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The article considers the problem of dividing the encephalography data into

two time series, that generated by the brain and that generated by other

electrical sources located in the human head. The magnetic encephalograms

and magnetic resonance images of the head were recorded in the Center

for Neuromagnetism at NYU Grossman School of Medicine. Data obtained at

McGill University and Montreal University were also used. Recordings were

made in a magnetically shielded room and the gradiometers were designed

to suppress external noise, making it possible to eliminate them from the

data analysis. Magnetic encephalograms were analyzed by the method of

functional tomography, based on the Fourier transform and on the solution

of inverse problem for all frequencies. In this method, one spatial position is

assigned to each frequency component. Magnetic resonance images of the

head were evaluated to annotate the space to be included in the analysis.

The included space was divided into two parts: «brain» and «non-brain». The

frequency components were classified by the feature of their inclusion in one

or the other part. The set of frequencies, designated as «brain», represented

the partial spectrum of the brain signal, while the set of frequencies designated

as «non-brain», represented the partial spectrum of the physiological noise

produced by the head. Both partial spectra shared the same frequency band.

From the partial spectra, a time series of the «brain» area signal and «non-

brain» area head noise were reconstructed. Summary spectral power of the
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signal was found to be ten times greater than the noise. The proposed

method makes it possible to analyze in detail both the signal and the noise

components of the encephalogram and to filter the magnetic encephalogram.

KEYWORDS

magnetic encephalography, frequency-pattern analysis, functional tomography,
extraction of partial spectra, time series reconstruction

Introduction

Source analysis is a key element in the interpretation of
magnetoencephalographic (MEG) recordings. Such analysis can
reveal, not just the origin of a signal within the brain, but
temporal and spatial patterns of brain activity. Such patterns
can be related to behavior providing a functionally meaningful
recording (see Gross, 2019). However, one of the main problems
in the reconstruction of the sources of brain activity from MEG
data is that the experimental data contain many noise sources.
The noise sources that can be distinguished include those: (a)
intrinsic to the encephalographic instrument itself; (b) from the
environment, subways for example, and (c) with a biological
origin such as the heartbeat.

The intrinsic noises of a magnetic encephalograph are due
to the internal structure of the encephalograph and to the
processes taking place within the instrument (Ryhanen et al.,
1989; Hämäläinen et al., 1993). Usually, the level of these noises
is small compared to the signal under investigation, and their
nature is random. However, when examining high-frequency
brain signals, clearing the data of the intrinsic noise of the
encephalograph can significantly improve the signal-to-noise
ratio. Several methods have been introduced to automatically
reduce such noise (Jas et al., 2017; Mutanen et al., 2018).
A denoising method based on the construction of spatial and
temporal correlations between the measurement channels and
the extraction of random noise was proposed in de Cheveigné
and Simon (2008a) and Larson and Taulu (2018). Clarke
proposed a joint use of these methods (Clarke et al., 2020).

The main sources of environmental noise are various
electrical devices located both near the encephalographic
instrument and those far from it. Urban transport is an
important source of interference, generating electromagnetic
interference and vibrations (Hansen et al., 2010). To reduce
the noise from the environment the following techniques have
been used: (a) magnetically shielded rooms (Kelha, 1981; Mager,
1981; Bork et al., 2000; Cohen et al., 2002); (b) systems
for active compensation of external magnetic fields (Okada
et al., 2016; Sun et al., 2018; Iivanainen et al., 2019); and (c)
software and hardware solutions incorporated in the design of
encephalographs (Vrba et al., 1995; Taulu et al., 2004; Taulu and
Simola, 2006; Vrba and Wilson, 2007). These methods, applied

individually or in combination, can reduce the level of external
interference by 60–30000 times (Sun et al., 2018).

The strongest sources of artifacts of biological origin are
the heartbeat (Jousmäki and Hari, 1996), breathing (Rodin
et al., 2005), and face and eye muscle activity (Hansen et al.,
2010). To clean the data of these artifacts, researchers have
used methods based on the analysis of independent components
(ICA) (Sarela and Valpola, 2005; Escudero et al., 2007, 2011;
Breuer et al., 2014a,b), spectral signal space projection (Ramírez
et al., 2011) and spatial signal separation (Taulu et al., 2004;
de Cheveigné and Simon, 2008b). These methods work well
when the spatial patterns of artifacts are stationary or only
change slightly during the experiment. To effectively suppress
non-stationary artifacts, methods have been proposed based
on identifying patterns of artifacts in each time window using
additional data obtained from an electrocardiogram (Adachi
et al., 2001; Tal and Abeles, 2013; Sun et al., 2016). A method
based on the use of convolutional neural networks was proposed
to isolate and filter eye-blink artifacts (Garg et al., 2017).

Noise is not the only problem in the reconstruction of
activity sources. For example, a closely located strong source
may interfere with the localization of a weaker source. The
construction of an adaptive beamformer for isolating a weak
response signal using the recordings of the control state has
been described (Sekihara et al., 2006). The use of a priori
knowledge about stimulus and response to study the activity of
the subcortical structures of the brain has also been considered
(Krishnaswamy et al., 2017).

This study is the further development of the method of
frequency-pattern analysis to decompose complex systems into
functionally invariant entities (Llinás and Ustinin, 2014, 2016).
This method makes it possible to address general spectra to the
partial spectra of static functional entities and to restore their
time series. The method is based on the complete utilization of
the long-time series, while the multichannel nature of the data
is also completely accounted for making it possible to extract
elementary sources of the brain activity. It was successively
applied in alpha-rhythm studies (Llinás et al., 2015a) and in
partial spectroscopy of the brain (Llinás et al., 2015b; Rykunov
et al., 2016). Many elementary sources located outside the brain
contribute physiological noises to magnetoencephalographic
(MEG) data. It was found that the processing of MEG data by the
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frequency-pattern analysis allows an estimate of the functional
structure of the head as a whole, including signals generated by
the brain, face, neck and other sources (Llinás et al., 2020). The
aim of the present study was to divide the MEG signal into those
generated by the brain and those generated by non-brain areas.

Methods

Magnetoencephalographic and
magnetic resonance imaging recoding
methods

The data was obtained from 10 healthy adult subjects.
Recordings from seven subjects were carried out at the NYU
Grossman School of Medicine Center for Neuromagnetism
located at the Bellevue Hospital Center. These comprised
5 men and 2 women, 27 to 41.5 years of age (mean
33.1 ± 1.59 years, median 33.4 years.). An informed written
consent was obtained from each subject before the recordings
were made in accordance with the Declaration of Helsinki. The
NYU Institutional Review Board approved the study.

All MEG recordings were obtained while the subject
was seated inside a mu-metal magnetic shielded room
using a 275-channel whole-head MEG instrument (CTF
Systems Inc., Port Coquitlam, BC, Canada). Artifacts and
distant noise were reduced using a 3rd order gradientometer
(McCubbin et al., 2004).

The location of the subject’s head, within the recording
helmet, was monitored at the beginning and end of each
run using electrodes attached to the three fiducial marker
points (nasion, left and right pre-auricular points). The
same fiducial marker points were used during the magnetic
resonance imaging (MRI) allowing for co-registration of the
MEG and MRI data.

During each 5-min MEG recording run, magnetic fields
were obtained in 30 consecutive 10-s trials. This procedure
allowed the removal of recorded segments, in cases where the
subject moved during any of the recording trials, as well as other
possible recording artifacts. Three recording runs were obtained
from each subject, two with the eyes closed, which minimized
signals from ocular muscles and visual system activation. During
one run the eyes were kept open. Under this condition the
alpha range frequency (8–13 Hz) is normally decreased. One
recording for each subject under the eyes-closed condition was
used in this data analysis.

Magnetic resonance imaging scans at NYU were carried
out on 1.5 T Allegra Siemens platform. A degree of
uniformity was maintained across subjects by performing MRI
constrained MFT modified minimum norm inverse modeling
on each data set.

Three datasets (MEG+MRI from 2 men (21 and 30 years
of age) and one woman (23 years of age) were obtained from

an open MEG archive OMEGA (Niso et al., 2015). These data
were recorded at McGill University and Montreal University
using an MEG instrument similar to that at NYU under
similar conditions. Please see Niso et al. (2015) for MEG
and MRI recording information on the three subjects from
the OMEGA archive.

Frequency-pattern functional
tomography

Magnetic fields were recorded using an MEG system,
consisting of K sensors (channels), which provided the
set of experimental vectors {bk}, k = 1, ...,K. This
approach discretely samples set of continuous functions
{B̃k(t)}−magnetic inductions in a K channel set.

Consider the Fourier transform

a0k =
2
T

∫ T

0
B̃k (t) dt, ank =

2
T

∫ T

0
B̃k (t) cos (2πνnt)dt, bnk

=
2
T

∫ T

0
B̃k (t) sin (2πνnt)dt, (1)

where a0k, ank, bnk are Fourier coefficients for the frequency νn

in the channel array k, and n = 1, ...,N, N = νmaxT, where
νmax is the highest desirable frequency. The coefficient a0k is not
considered hereafter, given that the constant field component
has no meaning in superconducting quantum interference
device (SQUID) sensor measurement sets. Given high sampling
frequency (1,200 Hz in our experiments), vectors {bk} represent
continuous functions {B̃k(t)} with sufficient precision, such that
integrals (1) can be effectively calculated using discrete Fourier
transform (Frigo and Johnson, 2005).

The frequency resolution is determined by T: 4ν = νn −

νn−1 =
1
T . This implies that to reveal the detailed frequency

structure of the system, it is necessary that: (1) Data be recorded
for a sufficient time; and (2) That calculations are made for all
spectra for the whole duration of the recording procedure time
T. In our experiments T was equal to 300 s, thus providing a
frequency resolution of 0.0033 Hz.

The next step of the analysis requires the restoring of the
multichannel signal at every frequency and the analysis of
the functions obtained. The multichannel signal is restored at
frequency νn in all channels:

Bnk (t) = ρnksin (2πνnt + ϕnk), (2)

where ρnk =
√
a2
nk + b2

nk, ϕnk = atan2(ank, bnk), and ank, bnk
are Fourier coefficients, found in equation (1).

The proximity of phases ϕnk in different channels can be
characterized by the value of coherence (Llinás and Ustinin,
2014):

C1f = 1−
mint∈|0,Tνn |

∑K
k = 1 B

2
nk(t)

maxt∈|0,Tνn |

∑K
k = 1 B

2
nk(t)

, (3)
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where min and max are calculated at the period Tνn of frequency
νn. If all channels have equal phases ϕnk = ϕn at frequency νn,
then C1f is equal to 1. If ϕnk = ϕn, then equation (2) describes
a coherent multichannel oscillation and can be written as

Bnk (t) = ρnksin (2πνnt + ϕn) = ρ̂nkρnsin (2πνnt + ϕn),

(4)
where ρn =

√∑K
k = 1 ρ2

nk is the amplitude, and ρ̂nk =
ρnk
ρn

is
the normalized pattern of oscillation.

Thus, equation (4) provides the separation of time
and space. The normalized pattern makes it possible to
determine the spatial structure of the source from the inverse
problem solution, under the assumption that the structure
is positionally stable throughout the entire period of the
oscillation. The time course of the field is determined by
the function ρnsin (2πνnt + ϕn) , which is common for all
channels, i.e., this source is oscillating as a whole at the
frequency νn.

The theoretical foundations for the reconstruction of static
functional entities (neuronal circuits, or sources) have been
developed (Llinás and Ustinin, 2014, 2016). This reconstruction
is based on a detailed frequency analysis and extraction of the
frequencies that have high coherence and similar patterns.

The algorithm of mass precise frequency-pattern analysis
was formulated as follows:

1. Discrete Fourier Transform of the multichannel signal for
the whole recording time T.

2. Inverse Fourier Transform–restoration of the signal
at each frequency.

3. If the coherence at the particular frequency is close to 1 [see
equation (3)], then the pattern and frequency will be used
as an elementary coherent oscillation. See equation (4).

4. If the restored signal consists of several phase-shifted
coherent oscillations, then extract those oscillations:

a. Apply Independent Component Analysis algorithm
(see Belouchrani et al., 1997) to restored time-series;

b. Select nonzero components;
c. Apply direct discrete Fourier Transform to

each of the selected components and calculate
amplitude, normalized pattern and phase using
equations 1 and 4.

After the fourth step of this analysis, the initial multichannel
signal is represented as a sum of elementary coherent
oscillations:

Bk (t) ∼=
N∑

n = 1

M∑
m = 1

Dmn̂ρmnksin (2πνnt + ϕmn), νn =
n
T
,N

= νmaxT,m = 1,...,M (5)

where M is maximal number of coherent oscillations, extracted
at the frequency ν n.

Each elementary oscillation is characterized by frequency
νn, phase ϕmn, amplitude Dmn, normalized pattern ρ̂mnk
and is produced by the functional entity having a constant
spatial structure.

We, thus, define the “Functional Tomogram” as the
electrical functional structure of the system, reconstructed from
the analysis of the set of normalized patterns {̂ρmn}. The
functional tomogram displays a 3-dimensional map of the
energy emitted by all the sources located at a given point in
space. In order to build a functional tomogram, the space under
study is divided into Nx × Ny × Nz elementary cubicles with
centers in rijs. The edge of the cubicle is selected in accordance
with the desirable precision; in this study, we selected 2.0 mm.
To calculate the energy produced by all the sources located at
the center of a given cubicle, the set of L trial dipoles Qijs is built.
The magnetic induction at point r, for dipole Qijsl, located at rijs,
is calculated as a current dipole in a spherical conductor (Sarvas,
1987).

B (r) = −µ0∇U (r) ,U (r) = −
1

4π

(
Qijsl × rijs, r

)
F

,

F = a
(
ar + r2

−
(
rijs, r

))
, a = r−rijs, µ0 = 4π · 10−7 (6)

All trial dipoles lie in the same plane, orthogonal to rijs, as
the vector product Qijsl × rijs is non-zero only for those dipoles.
Trial dipoles cover the circle in Lmax directions with 360/Lmax

degrees step, in this study Lmax = 24. The set of normalized
trial patterns is then calculated:

{̂
ρtrijsl

}
, i = 1,...,Nx; j = 1,...,Ny; s = 1,...,Nz; l = 1,..., Lmax

(7)
In this study more than 25 million trial patterns were

used for each object, calculated at the grid, covering the space
of the experiment.

For each normalized pattern ρ̂mn from equation (5), the
following function was calculated, giving the difference between
this pattern and one of the actual trial patterns:

χ
(
i, j, s, l

)
=

K∑
k=1

(
ρ̂trijslk−ρ̂mnk

)2
(8)

The position and direction of the source producing the
experimental pattern ρ̂mn were determined by numbers
(I, J, S, L), providing the minimum to the function χ(i, j, s, l)
over the variables, i = 1, ...,Nx; j = 1, ...,Ny;=

s = 1, ...,Nz; l = 1, ..., Lmax. The energy of this source
D2
mn is added to the energy produced from the cubicle with

the center at rijs. Following this procedure for all normalized
patterns ρ̂mn: m = 1, ...,M; ; n = 1, ...,N, it is possible
to determine the energy space distribution of all oscillations
from equation (5).

The result of such distribution is then the Functional
Tomogram of the system under study.
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FIGURE 1

Comparison of the summary power of the magnetic recording
for the spontaneous activity (blue) and the summary power for
the “empty room” recording or baseline noise (orange). Note
that the average signal to noise ratio is 26, being about 100 for
alpha rhythm and 50 for beta rhythm. Here the signal is
produced by the “brain” and “non-brain” physiological sources,
while baseline noise has a non-human (mainly technical) origin.

Simulation/forward modeling

To check localization accuracy the following computational
experiment was conducted:

1. MRI image and co-registered gradientometer were selected
from data recorded at NYU.

2. From MRI image voxels composing the head were selected
and formed a “head mask.”

3. A total of 5000 test dipole sources were randomly
distributed in the “head mask” space. For each of the
dipoles its unique frequency and random dipolar moment
were set. Dipole amplitudes varied in range 10–100 nAm,
frequencies were in 1–17.667 Hz band with 0.033 Hz step.

4. Simulated MEG recordings were reconstructed for each
test source, using single shell model (see equation 5),
then summary simulated MEG was calculated. Sampling
frequency was set to 1,200 Hz, single trial length
was set to 300 s.

5. Functional tomogram was calculated as described in
section “Frequency-pattern functional tomography.”

Then results of inverse problem solution were compared
to known locations of sources, set on step 3. No shift in
locations and directions of sources was found. Similar
computation experiment with “virtual magnetometer”
was conducted. To create “virtual magnetometer” we’ve
used channel positions and orientations of the inner
layer of CTF MEG 275 sensors. No shift in locations and

directions of sources was found. It can be concluded that
the proposed method works precisely in the analysis of
clean simulated data.

Partial spectroscopy of the head and
brain

A partial spectrum is understood as a set of frequencies
and Fourier transform coefficients belonging to sources
located in a given region of space. The basic principles and
method for calculating partial spectra have been outlined
(Llinás et al., 2015b; Rykunov et al., 2016). The first
step in calculating such spectra is the segmentation of a
magnetic resonance image (MRI)–the anatomical structure
of the brain of a given subject. For this purpose, we
used the Freesurfer software (Fischl, 2004; Fischl et al.,
2004; Desikan et al., 2006),1 which allows segmentation in
automatic mode. The result of MRI segmentation is an
annotated three-dimensional map of the brain in which
each voxel of the magnetic resonance image is associated
with its belonging to one or another part of the brain.
Then, binary voxel masks of the selected sections are
constructed from the annotated maps–all voxels (volume
elements) related to the selected section have a value of 1,
the rest have a value of 0. The downsampling procedure is
applied to the resulting masks to match the spatial resolution
of the masks to the spatial resolution of the functional
tomogram. If, after downsampling, the constructed masks for
different segments contain common voxels, these voxels are
removed from all masks.

At the third step, voxel masks are converted into index
form–each non-zero voxel is assigned its ordinal number in the
three-dimensional array. At the fourth step those experimental
patterns are selected whose index coordinates are equal to the
index coordinates of the voxels of the mask of the section under
consideration. The frequencies and Fourier coefficients of these
patterns form a partial spectrum of the considered section of
the head or brain. If the frequencies are classified between two
areas «brain» and «non-brain», they can be defined by the two
following functions:

f (b)(n) =

{
1, if νn belongs to brain
0, if νn belongs to non−brain

(9)

and

f (nb)(n) =

{
0, if νn belongs to brain
1, if νn belongs to non−brain

(10)

1 https://surfer.nmr.mgh.harvard.edu/
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FIGURE 2

Functional tomogram for wide frequency band 0.3–100 Hz, for MEG recording made with the eyes closed, co-registered and superimposed
over the subject’s MRI. Standard tomographic sections are shown; sagittal (S), axial (A), and coronal (C). A color map for the power of elementary
sources is shown at the bottom. The strongest (yellow) elementary sources can be divided into two main groups–one generally corresponding
the area for the alpha rhythm (see Llinás et al., 2015a) inside the brain, while the other is situated inside the head, but outside the brain.

FIGURE 3

Block diagram of the partial spectroscopy algorithm and the data flow to divide the MEG signal into «brain» and «non-brain» MEGs. Markers at
the fiducial points can be seen, which are providing the co-registration of the MRI and MEG and make their cooperative analysis possible. This
diagram illustrates classification of the frequencies based on their localization in the annotated MRI, making it possible to compose two
synthetic MEGs.
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FIGURE 4

Sagittal tomographic sections of the «brain» (A) and «non-brain» (B) areas of the head after the annotation of initial MRI. Positions of the
sensors are denoted with white rings. Anatomy of the possible strong non-brain sources is shown in panel (C).

FIGURE 5

Functional tomograms of the «brain» and «non-brain» areas of the head after the classification of elementary sources, 3D-views: brain, left side
view (A); non-brain, left side view (B); brain, frontal view (C); non-brain, frontal view (D). Color map for the power of elementary sources is
shown at the bottom. Directions are denoted by: L, left; R, right; F, front; B, back. Anatomic details are denoted by: NC, nasal cavity; OC, oral
cavity and tongue; La, larynx; Np, nasopharynx; S, scalp; Nm, neck muscles.
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FIGURE 6

Functional tomograms for all subjects of the «brain» areas of the head after the classification of elementary sources, 3D-views: left side view (A);
top view (B); frontal view (C). Color map for the power of elementary sources is shown at the bottom of Figure 5. Directions are denoted by: L,
left; R, right; F, front; B, back, Bt, bottom; T, top.

The brain signal is obtained by the following Inverse Fourier
transform:

B(b)k (t)=
N∑

n=1

f (b) (n)Bnk(t) (11)

where Bnk (t) is calculated using equation 2.
The non-brain signal is obtained by the following Inverse

Fourier transform:

B(nb)k (t)=
N∑

n=1

f (nb) (n)Bnk(t) (12)

Instantaneous power for brain and non-brain signals in all
channels are given by:

p(b) (t)=
N∑

n=1

f (b)(n) ·
K∑

k=1

B2
nk(t) (13)

p(nb) (t)=
N∑

n=1

f (nb)(n) ·
K∑

k=1

B2
nk(t) (14)
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FIGURE 7

Functional tomograms for all subjects of the «non-brain» areas of the head after the classification of elementary sources, 3D-views: left side
view (A); top view (B); frontal view (C). Color map for the power of elementary sources is shown at the bottom of Figure 5. Directions are
denoted by: L, left; R, right; F, front; B, back, Bt, bottom; T, top.

The summary power for brain in channel k is given by:

P(b)
(
k
)
=

∫ T

0

N∑
n=1

f (b)(n)B2
nk(t)dt (15)

The summary power for non-brain in channel k is given by:

P(nb)
(
k
)
=

∫ T

0

N∑
n=1

f (nb)(n)B2
nk(t)dt (16)

Ratio of the “brain” MEG power to “non-brain” MEG power is
characterized by:

BNbR=
∑K

k=1 P(
b)(k)∑K

k=1 P(
nb)(k)

(17)

Experimental results

Analysis of the data proceeded in several steps from the
broadest consideration of signal vs. noise to the most detailed
analysis of brain signal vs. other head signals.
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TABLE 1 “Brain” to “non-brain” power ratio (BNbR) for all subjects calculated from (17).

Subject number 1 2 3 4 5 6 7 8 9 10 Mean 90% confidence interval

BNbR 0.3–100 Hz 2.9 8.2 29.7 5.3 7.5 5.1 4.4 10.7 7.8 15.5 9.7 5.2–14.2

BNbR 0.3–4.0 Hz 0.3 1.5 21.5 1.2 4.0 3.6 1.2 4.3 5.3 14.6 5.8 1.8–9.7

BNbR 4.0–100 Hz 52.8 50.8 34.1 33.6 56.1 11.5 28.3 24.9 11.2 16.0 31.9 22.3–41.5

FIGURE 8

(A) Spectra produced by the brain (blue) and non-brain (orange) sources. (B) Detail of panel (A) in the narrow frequency band 1.15 to 1.3 Hz,
illustrating the mix of frequencies.

The first step in our analysis was to distinguish the signal
generated by the head from that due to the residual distant noise
and the activity of the instrument itself. The general spectral
features of the experimental data were characterized by using
the sum of powers in all the channels:

Power (νn) =
∑K

k = 1 ρ2
nk, where k is the channel number,

the number of frequency is n, and ρnk is the Fourier amplitude
(2). Figure 1 is a plot of the spectral power as a function of
frequency. The contribution from the subject’s head (the signal)
is shown in blue and the combined signal from the instrument
and far sources (the noise) is shown in orange. Brain activity in
healthy adults is largest in the alpha (8–13 Hz) and beta (13–
30 Hz) frequency ranges. Figure 1 shows that the alpha range
signal is about 100 times that for the noise and that the beta
range activity is about 50 times that of the noise. Because the
brain signal is so much larger than the residual far distance
noise, the latter will be neglected in further analysis (Note that
the average signal to noise ratio is 26).

In the next step, the spectral power of the MEG signal (0.3–
100 Hz) and MRI image of each subject were co-registered
and superimposed. The resulting total functional tomogram is
shown in Figure 2 for one subject in the sagittal (S), axial
(A) and coronal (C) planes. The inverse problem (that locates
the MEG signal) for each elementary source was solved in the
whole experimental space 25 cm × 25 cm × 25 cm without
additional conditions. That almost all elementary sources were
localized inside the head, generally confirmed the correctness of

FIGURE 9

Time series of the summary power in all channels, produced by
the brain (blue) and non-brain areas (orange).

our model. Also, it indicates that the MEG data was rather clean
from external noise.

The strongest (yellow) elementary sources can be divided
into two main groups–one generally corresponding the area for
the alpha rhythm (see Llinás et al., 2015a) inside the brain, while
the other is situated inside the head, but outside the brain. Both
kinds of sources were found from the analysis of one MEG,
which registered all physiological activity inside and near the
helmet of the instrument. The basic aim of our study was to
divide the experimental MEG data into two synthetic MEGs, one

Frontiers in Neural Circuits 10 frontiersin.org

https://doi.org/10.3389/fncir.2022.834434
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-16-834434 August 22, 2022 Time: 16:9 # 11

Llinás et al. 10.3389/fncir.2022.834434

FIGURE 10

Summary power in channels of registration, produced by the brain (A) and non-brain physiological sources (B). Interpolated field maps are
presented, the sensors are denoted by white dots. Color map for the summary power per channel is shown along the bottom. Dots show the
location of each sensor channel in a stereographic projection of the helmet. Groups of sensors were marked according to the instrument
description (F, frontal; C, central; L, left; R, right; P, parietal; O, occipital).

produced by the «brain» sources, and another produced by the
«non-brain» sources.

The aim of the third step was to distinguish «brain»
from «non-brain» sources. To achieve this, the frequency-
pattern tomography was combined with partial spectroscopy
as described in the section “Methods.” The flow used in the
data processing algorithm is shown in the block diagram in
Figure 3 where localization information is on the left side
and magnetic activity information is on the right side. The
process has six steps.

1. Each voxel in the MRI was assigned the feature «brain» or
«non-brain» based on the anatomy (see Figures 4A,B).

2. The functional tomogram was calculated based on the
MEG. This is a set of elementary oscillations with known
frequencies and source origins.

3. Elementary oscillations are classified based on the feature
of the origin voxel as being «brain» or «non-brain» in step
1 (Figure 3 top wide Classification box).

4. Two partial spectra were assembled. One from the
frequencies of the «brain» oscillations, and the other from
the frequencies of the «non-brain» oscillations.

5. The «brain» and «non-brain» signals were reconstructed
from the corresponding partial spectra.

6. The properties of restored MEGs were analyzed and
compared. Note that because all partial frequencies were
selected from the initial spectrum the sum of those
reconstructed signals was equal to the experimental MEG
(Figure 3 last row).

The results of this process of dividing the MRI into
«brain» and «non-brain» areas are shown in Figures 4A,B,

respectively (Voxels classified into one or another category
were superimposed onto the corresponding MRI image and
presented as separate objects). The positions of the MEG
sensors for this subject, based on the fiducial markers, are
shown as small dots superimposed on the MRI images in
Figures 4A,B. Non-brain structures in the head that may be
strong signal sources are shown in Figure 4C. As can be seen
in Figure 4, the brain was properly surrounded by the MEG
sensors. The scalp was, naturally, closer to sensors than were the
internal structures. The sources in the brainstem and cerebellum
were registered effectively, as were strong sources in the head
below the brain.

The functional tomograms were next viewed in three
dimensions using the specialized software FTViewer (Rykunov
et al., 2020). Left side and frontal views are shown in Figure 5
after the classification of elementary oscillations by the «brain»
or «non-brain» feature of their source origin in one subject.
The left side surface of the 3-dimensional functional tomograms
of the brain is shown in Figure 5A. Several components
may be distinguished in the non-brain image in Figure 5B
including the scalp surface (S), nasal cavity (NC), oral cavity
(OC), nasopharynx (Np), larynx (La), and the back of the neck
(Nm). The frontal view of the brain is shown in Figure 5C.
The corresponding non-brain areas are shown in Figure 5D
where the strongest sources correspond to nasal cavity and
nasopharynx. Powerful sources in the lower aspect of the image
may correspond to neural/muscle activity in the nasal cavity,
oral cavity, nasopharynx, oropharynx, and oral cavity seen in
Figure 5B.

Figures 6, 7 represent functional tomograms for all ten
subjects. One can see that the same components in various
proportions may be distinguished in the non-brain images
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for each subject: the scalp surface (S), nasal cavity (NC), oral
cavity (OC), nasopharynx (Np), larynx (La) and the back
of the neck (Nm).

As can be seen from Table 1 and Figure 7, individual
variance in the structure and force of the “non-brain” sources
is rather high. Still, the “brain” MEG is 10 times higher than
“non-brain” MEG even for the wide frequency band 0.3–
100 Hz. Cutting out low frequencies drastically improves this
ratio to 30 times.

The next issue addressed concerned the dominant
frequencies of the brain and non-brain sources. The spectral
power of the brain (blue) and non-brain (orange) sources are
plotted as a function of frequency in Figure 8A. Examination
of the plot shows that both spectra share very similar frequency
bands. This is shown in more detail in Figure 8B where
the presence of activity from both sources within a narrow
frequency range is illustrated. This means that, without losing
information, they cannot be separated using a simple bandpass
filter as was used to separate the head signal from that generated
by the instrument and far noise (Figure 1). But, without filtering
(e.g., of frequencies less than 5 Hz) it is also problematic because
non-brain frequencies will be included in the inverse problem
solution for the brain.

To explore this further, we compared the power of the
brain and non-brain signals. This is shown in Figure 9 where
the instantaneous power produced by brain (blue) and non-
brain (orange) sources is plotted as a function of time (see
Formulae 13 and 14). This figure illustrates that the brain
signal is approximately ten times greater than non-brain signal
(physiological noise), and that the former is much more volatile.

Finally, to characterize the general effect of dividing
the sources into brain and non-brain with respect to the
recording device we calculated the summary power per channel
produced for the duration of experiment (see Formulae 14
and 15). The field maps in Figure 10 give a view of the
MEG helmet from above. The white dots represent the
location of the sensors. The right side (R), left side (L),
and center (C) of the head are indicated. The approximate
location of the frontal (F), parietal (P), and occipital (O)
regions of the brain are also marked. The cumulative
powers as registered by each sensor from all the sources in
the brain and non-brain areas are color-coded. While the
brain sources are registered by all the sensors (Figure 8A),
the non-brain sources are located mainly in the frontal
channels (Figure 8B).

Discussion

As can be concluded from the Table 1 and Figure 7,
for low frequencies (0.3–4.0 Hz) the MEG from non-brain
sources can be comparable or even greater than such of the
brain sources. A detailed study of the spectra and localization

of the sources shows that the most powerful non-brain
sources are modulated by the breathing and by the heart
beat (some experiments demonstrate up to four heartbeat
harmonics). It leads to the necessity to carefully consider very
low brain frequencies, such as delta rhythm. Some details
of the non-brain functional tomograms, such as scalp and
neck muscles can be seen at rather high frequencies (up
to 100 Hz). Also, the method proposed can be used to
clear this signal by removing non-brain frequencies based
on their origin.

Such a division into brain and non-brain signal is
possible under the assumption that the elementary sources
(groups of neurons) are motionless. In some works [see e.g.,
(Martinet et al., 2017; Zhang et al., 2018; Halgren et al., 2019;
Stolk et al., 2019)] the propagation of activity waves during
epileptic seizures and alpha rhythm waves were studied using
electrocorticography.

The proposed method of functional tomography can be
used not only to study stationary sources of spontaneous
activity, but also to study the spread of excitation in the event
of evoked activity or seizures. To do this, we propose the
following modification of the method: the space under study
is divided into small volumes, the boundaries of which can be
determined both by anatomical sections and in an arbitrary
way, each of these volumes becomes a "virtual electrode." For
each of the virtual electrodes, its partial spectrum is found,
and a multichannel time series is restored over the entire
recording time–a kind of "encephalogram" of the selected area.
Then the obtained time series are proposed to be divided
into shorter consecutive intervals of 1–10 s, in order to study
correlations and cause-and-effect relationships between time
series from different virtual electrodes. So, the propagation
of activity will be described by the switching between stable
elementary sources.

Another possible modification of the method is to calculate
functional tomograms over a set of short consecutive time
intervals. This will reduce the possible number of sources
and coarsen the frequency grid. With this approach, it is
possible that in different time windows, sources operating
at the same frequency will change their spatial localization.
The proposed modifications require a separate thorough
study and analysis.

Conclusion

A novel method of the head partial spectroscopy is
introduced. The method further develops the recently proposed
functional tomography based on MEG data analysis (Llinás
and Ustinin, 2014, 2016; Llinás et al., 2015a,b) and makes it
possible to divide experimental magnetoencephalographic data
into two synthetic encephalograms: one originating from the
brain, another originating from the non-brain physiological
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sources once the non-physiological sources are eliminated. As
was found in Llinás et al. (2020), the whole MEG contains
signals from the non-brain physiological sources inside the
head, interfering with the analysis of brain activity. In this
article, the functional tomograms of the brain and non-brain
areas of the head were built, and the corresponding time series
were calculated. It opens the possibility to further distinguish the
magnetic encephalogram from physiological noises and to make
recommendations about optimal positioning of the subject in
the instrument or even in devising the helmet’s configuration.
Also, a more detailed study of physiological electrical sources in
the head is possible, including non-brain areas (e.g., pharynx),
and brain areas containing some powerful sources modulated
by the heartbeat and possibly close to blood vessels. Such a study
can be performed based on the more detailed frequency analysis.
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