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Abstract: Fescue toxicosis is a multifaceted syndrome that elicits many negative effects on livestock
consuming ergot alkaloids produced by endophyte-infected tall fescue. The economic losses
associated with fescue toxicosis are primarily due to reproductive failure including altered cyclicity,
suppressed hormone secretion, reduced pregnancy rates, agalactia, and reduced offspring birth
weights. For decades, a multitude of research has investigated the physiological and cellular
mechanisms of these reproductive failures associated with fescue toxicosis. This review will
summarize the various effects of ergot alkaloids on female reproduction in grazing livestock species.
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Key Contribution: Exposure to ergot alkaloids negatively impacts many reproductive processes
in domestic livestock species and this manuscript explores the various effects of ergot alkaloids on
reproductive tissues, provides an up-to-date summary of the latest data, and emphasizes the need for
more mechanistic studies to increase our understanding of ergot alkaloid toxicity.

1. Introduction

Ergot alkaloid mycotoxins were first identified in Claviceps, a parasitic fungus that infects many
grasses and grains [1]. These mycotoxins are produced by a variety of fungi, including Neotyphodium
and Epichloë, and classified as the tall fescue endophyte [1–3]. Specifically, Epichloë coenophiala is
recognized as the endophyte that shares a symbiotic relationship with Kentucky (KY)-31 tall fescue
(Lolium arundinaceum [Schreb.] Darbysh; [4]). Chronic consumption of Epichloë coenophiala-produced
ergot alkaloids in grazing livestock results in a syndrome known as fescue toxicosis [5]. With KY-31
being estimated to be grown on 35 million acres of land in the Southeast to Midwest U.S. regions
and that 90% of these pastures are infected with the Epichloë endophyte [6–8], it is speculated
that fescue toxicosis contributes to over $2 billion in annual economic loss to the U.S. livestock
industries [9]. Detrimental signs of this syndrome include reduced intake, weight gain, circulating
prolactin concentrations, reproductive performance, milk production, and hyperthermia [10]. Many of
these signs of fescue toxicosis can be attributed to the structural similarities between ergot alkaloids and
monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine), which elicit agonistic
effects on numerous monoamine receptors [11–15]. While many livestock species do experience ergot
alkaloid-induced effects on productivity, there is a high variability between individual animal responses
to exposure. However, across livestock species, there have been consistent reports indicating that ergot
alkaloids cause issues with reproductive performance, including reduced pregnancy rates, circulating
hormone concentrations, blood flow to reproductive organs, and offspring birth weight [16]. Therefore,
this review will focus on the various effects of ergot alkaloids (e.g., physiologic, mechanistic, etc.) on
female reproduction in livestock species.
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2. Ergot Alkaloids and the Brain

Ergot alkaloids share many structural similarities to monoamine neurotransmitters, and thus
interact on the various monoamine receptors within the brain. Specifically, the cells within the
anterior pituitary contain monoamine receptors and therefore ergot alkaloids may interfere with the
physiological processes regulated by the anterior pituitary. The anterior pituitary can be divided into five
endocrine cell types based on morphology and functional role: Somatotrophs (growth hormone (GH)),
corticotrophs (adrenocorticotropic hormone (ACTH)), thyrotrophs (thyroid-stimulating hormone
(TSH)), lactotrophs (prolactin (PRL)), and gonadotrophs (luteinizing hormone (LH) and follicle
stimulating hormone (FSH)) [17]. While it does not appear that ergot alkaloids affect secretion of
GH and TSH, there is great evidence that ergot alkaloids alter secretion of ACTH, PRL, and LH and
FSH [12,18,19].

2.1. Dopamine Receptor D2 and Prolactin Secretion

A common symptom of fescue toxicosis is a suppression in prolactin secretion (i.e.,
hypoprolactinemia; [20,21]). Secretion of prolactin is predominantly regulated by hypothalamic
prolactin-inhibiting factors, specifically the monoamine neurotransmitter dopamine [22]. Dopamine is
considered the major regulator of prolactin secretion, and secretion is inhibited when dopamine is
bound to its receptor on the lactotrophs of the anterior pituitary [23,24]. There are five isoforms of
dopamine receptors that are divided into two subfamilies: D1-like, which is comprised of D1 and D5,
and D2-like, which is comprised of D2, D3, and D4 [25]. On the pituitary lactotrophs, the dopamine
receptors are primarily the dopamine receptor D2 (DRD2) [26]. The dopamine receptor D2 is coupled
to a Giα protein, which inhibits adenylyl cyclase activity, cyclic adenosine monophosphate (cAMP),
and cytoplasmic calcium concentrations when dopamine or an agonist is bound [27,28], thus resulting
in a suppression of prolactin secretion.

Prolactin concentrations have been shown to be reduced in animals consuming endophyte-infected
tall fescue and this is often used as an indicator of fescue toxicosis [10]. Ergot alkaloids, specifically
ergovaline, have a high affinity towards DRD2 in vitro and elicit agonistic effects that result in a
decrease in prolactin secretion [29]. Moreover, a recent study conducted gene expression profiles of
pituitaries from steers grazing either high (HE; 746 parts per billion (ug/kg)) or low (LE; 23 ug/kg)
endophyte-infected tall fescue pastures [19]. Li et al. [19] demonstrated DRD2 and PRL expression
decreased in HE steers by 53% and 82%, respectively. Since PRL synthesis is directly related to DRD2
signaling pathway, a single nucleotide polymorphism (SNP) in the DRD2 gene could serve as a marker
for resistance to fescue toxicosis as proposed by Campbell et al. [30].

Prolactin plays a role in numerous biological functions, most notably in lactation, but also in
reproduction, immune responses, and metabolism [24]. Additionally, an elevation in prolactin is
associated with a rise in environmental temperature or longer day length (i.e., photoperiod; [31,32]),
and has been related to hair coat shedding in numerous species [33–36]. It has been speculated that
hyperprolactinemia due to consumption of ergot alkaloid prevents shedding of the winter hair coat,
therefore resulting in an elevation in core body temperature and increased vulnerability to heat stress
(i.e., hyperthermia; [36]). In regards to reproduction, the heat stress-like signs greatly associated with
fescue toxicosis have a large impact on reproductive success in livestock species and will be described
in further detail in further sections of this review. Additionally, the interaction between ergot alkaloids
and lactation, in which prolactin plays a critical role, will be discussed in greater detail in subsequent
sections of this review.

2.2. Gonadotropins

The gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are
produced by the gonadotrophs of the anterior pituitary in response to gonadotropin releasing hormone
(GnRH) secreted from the hypothalamus and govern reproductive cyclicity [37]. Browning Jr. et al. [38]
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demonstrated in steers receiving injections of ergotamine tartrate (23.8 µg/kg body weight) that LH
concentrations were reduced. Therefore, it was then investigated if acute ergot alkaloid exposure
(19 µg/kg body weight) would alter LH and FSH in primiparous cows during the late luteal phase
(day 15 or 16 post-estrus). Luteinizing hormone concentrations were reduced 4 h post injection,
however FSH concentrations did not differ between the cows receiving ergotamine tartrate and the
saline control [39]. An in vitro study using ovine pituitary cells demonstrated that bromocriptine
(ergocryptine derivative) inhibits LH and FSH secretion in response to GnRH [40]. Conversely, a
separate study found no differences in LH secretion in postpartum beef cows nor in cycling heifers and
cows [41]. Additional studies further described that ergot alkaloids do not suppress LH or equine
chorionic gonadotropin (eCG) in ewes or mares, respectively [42,43]. Most recently, Li et al. [19]
found minimal differences in pathways utilized for FSH and LH production, secretion, or signaling
from pituitary tissue collected from steers grazing either HE or LE fescue pastures. Variations in
ergot alkaloid source and concentration, route of administration, environmental conditions, and
physiological status of the animal could account for these discrepancies, and thus additional research
is needed to better understand the actions ergot alkaloids have on gonadotropin synthesis, secretion,
and functionality.

3. Ergot Alkaloids and Ovarian Function

Reproductive failure in cattle following ergot alkaloid exposure can be attributed to altered ovarian
follicle development, luteal dysfunction, and reduced circulating steroid hormone concentrations,
subsequently leading to reduced pregnancy rates [44]. Conversely, ergot alkaloid exposure has minimal
impact during reproductive cyclicity and a greater impact during pregnancy and post-partum in sheep
and mares. Specifically, in the mare resulting in prolonged gestation, late-term foal loss, dystocia,
thickened placentas, and agalactia [45], thus discussion on the effects of ergot alkaloids on ovarian
function will emphasize the data collected on cattle.

3.1. Ovarian Blood Flow

Ergot alkaloids induce a vasoconstrictive response by interacting with biogenic amine receptors
including serotonergic and adrenergic receptors [46]. Numerous studies have demonstrated ergot
alkaloid, specifically ergovaline and ergotamine, induced vasoconstriction via the serotonin 2A
(5-HT2A) receptor utilizing an in vitro bovine lateral saphenous vein bioassay [13,14]. Similarly, ergot
alkaloids have a high affinity towards α2-adrenergic receptors [47,48]. Additionally, a couple of studies
have used Doppler ultrasonography to show that heifers chronically exposed to endophyte-infected
tall fescue have reduced caudal artery area and blood flow to the peripheral arteries when compared
to heifers consuming endophyte-free tall fescue [49,50], however literature describing the extent to
which vasoconstriction occurs to the internal organs is limited [16].

Recently, Poole et al. [50] investigated if chronic exposure of ergot alkaloids would decrease
the diameter of the utero-ovarian blood vessels thus reducing systemic blood flow to the ovary
during various stages of the estrous cycle. Ovarian artery and vein area was measured via Doppler
ultrasonography on days 0, 4, 10, and 17 to represent both the follicular and luteal phases of the estrous
cycle. Ovarian artery area was not different on days 0 and 4, however ovarian artery area was reduced
on days 10 and 17 in heifers consuming ergot alkaloids. Additionally, minimal changes were observed
in the ovarian vein area, most likely due to the reduction of vascular smooth muscle cells surrounding
veins compared to arteries. Previous studies have demonstrated estrogen-induced vasodilation in
various arteries and veins [51], and increased estrogen concentration early in the estrous cycle may
have prevented the ergot alkaloid induced reduction in ovarian artery area that was observed during
the luteal phase [50]. Ultimately, ergot alkaloid induced vasoconstriction of the utero-ovarian vessels
would limit nutrients essential to ovarian function potentially altering sex steroid synthesis, altered
follicular, and/or luteal development as well as dysregulation of the estrous cycle.
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3.2. Folliculogenesis

As previously mentioned, the gonadotropins (LH and FSH) are produced by the anterior pituitary
in response to GnRH and govern reproductive cyclicity [37]. Follicle stimulating hormone initiates the
proliferation of granulosa cells and aid in the transition from primordial to primary and secondary
follicles. As these follicles grow and undergo selection, granulosa cells become more responsive to
LH and theca cells will produce androgens, which are converted primarily to estradiol (E2) in the
granulosa cells [52,53]. As E2 and inhibin concentrations produced by the growing selected follicles
increase, FSH production by the anterior pituitary is suppressed via negative feedback [54,55]. A few
selected follicles will continue to grow into dominance and produce more E2, while others will become
atretic. During the final follicular wave (post-luteolysis), large concentrations of E2 produced by the
preovulatory follicle will act via positive feedback to trigger the preoptic nucleus of the hypothalamus
to release a surge of GnRH, which will stimulate the anterior pituitary to release the preovulatory
surge of LH and ovulation will occur [56–58].

McKenzie and Erickson [59,60] observed a decrease in the diameter and number of large follicles
in heifers consuming endophyte-infected tall fescue (Table 1). Likewise, Burke and Rorie [61] examined
follicular development and estrogen concentrations in lactating beef cows grazing endophyte-free (EF)
or endophyte-infected (EI) tall fescue. No differences were found in the number of class 1 (small; 3 to
5 mm) and class 3 (large; >10 mm) antral follicles between treatments. Conversely, the number of class
2 (medium; 6–9 mm) follicles was reduced in cows grazing EI fescue compared to cows grazing EF
fescue (Table 1). Similarly, Poole et al. [50] observed that a 6 to 9 mm follicle number was reduced in
heifers consuming ergot alkaloids (Table 1). The 6 to 9 mm follicle size can be classified as selected
follicles, and are of critical importance to follicular development with the gonadotropin dependence
switching from FSH to LH. These results suggest that exposure to ergot alkaloids may hinder follicular
selection though inadequate delivery of gonadotropins and other nutrients due to insufficient blood
flow to the ovary.

Table 1. A review of the effects of ergot alkaloids and/or heat stress on follicular dynamics.

Alkaloid
(µg/kg/day) Heat Stress Average Daily

Gain Animal Effect Source

N/A N/A N/A Beef heifer Decrease in the diameter and
number of large follicles. [59]

N/A N/A N/A Beef heifer Decrease in the diameter and
number of large follicles. [60]

N/A
Possibly, grazing

from April to Sept. in
Arkansas

Reduced Mature beef
cows

Diameter of the largest follicle
tended to be smaller. No

difference in the number of small
or large follicles. Number of

medium sized follicles reduced.

[61]

10,310 total;
3910 ergovaline

Possibly, barn
temperature. 27 ◦C

and average THI 1 72

Reduced, same
intake Beef heifer

Number of medium sized follicles
reduced. No difference in the

number of small or large follicles
or diameter of largest follicle.

[50]

1900 ergovaline Yes, between 25 ◦C
and 31 ◦C

N/A, reduced
intake Beef heifer Decrease in the diameter and

number of large follicles. [62]

1000 total; 421
ergovaline Yes, average THI 88 Same Beef heifer

Decrease in the diameter and
number of small and large

follicles.
[63]

1 THI = temperature-humidity index; THI = (1.8 × Tdb +32) – ((0.55 – 0.0055 × RH) × (1.8 × Tdb – 26.8)); Tdb = dry
bulb temperature (◦C), and RH = relative humidity. Recovery (non-life threatening, 75) and emergency (high-risk,
85) thresholds as described by Hahn [64].

Furthermore, many of these signs in cattle exposed to ergot alkaloids are amplified during periods
of heat stress. The inability to maintain a thermoneutral body temperature due to increased ambient
temperatures has been previously shown to impair folliculogenesis [65,66]. Therefore, Burke et al. [62]
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investigated the interaction between heat stress and consumption of endophyte-infected fescue on
follicular dynamics. These authors controlled dietary intake for the heat stressed heifers on both diets
to minimize variation in intake. Heifers consuming the EI seed in heat stress conditions resulted in
a decreased number of large follicles (>9 mm) in addition to having a smaller preovulatory follicle
diameter compared to control heifers (Table 1). Recently, a genetic trait has been identified in Bos
taurus-influenced breeds, Senepol, and other Criollo cattle breeds, that is associated with high heat
tolerance and a slick hair coat [67–70]. This slick hair coat phenotype is due to a frame-shift mutation
in the prolactin receptor [70]. Therefore, Poole et al. [63] evaluated the effect of the slick trait and
exposure to ergot alkaloids on follicular dynamics in beef heifers. Dietary intake and average daily
gain (ADG) remained constant between groups. Heifers consuming the EI fescue with a wild-type hair
coat (lacking the slick hair mutation) had an increase in the number of preselected follicles (2 to 4 mm),
however, no change in the number of selected follicles (5 to 8 mm), yet a decrease in the number of
preovulatory follicles (>9 mm) compared to the other heifer groups (wild-type hair coat consuming EF
fescue and heifers with a slick-type hair coat consuming EI or EF fescue; Table 1). Intriguingly, this
lack of follicular transition indicates a dysregulation during follicular selection during folliculogenesis
that was not observed in heifers possessing the slick hair trait and consuming the EI fescue. Together,
both Burke et al. [62] and Poole et al. [63] demonstrated that heat stress altered fescue toxicosis and
alters the efficiency of ovarian follicular selection and dominance.

3.3. Corpus Luteum

The corpus luteum (CL) is a transient endocrine organ that forms on the ovary following ovulation.
When a follicle ovulates, the granulosa and theca cells undergo dramatic changes into luteal cells, a
process known as luteinization. Progesterone (P4) is the primary hormone produced by the CL and
has numerous functions including suppression of ovulation and maintenance of pregnancy. It has
been demonstrated that LH, not prolactin, is the predominant luteotropic hormone responsible for
maintenance of the CL and production of P4 in livestock species [71–73]. Specifically, the functionality
of the CL (i.e., production of P4) is dependent on the degree of vascularization or angiogenesis [74,75].

Due to the vasoconstrictive effects of ergot alkaloids, many researchers speculated that chronic
exposure would result in luteal dysfunction, thus reducing pregnancy rates. Estienne et al. [76]
observed a reduction in circulating P4 concentrations in heifers on endophyte-infected fescue even
though no differences in CL size or presence were observed via ultrasonography. Interestingly, a
separate study found that even if heifers appeared to be cycling and ovulating normally, there were
cellular changes (fewer nuclei and a greater number of large luteal cells with increased diameter) of the
CL in heifers grazing endophyte-infected fescue, which may contribute to altered functionality [77].
As previously mentioned, Poole et al. [63] observed a decrease in the diameter of the ovulatory follicle
in EI heifers, and because of the process of luteinization it is not surprising that the luteal area (mm2)
was also reduced in heifers consuming the EI fescue.

There have been varying reports regarding the impact of fescue toxicosis on luteal formation and
function with numerous findings observing no differences [50,78,79]. This variation in responses could
be due to the fact that circulatory ovarian steroid concentrations, specifically progesterone, are not
only dependent on the rate of secretion but also on the metabolism in the liver and on the incidence of
vasodilation or vasoconstriction.

3.4. Ovarian Steroidogenesis

One theory to explain the altered follicular dynamics and luteal dysfunction in animals consuming
endophyte-infected fescue is a reduction in the steroid hormone (E2 and P4) precursor, cholesterol.
Following synthesis in the liver from low-density and high-density lipoproteins; cholesterol must be
transported to the ovary for sex steroid synthesis in the thecal, granulosal, and luteal cells [80,81].
Few studies have shown a decrease in circulating cholesterol concentrations in cattle consuming EI
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tall fescue [62,82,83]. Moreover, Burke et al. [62] observed that heat stress conditions further reduced
cholesterol concentrations in heifers consuming EI fescue.

3.4.1. Estradiol

Estrogen production is a critical component of a healthy developing follicle [52] and essential
for reproductive success. Burke et al. [62] observed that E2 concentrations were reduced in heifers
consuming EI fescue compared to the control heifers in the thermoneutral environment, whereas
the additive effect of heat stress reduced E2 concentrations regardless of ergot alkaloid exposure.
However, these results were not observed in postpartum cows consuming either EF or EI tall fescue [61].
Interestingly, Poole et al. [63] demonstrated that EI heifers with a wild-type hair coat (heat stressed) had
decreased E2 concentrations, yet EI heifers possessing the slick hair trait had similar E2 concentrations
to EF heifers. Collectively, ergot alkaloids impair follicular development and E2 secretion; however, it
remains unknown if ergot alkaloids directly impact granulosal and thecal cell function or indirectly
alter folliculogenesis through reduced blood flow to the ovary.

3.4.2. Progesterone

Similar to the varying reports regarding the impact of fescue toxicosis on CL formation, there are
contrasting reports regarding P4 synthesis and secretion from the CL. Mahmood et al. [84] examined
luteal function in heifers grazing either low (0%) or high (>75%) EI fescue pastures for 168 days.
Heifers were synchronized with prostaglandin F2α (PGF2α) on days 101 and 112 of the trial and
P4 concentrations were determined on days 112, 116, 120, and 124. Heifers on the high EI fescue
pastures had either low P4 concentrations (<1.5 ng/mL) after synchronization or relatively high
P4 concentrations (>1.5 ng/mL) that would sharply decrease, thus indicating luteal dysfunction or
shorten luteal phase [85], respectively. Both Burke et al. [62] and Poole et al. [63] demonstrated that
heat stress exacerbated fescue toxicosis and observed a reduction in P4 concentrations. Conversely,
numerous reports have found no differences in P4 secretion in animals consuming EI fescue [50,78,79].
Interestingly, Jones et al. [86] evaluated P4 concentrations in EF, EI, and EI heifers treated with
domperidone (EID; dopamine antagonist) during the months of May and June in Southern Illinois.
Heifers consuming EI fescue had reduced mid-cycle P4 concentrations when compared to EF and EID
heifers. Furthermore, cultured luteal cells collected from a subset of heifers from each treatment group
revealed no differences observed in P4 secretion in vitro [86]. The authors suggest that utilization of
domperidone in vivo may alleviate some of the signs associated with fescue toxicosis (i.e., reduced
PRL and heat stress) to improve CL function.

4. Ergot Alkaloids and Uterine Function

4.1. Uterine Blood Flow

Dyer [87] was the first to report the interaction between ergovaline and serotonin (5-HT) receptors
in bovine uterine arteries. Furthermore, Poole et al. [50] measured uterine artery and vein area via
Doppler ultrasonography on days 0, 4, 10, and 17 of the estrous cycle in EF and EI beef heifers. It was
observed that uterine artery and vein areas were not different on days 0 and 4, however, uterine artery
and vein areas did differ on days 10 and 17 with heifers consuming ergot alkaloids and this is the time
of the estrous cycle when P4 concentrations are greatest. The ergot alkaloids induced vasoconstriction
of the uterine vessels occurred prior to the timing of maternal recognition of pregnancy (day 14–16) in
cattle, Poole et al. [50] speculated that this could reduce hormonal communication between the ovary
and uterus during this time of embryonic signaling to the endometrium, thus decrease pregnancy
retention [88]. Vasoconstrictive activity has also been detected in ovine uterine arteries [89]. Pregnant
Suffolk ewes were subjected to either an EF or EI (1770 µg/day ergovaline) diet from day 35 to 86 of
gestation (Period 1), then were fed the same diet either throughout or received a crossover diet with
fescue type opposite of the original diet until termination of pregnancy on day 133 of gestation (Period
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2). Ewes fed EI fescue during Period 2 had reduced uterine vessel area, however ewes fed EI fescue
during Period 1 then switched to EF fescue did not display this reduced vessel area. Moreover, utilizing
an in vitro bioassay the uterine arteries collected from EF ewes during Period 2 were responsive
to serotonin and ergot alkaloids (ergotamine and ergovaline) [89]. In regards to the mare, uterine
arteries collected from non-pregnant mares were subjected to an in vitro bioassay, however, were not
responsive to serotonin, ergotamine, or ergovaline [90]. Klotz and McDowell [90] suggested that effects
of ergot alkaloids on reproductive failure in the mare might not be a consequence of vasoconstriction
and restricted blood flow.

4.2. Prostaglandin F2α (PGF2α) Synthesis

It has been suggested that ergot alkaloids have an oxytocic effect (i.e., contractile response) on the
uterus [91]. During late luteal phase of the estrous cycle, oxytocin acts on localized receptors on the
endometrium to stimulate synthesis of PGF2α, thus triggering luteolysis [92,93]. A few studies have
evaluated the effect of ergot alkaloids on PGF2α secretion. Browning Jr. et al. [39] injected ergotamine
tartrate to primiparous cows during the late luteal phase (day 15 or 16 post-estrus) and observed that
PGF2α concentrations were elevated just one hour post injection and continued to increase every hour
for four hours. This response mirrored that of pulsatile PGF2α response observed during luteolysis;
unfortunately, the authors did not evaluate luteal function or regression. Vogt Engeland et al. [94]
administered 105 µg ergotamine per kilogram of body weight via oral drench twice daily from day 98
to 107 of gestation in dairy goats, and observed that ergotamine treated goats had significantly greater
concentrations of PGF2α resulting in a greater incidence of induced parturition and fetal death [94].

5. Ergot Alkaloids and Pregnancy

A common symptom of fescue toxicosis is reduced pregnancy rates, specifically in cattle [9,10,95]).
According to a review by Kallenbach [9], fescue toxicosis attributes to over $2 billion in annual
economic loss to the U.S. livestock industries, primarily due to reproductive loss (Figure 1). In cattle,
this reproductive loss is because of a failure to conceive or early embryonic loss [9]. Additionally,
many livestock species experience difficulties during late-gestation and this has an impact on fetal and
neonatal development [9,45,96].
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5.1. Early Embryonic Development

A few studies have evaluated the impact that ergot alkaloids have on oocyte competency and
early embryonic development. Jones et al. [97] cultured cumulus-oocyte-complexes (COCs) with either
a control medium, EF-treated medium with 10% EF plasma, or EI-treated medium with 10% EI plasma
supplemented. Plasma used as a treatment was previously collected when the heifers were exposed to
EF or EI pastures for 24 days. There were no differences in the percent of COCs that progressed to
metaphase II (MII). Additionally, ovum pick-up was performed on the heifers and the grade I oocytes
(≥5 layers of compact cumulus cells and homogenous cytoplasm; [98]) were subjected to traditional
in vitro procedures. Interestingly, there was a difference observed with 66% of the EF grade I oocytes
progressing to MII versus 0% of the EI grade I oocytes, thus demonstrating that in vivo exposure to
endophyte-infected tall fescue can directly inhibit proper oocyte maturation [97].

Schuenemann et al. [99] explored the impact of ergot alkaloids on early embryonic development
(experiment 1) and uterine receptivity (experiment 2) in vivo. Cattle were allotted to receive either the
control (CON) or an ergot alkaloid seed (EI) diet. In experiment 1, uterine horn ipsilateral to the CL was
flushed for embryo recovery following estrous synchronization and artificial insemination. Embryo
recovery tended to be more successful in CON cattle versus EI cattle. Of the embryos recovered, a
greater percent of embryos from CON animals had developed to compacted morula or blastocyst,
and there was a greater percent of better quality embryos from CON cattle versus ET cattle [99].
In experiment 2, two frozen-thawed good quality embryos were transferred to recipients in both
treatment groups seven days following synchronized estrus. Interestingly, pregnancy rates following
transfer did not differ [99]. The authors concluded that the uterine environment is suitable to maintain
pregnancy after day 7 of gestation, however ergot alkaloid exposure appears to detrimentally affect
either the oocyte or the early embryo prior to the blastocyst stage.

As previously mentioned, elevated body temperature and heat stress-like signs are greatly
associated with cattle exposed to ergot alkaloids. It is also well established that heat stress can have a
negative effect on most aspects of female reproduction including oogenesis, oocyte maturation, and
early embryonic development [100]. In fact, results from numerous studies evaluating heat stress and
early embryonic development mirror the results observed by Schuenemann et al. [99]. For example,
Ealy et al. [101] observed that exposure to heat stress conditions at day 1 post-estrus (two-cell cleaved
embryos), reduced the percent of embryos that developed to the blastocyst stage. However, heat
stress exposure at days 3, 5, and 7 had no effect on the percent of embryos that were blastocysts.
Likewise, Edwards and Hansen [102] found that heat stress did not impact oocytes during the first
12 h of maturation, however it greatly reduced the number of two-cell embryos that developed to
the blastocyst stage in vitro. While ergot alkaloid exposure inhibits early embryonic development
in vitro, in combination with the inability to maintain a thermoneutral body temperature due to heat
stress severely impacts embryonic development resulting in decreased pregnancy rates in many spring
calving herds throughout the Southeastern and Mid-Atlantic states.

Interestingly, a few studies have evaluated effects on embryonic development at levels greater
than 300 µg/kg in mares (Table 2). At 867 µg/kg ergovaline, there was no impact on embryonic
development or establishment of pregnancy in mares [43]. However, at 1171 µg/kg, there was an
increased incidence of early embryonic loss and reduced pregnancy rates in mares [103]. Minimal
effects were observed if mares were exposed to less than 300 µg/kg ergovaline [104]. Unlike cattle
exposed to ergot alkaloids, mares do not experience elevated body temperatures, which is most likely
due to evaporative cooling because of increased sweating capability [105], which may mitigate the
negative effects of ergot alkaloids on early embryo loss. The effects of ergot alkaloids on pregnant
mares are much greater during late gestation [106], suggesting that ergot alkaloids potentially impact
placental efficiency.
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Table 2. A review of the effects of ergovaline on early embryonic development and establishment of
pregnancy in the mare.

Ergovaline (µg/kg) Effect Source

45 No negative effects [107]
160 No negative effects [108]
271 No negative effects [107]
308 Suppressed PRL, no negative effects on pregnancy outcomes [108]
867 Decreased P4, no negative effects on pregnancy outcomes [43]

1171 Increase in early embryonic loss and reduced pregnancy rates [104]

5.2. Placenta

It has been shown that ergot alkaloids can cross the placental barrier in rodents [109,110], but
conclusive evidence in livestock species is unavailable. However, similar to the uterine artery, there have
been reports that ergot alkaloids induce a vasoconstrictive response in both bovine and ovine umbilical
arteries [87,89]. Britt et al. [111] examined placental characteristics in pregnant Suffolk ewes following
exposure to EF or EI (1770 µg/day ergovaline) diets and found that ewes subjected to an EI diet during
Period 2 experienced an overall reduction in total caruncle, cotyledon, and placentome weight. In sheep,
the placenta increases in vascularity after day 80 of gestation to support rapid fetal growth [112,113].
Therefore, it is believed that this vasoconstrictive activity on the umbilical artery reduces blood flow to
the placenta and subsequently the fetus, which results in reduced birth weights [89,111]. Ergot alkaloid
induced effects on the placenta are evident in the mare. Early reports suggested that pregnant mares
grazing endophyte-infected tall fescue experience reproductive failure [114,115]. Specifically, Monroe
et al. [116] demonstrated that mares grazing EI tall fescue during late gestation experienced prolonged
gestation, increased number of retained placentas, and increased placental weight and thickness when
compared to mares grazing EF tall fescue. Due to these findings, it is now highly recommended
that pregnant mares are removed from EI tall fescue pastures during the third trimester to avoid any
serious complications.

5.3. Fetal Programming

Studies have found that ergot alkaloid exposure during gestation results in a reduction in birth
weight in lambs [96,111] and calves [117,118]. There are a few theories to explain this reduction in
birth weight. One being the previously described vasoconstriction to the uterine and placental arteries,
however another is a decrease in daily nutrient intake by the dam, thus resulting in a reduction in dam
body weight [111,118]. Either mechanism results in a reduction in placental growth and supply of
nutrients to the developing fetus. Placental growth is partly regulated by the paternally imprinted
gene, insulin-like growth factor-2 (IGF2), and when there are modifications or changes in expression of
imprinted genes, then this is associated with developmental programming and a reduction in birth
weight [119,120]. Interestingly, Britt et al. [111] found that ewes exposed to ergot alkaloids during
Period 1 and 2 of gestation had increased mRNA expression of IGF2 in cotyledon tissue, however
these differences were not observed in ewes only exposed to ergot alkaloids during Period 1 or 2.
The authors speculated that these adverse conditions (i.e., exposure to ergot alkaloids) resulted in the
increase in IGF2 expression to aid in placental adaptation to the conditions [111].

6. Lactation

The effects of ergot alkaloids on lactation vary based on the livestock species. Consumption of
ergot alkaloids reduces milk yield in cattle and sheep [44]. However, while prolactin plays a critical
role in mammary gland development and milk synthesis [121], it is important to note that decreased
prolactin concentrations does not directly influence milk yield in these species [122] and ergot alkaloid
exposure during the dry period does not impair mammary development or milk production in the
following lactation [123]. More recently, Capuco et al. [124] described changes in the mammary
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gland transcriptome related to lipid metabolism, and molecular transport following exposure to
endophyte-infected fescue seed, which could contribute to reduced milk production as previously
reported by Baldwin et al. [123]. However, cofounding factors such as reduced feed intake following
exposure to endophyte-infected fescue seed in these studies [123,124] limits identification of the exact
mechanism of action of ergot alkaloids on the mammary gland. Therefore, other associated signs
of fescue toxicosis, such as reduced feed intake or vasoconstriction, play a more critical role in the
reduction of milk production in cattle and sheep. In contrast, horses exhibit complete agalactia when
exposed to ergot alkaloids [45]. Unlike ruminants, which produce both placental lactogen and prolactin
to initiate prepartum lactogenesis, horses rely solely on prolactin [125]. Thus, horses become agalactic
when grazing endophyte-infected tall fescue due to ergot alkaloids agonistic effects of DRD2 and
subsequent decrease in prolactin secretion. Many proposed strategies are available to mitigate the
signs of fescue toxicosis in mares, but perhaps the one of the most effective to improve lactation is
administering a dopamine antagonist, domperidone [45]. Redmond et al. [126] conducted a study to
determine the minimum effective oral dose of domperidone (1.1, 1.65, 2.2 mg/kg BW) to treat fescue
toxicosis in late-gestation mares. Redmond et al. [126] concluded that the minimum oral dose of
1.1 mg/kg BW was effective to alleviate signs of fescue toxicosis when provided daily for 30 days
before foaling. A follow-up study determined that subcutaneous administration of 0.44 mg/kg BW
domperidone 10 days before foaling was also effective to alleviate signs and improve lactation in
mares [127]. While domperidone is an effective alleviator of agalactia in mares grazing EI tall fescue,
most veterinarians would recommend removal from EI tall fescue pastures at least 30 days before the
expected foaling date [45].

7. Conclusions

While evidence of reduced reproductive performance of animals consuming endophyte-infected
tall fescue has been extensively studied in an attempt to find remedies for, or offset the negative
impact of, fescue toxicosis; the complex etiology of this syndrome has hindered an exploration of
specific mechanisms of action of ergovaline on specific tissues. Seasonal or annual fluctuations in
ergot alkaloid concentrations in combination with the age and genetic background of the animal,
elevated environmental conditions, and/or hypoxic conditions at the cellular level influence the impact
ergot alkaloids have on the reproductive tissues leading to inconsistencies in reduced reproductive
performance in animals consuming ergot alkaloid-contaminated diets. Further exploration into the
precise mechanism of action of ergot alkaloids on the hypothalamic-pituitary-gonadal axis through
innovative research combining cellular and molecular techniques with applied experimental models
will lead to a better understanding of the negative impact these toxins on reproductive processes.
Moreover, this knowledge will lead to inventive tools and strategies enhance best management practices
to improve reproductive performance in animals consuming endophyte-infected tall fescue.
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