdots O3^{i}\\ O3-H3\cdots O2\\ O1-H1\cdots O4 \end{array}$	0.82	2.12	2.852 (2)	149
	0.82	1.97	2.615 (2)	135
	0.82	1.82	2.640 (2)	174

Symmetry code: (i) -x + 1, -y, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the intensity data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2397).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hideo, T. (1981). Jpn Kokai Tokkyo Koho JP, 56 005480.

Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.

Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117

Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Mehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1449.

- Odabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E**64**, o681.
- Poupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67–71.
- Ravikumar, N., Gopikrishna, G. & Solomon, K. A. (2012). Acta Cryst. E68, o265.
- Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, R. E. & Subramanian, K. (1996). J. Nat. Prod. 59, 664–667.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sureshbabu, N. & Sughanya, V. (2012). *Acta Cryst.* E68, o2638. Vanag, G. Y. & Stankevich, E. L. Z. (1960). *Obshch. Khim.* **30**, 3287–3290.

supplementary materials

Acta Cryst. (2012). E68, o2875-o2876 [doi:10.1107/S1600536812037853]

2,2'-[(3-Bromo-4-hydroxy-5-methoxyphenyl)methylidene]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one)

V. Sughanya and N. Sureshbabu

Comment

Xanthene derivatives possess biological properties such as antibacterial, antiviral and anti-inflammatory activities (Jonathan *et al.*, 1988) and are used in medicine. Several methods have been reported in the literature for the synthesis of the title compound (Vanag & Stankevich, 1960; Hilderbrand & Weissleder, 2007). In view of the importance of the title compound, we herein report its crystal structure.

In the title compound, the cyclohexenone rings C3–C8 and C10–C15 both adopt envelope conformations, with flap atoms C3 and C13, respectively. The dihedral angle between the two cyclohexenone planes Q(C4/C5/C6/C7/C8) and R(C10/C11/C12/C14/C15) is 57.63 (2)°. The dihedral angle between the phenyl ring P(C18-C23) and the cyclohexenone planes Q and R are 58.42 (2)° and 69.08 (3)°, respectively. The hydroxy and carbonyl oxygen atoms face to each other and are oriented to allow for the formation of intermolecular as well as intramolecular O—H…O hydrogen bonds (Table 1, Fig.2), typical for xanthene derivatives.

Experimental

The title compound was prepared in single stage. A mixture of 3-bromo-4-hydroxy-5-methoxy-benzaldehyde (1.84 g, 8 mmol), 5,5-dimethyl cyclohexane-1,3-dione (2.24 g, 16 mmol) and 20 ml of ethanol was heated to 70°C for about 10 minutes. The reaction mixture was allowed to cool to room temperature and the resulting title compound 2,2'-((3-Bromo-4-hydroxy -5-methoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) was filtered and dried. The crystal used for data collection was obtained by crystallisation from ethanol at room temperature.(m.pt. 491 K, Yield 85%).

Refinement

All hydrogen atoms were identified from difference electron density peaks and subsequently treated as riding atoms with $d(Csp^2-H) = 0.93 \text{ Å}$, d(Cmethyl-H) = 0.96 Å, d(Cmethylene-H) = 0.97 Å, d(Cmethine-H) = 0.98 Å; d(O-H) = 0.82 Å; $U_{iso}(H) = x U_{eq}(C,O)$, where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

A view of the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

A view of the packing in the crystal structure, showing intermolecular as well as intramolecular O—H…O hydrogen bonds as dotted lines.

2,2'-[(3-Bromo-4-hydroxy-5-methoxyphenyl)methylidene]bis(3- hydroxy-5,5-dimethylcyclohex-2-en-1-one)

F(000) = 1024 $D_x = 1.411 \text{ Mg m}^{-3}$

 $\theta = 2.1 - 25.4^{\circ}$ $\mu = 1.81 \text{ mm}^{-1}$

Block, yellow

T = 296 K

Melting point: 491 K

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7579 reflections

Crystal data

C₂₄H₂₉BrO₆ $M_r = 493.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.7479 (4) Å b = 19.3706 (6) Å c = 11.5958 (4) Å $\beta = 118.365$ (1)° V = 2321.97 (13) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	22187 measured reflections
diffractometer	4313 independent reflections
Radiation source: fine-focus sealed tube	3395 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
ω and φ scan	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2004)	$k = -23 \rightarrow 19$
$T_{\min} = 0.604, \ T_{\max} = 0.765$	$l = -14 \rightarrow 13$

Refinement

ondary atom site location: difference Fourier
ip
rogen site location: inferred from
ighbouring sites
tom parameters constrained
$1/[\sigma^2(F_o^2) + (0.0471P)^2 + 1.1375P]$
here $P = (F_o^2 + 2F_c^2)/3$
$c_{max} = 0.002$
$_{\rm ax} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
$h_{\rm in} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.2613 (3)	0.26315 (17)	0.2601 (3)	0.0659 (9)
H1A	1.2246	0.3011	0.2005	0.099*
H1B	1.2871	0.2277	0.2194	0.099*
H1C	1.3354	0.2788	0.3383	0.099*
C2	1.1247 (3)	0.28939 (14)	0.3665 (3)	0.0577 (7)
H2A	1.0575	0.2722	0.3835	0.087*
H2B	1.0948	0.3300	0.3128	0.087*
H2C	1.1994	0.3007	0.4479	0.087*
C3	1.1605 (2)	0.23420 (13)	0.2953 (2)	0.0417 (6)
C4	1.0407 (2)	0.21187 (13)	0.1703 (2)	0.0397 (5)
H4A	0.9988	0.2525	0.1187	0.048*
H4B	1.0674	0.1831	0.1190	0.048*
C5	0.9453 (2)	0.17286 (11)	0.1961 (2)	0.0328 (5)
C6	0.98674 (19)	0.12637 (11)	0.3011 (2)	0.0306 (5)
C7	1.1163 (2)	0.12824 (11)	0.3968 (2)	0.0346 (5)
C8	1.2146 (2)	0.17062 (13)	0.3816 (2)	0.0407 (6)
H8A	1.2567	0.1417	0.3448	0.049*
H8B	1.2801	0.1853	0.4678	0.049*
C9	0.89559 (19)	0.07694 (11)	0.3184 (2)	0.0303 (5)
H9	0.9536	0.0432	0.3824	0.036*
C10	0.8246 (2)	0.10924 (11)	0.3857 (2)	0.0310 (5)
C11	0.7081 (2)	0.14463 (11)	0.3181 (2)	0.0341 (5)
C12	0.6363 (2)	0.17136 (13)	0.3861 (3)	0.0460 (6)
H12A	0.5443	0.1697	0.3257	0.055*
H12B	0.6597	0.2193	0.4093	0.055*
C13	0.6627 (2)	0.13151 (14)	0.5090 (3)	0.0468 (6)

C14	0.8083 (2)	0.12723 (14)	0.5938 (2)	0.0449 (6)
H14A	0.8404	0.1723	0.6321	0.054*
H14B	0.8274	0.0952	0.6651	0.054*
C15	0.8790 (2)	0.10448 (12)	0.5219 (2)	0.0365 (5)
C16	0.6047 (3)	0.05929 (17)	0.4753 (3)	0.0685 (9)
H16A	0.5151	0.0624	0.4109	0.103*
H16B	0.6119	0.0375	0.5529	0.103*
H16C	0.6504	0.0325	0.4410	0.103*
C17	0.6055 (3)	0.16999 (19)	0.5846 (3)	0.0728 (9)
H17A	0.6405	0.2158	0.6044	0.109*
H17B	0.6268	0.1459	0.6647	0.109*
H17C	0.5132	0.1724	0.5322	0.109*
C18	0.8103 (2)	0.03309 (11)	0.1981 (2)	0.0310 (5)
C19	0.8378 (2)	0.02503 (11)	0.0962 (2)	0.0353 (5)
H19	0.9051	0.0498	0.0954	0.042*
C20	0.7654 (2)	-0.01994 (12)	-0.0051 (2)	0.0379 (5)
C21	0.6656 (2)	-0.05795 (12)	-0.0079 (2)	0.0348 (5)
C22	0.6402 (2)	-0.05102 (12)	0.0971 (2)	0.0339 (5)
C23	0.7111 (2)	-0.00615 (12)	0.1986 (2)	0.0329 (5)
H23	0.6926	-0.0021	0.2678	0.039*
C24	0.5090 (2)	-0.09167 (15)	0.1878 (3)	0.0520 (7)
H24A	0.5833	-0.1052	0.2678	0.078*
H24B	0.4397	-0.1236	0.1681	0.078*
H24C	0.4825	-0.0462	0.1978	0.078*
01	1.16091 (15)	0.09328 (9)	0.50350 (16)	0.0475 (4)
H1	1.1050	0.0897	0.5264	0.057*
O2	0.82574 (15)	0.18263 (9)	0.11431 (16)	0.0440 (4)
O3	0.65632 (14)	0.15767 (9)	0.19490 (15)	0.0423 (4)
Н3	0.7021	0.1421	0.1654	0.051*
O4	0.99402 (16)	0.08135 (9)	0.59430 (16)	0.0464 (4)
05	0.59553 (16)	-0.10130 (9)	-0.10871 (17)	0.0499 (5)
H5A	0.5327	-0.1152	-0.1027	0.060*
O6	0.54020 (16)	-0.09165 (9)	0.08626 (16)	0.0461 (4)
Br1	0.80247 (3)	-0.027192 (18)	-0.14649 (3)	0.06469 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0487 (16)	0.076 (2)	0.072 (2)	-0.0183 (15)	0.0283 (15)	0.0118 (16)
C2	0.0609 (17)	0.0437 (16)	0.0598 (18)	-0.0099 (14)	0.0214 (14)	-0.0080 (13)
C3	0.0372 (12)	0.0411 (14)	0.0468 (14)	-0.0109 (11)	0.0200 (11)	-0.0024 (11)
C4	0.0404 (13)	0.0394 (14)	0.0424 (13)	-0.0010 (11)	0.0222 (11)	0.0035 (10)
C5	0.0335 (11)	0.0303 (12)	0.0341 (12)	-0.0008 (9)	0.0156 (10)	-0.0040 (9)
C6	0.0285 (10)	0.0265 (12)	0.0351 (12)	-0.0011 (9)	0.0137 (9)	-0.0023 (9)
C7	0.0341 (11)	0.0296 (12)	0.0379 (12)	0.0008 (10)	0.0153 (10)	-0.0018 (10)
C8	0.0280 (11)	0.0456 (15)	0.0456 (14)	-0.0060 (10)	0.0152 (10)	-0.0022 (11)
C9	0.0280 (10)	0.0271 (12)	0.0315 (11)	-0.0016 (9)	0.0105 (9)	0.0011 (9)
C10	0.0311 (11)	0.0259 (12)	0.0352 (12)	-0.0065 (9)	0.0152 (9)	-0.0019 (9)
C11	0.0303 (11)	0.0276 (12)	0.0409 (13)	-0.0081 (9)	0.0141 (10)	-0.0047 (9)
C12	0.0352 (12)	0.0471 (15)	0.0557 (16)	-0.0010 (11)	0.0217 (12)	-0.0104 (12)

Acta Cryst. (2012). E68, o2875-o2876

C13	0.0421 (13)	0.0542 (17)	0.0528 (15)	-0.0160 (12)	0.0295 (12)	-0.0129 (12)
C14	0.0467 (14)	0.0525 (16)	0.0411 (14)	-0.0143 (12)	0.0255 (12)	-0.0080 (11)
C15	0.0379 (12)	0.0300 (12)	0.0402 (13)	-0.0094 (10)	0.0175 (11)	-0.0027 (10)
C16	0.0684 (19)	0.072 (2)	0.076 (2)	-0.0374 (17)	0.0432 (17)	-0.0181 (17)
C17	0.0594 (18)	0.099 (3)	0.078 (2)	-0.0160 (18)	0.0469 (17)	-0.0260 (19)
C18	0.0276 (10)	0.0262 (12)	0.0342 (11)	0.0003 (9)	0.0107 (9)	-0.0006 (9)
C19	0.0285 (11)	0.0355 (13)	0.0424 (13)	-0.0033 (9)	0.0173 (10)	-0.0054 (10)
C20	0.0345 (12)	0.0436 (14)	0.0375 (12)	0.0020 (10)	0.0188 (10)	-0.0048 (10)
C21	0.0308 (11)	0.0318 (12)	0.0350 (12)	0.0002 (10)	0.0100 (10)	-0.0054 (9)
C22	0.0288 (11)	0.0285 (12)	0.0398 (12)	-0.0036 (9)	0.0125 (10)	0.0015 (10)
C23	0.0344 (12)	0.0310 (12)	0.0331 (12)	-0.0013 (10)	0.0159 (10)	0.0014 (9)
C24	0.0421 (14)	0.0511 (17)	0.0687 (18)	-0.0103 (12)	0.0310 (13)	0.0051 (13)
01	0.0329 (8)	0.0556 (11)	0.0452 (10)	-0.0014 (8)	0.0115 (8)	0.0117 (8)
O2	0.0321 (8)	0.0451 (10)	0.0447 (9)	0.0018 (7)	0.0101 (7)	0.0096 (8)
O3	0.0345 (8)	0.0473 (10)	0.0418 (10)	0.0010(7)	0.0153 (7)	0.0044 (8)
O4	0.0424 (9)	0.0513 (11)	0.0361 (9)	0.0028 (8)	0.0110 (8)	0.0070 (8)
05	0.0421 (9)	0.0560 (11)	0.0485 (10)	-0.0165 (8)	0.0189 (8)	-0.0213 (8)
O6	0.0437 (9)	0.0443 (10)	0.0461 (10)	-0.0162 (8)	0.0179 (8)	-0.0066 (8)
Br1	0.0637 (2)	0.0859 (3)	0.0594 (2)	-0.01735 (16)	0.04152 (16)	-0.02778 (15)

Geometric parameters (Å, °)

C1—C3	1.530 (3)	C13—C14	1.517 (3)
C1—H1A	0.9600	C13—C16	1.523 (4)
C1—H1B	0.9600	C13—C17	1.528 (4)
C1—H1C	0.9600	C14—C15	1.497 (3)
C2—C3	1.526 (4)	C14—H14A	0.9700
C2—H2A	0.9600	C14—H14B	0.9700
C2—H2B	0.9600	C15—O4	1.286 (3)
C2—H2C	0.9600	C16—H16A	0.9600
C3—C8	1.522 (3)	C16—H16B	0.9600
C3—C4	1.527 (3)	C16—H16C	0.9600
C4—C5	1.496 (3)	C17—H17A	0.9600
C4—H4A	0.9700	C17—H17B	0.9600
C4—H4B	0.9700	C17—H17C	0.9600
С5—О2	1.282 (3)	C18—C19	1.374 (3)
C5—C6	1.402 (3)	C18—C23	1.393 (3)
С6—С7	1.394 (3)	C19—C20	1.384 (3)
С6—С9	1.520 (3)	C19—H19	0.9300
C7—O1	1.284 (3)	C20—C21	1.371 (3)
С7—С8	1.494 (3)	C20—Br1	1.891 (2)
C8—H8A	0.9700	C21—O5	1.355 (3)
C8—H8B	0.9700	C21—C22	1.392 (3)
C9—C10	1.521 (3)	C22—O6	1.369 (3)
C9—C18	1.531 (3)	C22—C23	1.379 (3)
С9—Н9	0.9800	C23—H23	0.9300
C10-C11	1.392 (3)	C24—O6	1.390 (3)
C10-C15	1.397 (3)	C24—H24A	0.9600
C11—O3	1.284 (3)	C24—H24B	0.9600
C11—C12	1.494 (3)	C24—H24C	0.9600

C12—C13	1.518 (4)	O1—H1	0.8200
C12—H12A	0.9700	O3—H3	0.8200
C12—H12B	0.9700	O5—H5A	0.8200
C3—C1—H1A	109.5	H12A—C12—H12B	107.7
C3—C1—H1B	109.5	C14—C13—C12	107.49 (19)
H1A—C1—H1B	109.5	C14—C13—C16	110.2 (2)
C3—C1—H1C	109.5	C12—C13—C16	111.1 (2)
H1A—C1—H1C	109.5	C14—C13—C17	108.8 (2)
H1B—C1—H1C	109.5	C12—C13—C17	110.0 (2)
C3—C2—H2A	109.5	C16—C13—C17	109.3 (2)
C3—C2—H2B	109.5	C15—C14—C13	114.1 (2)
H2A—C2—H2B	109.5	C15—C14—H14A	108.7
C3—C2—H2C	109.5	C13—C14—H14A	108.7
H2A—C2—H2C	109.5	C15—C14—H14B	108.7
H2B-C2-H2C	109.5	C13—C14—H14B	108.7
C8-C3-C4	107.66 (19)	H14A—C14—H14B	107.6
C8-C3-C2	110 3 (2)	04-C15-C10	122.4(2)
C4-C3-C2	110.2(2)	04-C15-C14	1153(2)
$C_{8} - C_{3} - C_{1}$	109.7(2)	C10-C15-C14	1222(2)
C4-C3-C1	109.7(2) 109.4(2)	C_{13} C_{16} H_{16A}	109 5
C_{2} C_{3} C_{1}	109.1(2) 109.5(2)	C_{13} C_{16} H_{16B}	109.5
$C_{2} = C_{3} = C_{1}$	109.3(2) 113 19(19)	H_{164} $-C_{16}$ H_{16B}	109.5
$C_5 = C_4 = C_5$	108.0	$C_{13} = C_{16} = H_{16}C$	109.5
$C_3 - C_4 - H_4 \Delta$	108.9	$H_{16} - C_{16} - H_{16} C_{16}$	109.5
$C_5 C_4 H_4 B$	108.9	HI6B C16 HI6C	109.5
$C_3 = C_4 = H_4 B$	108.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	107.9	C_{13} C_{17} H_{17} H_{17}	109.5
$\Pi 4A - C4 - \Pi 4D$	107.0 122.0(2)	1174 177 177 1170	109.5
02 - 03 - 00	122.9(2)	H1/A - C1/-H1/B	109.5
02-03-04	110.1(2) 120.02(10)		109.5
$C_{0} - C_{3} - C_{4}$	120.95(19)	H1/A - C1/ - H1/C	109.5
C^{-}	110.1(2)	HI/B - CI/-HI/C	109.3
$C_{}C_{0}C_{9}$	118.84 (19)	C19 - C18 - C23	118.7(2)
C_{3}	122.94 (18)	C19 - C18 - C9	121.83 (19)
01 - 07 - 06	123.0 (2)	C_{23} C_{18} C_{9} C_{18} C_{9} C_{18} C_{9} C_{18} C_{1	119.05 (19)
01 - 07 - 08	114./5 (19)	C18 - C19 - C20	120.1 (2)
	122.2 (2)	C18—C19—H19	120.0
C7—C8—C3	114.66 (18)	C20—C19—H19	120.0
С7—С8—Н8А	108.6	C21—C20—C19	122.1 (2)
C3—C8—H8A	108.6	C21—C20—Br1	119.08 (17)
С7—С8—Н8В	108.6	C19—C20—Br1	118.78 (17)
C3—C8—H8B	108.6	05-C21-C20	121.0 (2)
H8A—C8—H8B	107.6	O5—C21—C22	121.3 (2)
C6—C9—C10	113.66 (17)	C20—C21—C22	117.6 (2)
C6—C9—C18	115.23 (17)	06—C22—C23	125.8 (2)
C10—C9—C18	114.48 (17)	O6—C22—C21	113.30 (19)
С6—С9—Н9	103.9	C23—C22—C21	120.9 (2)
С10—С9—Н9	103.9	C22—C23—C18	120.5 (2)
С18—С9—Н9	103.9	С22—С23—Н23	119.7

C11—C10—C15	118.0 (2)	C18—C23—H23	119.7
C11—C10—C9	123.07 (19)	O6—C24—H24A	109.5
C15—C10—C9	118.96 (19)	O6—C24—H24B	109.5
O3—C11—C10	122.9 (2)	H24A—C24—H24B	109.5
O3—C11—C12	115.5 (2)	O6—C24—H24C	109.5
C10-C11-C12	121.6 (2)	H24A—C24—H24C	109.5
C11—C12—C13	113.9 (2)	H24B—C24—H24C	109.5
C11—C12—H12A	108.8	C7—O1—H1	109.5
C13—C12—H12A	108.8	С11—О3—Н3	109.5
C11—C12—H12B	108.8	C21—O5—H5A	109.5
C13—C12—H12B	108.8	C22—O6—C24	118.84 (19)
C8—C3—C4—C5	51.8 (3)	C11—C12—C13—C16	-69.2 (3)
C2—C3—C4—C5	-68.5 (3)	C11—C12—C13—C17	169.7 (2)
C1—C3—C4—C5	171.0 (2)	C12—C13—C14—C15	-48.5 (3)
C3—C4—C5—O2	145.4 (2)	C16—C13—C14—C15	72.7 (3)
C3—C4—C5—C6	-37.2 (3)	C17—C13—C14—C15	-167.5 (2)
O2—C5—C6—C7	-169.1 (2)	C11—C10—C15—O4	-170.2 (2)
C4—C5—C6—C7	13.7 (3)	C9—C10—C15—O4	8.7 (3)
O2—C5—C6—C9	7.6 (3)	C11—C10—C15—C14	8.6 (3)
C4—C5—C6—C9	-169.5 (2)	C9-C10-C15-C14	-172.5 (2)
C5—C6—C7—O1	172.3 (2)	C13—C14—C15—O4	-160.8 (2)
C9—C6—C7—O1	-4.6 (3)	C13—C14—C15—C10	20.3 (3)
C5—C6—C7—C8	-8.7 (3)	C6—C9—C18—C19	16.9 (3)
C9—C6—C7—C8	174.4 (2)	C10-C9-C18-C19	151.5 (2)
O1—C7—C8—C3	-153.3 (2)	C6—C9—C18—C23	-170.77 (19)
C6—C7—C8—C3	27.6 (3)	C10-C9-C18-C23	-36.2 (3)
C4—C3—C8—C7	-47.4 (3)	C23—C18—C19—C20	1.7 (3)
C2—C3—C8—C7	72.9 (3)	C9—C18—C19—C20	174.1 (2)
C1—C3—C8—C7	-166.4 (2)	C18—C19—C20—C21	-0.4 (3)
C7—C6—C9—C10	93.2 (2)	C18—C19—C20—Br1	177.86 (17)
C5—C6—C9—C10	-83.6 (3)	C19—C20—C21—O5	179.5 (2)
C7—C6—C9—C18	-131.8 (2)	Br1-C20-C21-O5	1.3 (3)
C5—C6—C9—C18	51.4 (3)	C19—C20—C21—C22	-1.3 (3)
C6-C9-C10-C11	87.2 (2)	Br1-C20-C21-C22	-179.51 (17)
C18—C9—C10—C11	-48.1 (3)	O5-C21-C22-O6	0.0 (3)
C6—C9—C10—C15	-91.7 (2)	C20—C21—C22—O6	-179.2 (2)
C18—C9—C10—C15	133.0 (2)	O5—C21—C22—C23	-179.2 (2)
C15—C10—C11—O3	173.1 (2)	C20—C21—C22—C23	1.6 (3)
C9—C10—C11—O3	-5.7 (3)	O6—C22—C23—C18	-179.4 (2)
C15—C10—C11—C12	-5.5 (3)	C21—C22—C23—C18	-0.2 (3)
C9—C10—C11—C12	175.6 (2)	C19—C18—C23—C22	-1.4 (3)
O3—C11—C12—C13	155.0 (2)	C9—C18—C23—C22	-174.0 (2)
C10-C11-C12-C13	-26.3 (3)	C23—C22—O6—C24	-3.6 (3)
C11—C12—C13—C14	51.4 (3)	C21—C22—O6—C24	177.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
O5—H5 <i>A</i> ···O3 ⁱ	0.82	2.12	2.852 (2)	149	
O3—H3…O2	0.82	1.97	2.615 (2)	135	
O1—H1…O4	0.82	1.82	2.640 (2)	174	

Symmetry code: (i) -x+1, -y, -z.