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Can Machine Learning Accurately Predict
Postoperative Compensation for the
Uninstrumented Thoracic Spine and Pelvis
After Fusion From the Lower Thoracic
Spine to the Sacrum?
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Abstract

Study Design: Consecutively collected cases.

Objective: To determine if a machine-learning (ML) program can accurately predict the postoperative thoracic kyphosis through
the uninstrumented thoracic spine and pelvic compensation in patients who undergo fusion from the lower thoracic spine (T10 or
T11) to the sacrum.

Methods: From 2015 to 2019, a consecutive series of adult (�18 years old) patients with adult spinal deformity underwent
corrective spinal fusion from the lower thoracic spine (T10 or T11) to the sacrum. Deidentified data was processed by a ML
system-based platform to predict the postoperative thoracic kyphosis (TK) and pelvic tilt (PT) for each patient. To validate the ML
model, the postoperative TK (T4-T12, instrumented thoracic, and uninstrumented thoracic) and the pelvic tilt were compared
against the predicted values.

Results: A total of 20 adult patients with a minimum 6-month follow-up (mean: 22.4+ 11.3 months) were included in this study.
No significant differences were observed for TK (predicted 37.6� vs postoperative 38.3�, P ¼ .847), uninstrumented TK (pre-
dicted 33.9� vs postoperative 29.8�, P ¼ .188), and PT (predicted 23.4� vs postoperative 22.7�, P ¼ .754). The predicted PT and
the TK of the uninstrumented thoracic spine correlated well with postoperative values (uninstrumented TK: R2¼ 0.764, P< .001;
PT: R2 ¼ 0.868, P < .001). The mean error with which kyphosis through the uninstrumented thoracic spine can be measured was
4.8� + 4.0�. The mean error for predicting PT was 2.5� + 1.7�.

Conclusion:ML algorithms can accurately predict the spinopelvic compensation after spinal fusion from the lower thoracic spine
to the sacrum. These findings suggest that surgeons may be able to leverage this technology to reduce the risk of proximal
junctional kyphosis in this population.
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Introduction

In adult spinal deformity (ASD), surgery often involves a

lengthy segmental fusion where the upper instrumented verte-

bra (UIV) enters the thoracolumbar junction. This can result in

compensatory changes in the uninstrumented cervical and thor-

acic spine, the pelvis, as well as the lower extremities.1
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Excessive kyphosis through the uninstrumented thoracic spine

can increase anterior compressive forces at the UIV and the

adjacent vertebra above the UIV (UIV þ 1), which is a con-

tributor to the development of proximal junctional kyphosis/

failure (PJK/PJF) and often leads to high revision rates.2-6 A

plethora of literature exists on the clinical and radiographic risk

factors for PJK.3,7-18 However, prevention of PJK remains

unsolved and is still a relatively common postoperative

complication.

One possible solution to predicting the postoperative com-

pensation after deformity correction is through machine learn-

ing (ML), which has the potential to assist in solving complex

medical questions. Through extensive clinical data mining,

deep learning algorithms, and predictive analytics, ML can

potentially provide personalized outcome predictions for indi-

vidual patients.19-21 ML algorithms can provide spinal sur-

geons with patient-specific preoperative plans, while

simultaneously improving on the algorithm over time as it

receives postoperative feedback as part of an iterative learning

process and thus, allowing surgeons to improve patient out-

comes and mitigate complications.

In this study, we sought to determine if a proprietary

industry-created ML algorithm can accurately predict post-

operative compensation of ASD patients in the uninstrumented

thoracic spine and pelvis after a long fusion with a UIV in the

lower thoracic spine (T10 or T11) to the sacrum. To our knowl-

edge, this is the first study to examine the accuracy of ML

technology to predict compensatory mechanisms in patients

with ASD.

Methods

Patient and Radiographic Data

Following institutional review board approval, we reviewed a

consecutive series of adult spinal deformity (�18 years old)

patients treated with a corrective posterior spinal instrumenta-

tion and fusion with a UIV in the lower thoracic spine (T10 or

T11) and lower instrumented vertebra (LIV) at the sacrum

between 2015 and 2019. All surgeries were performed by a

single surgeon and the radiographic films were performed at

a single center with a minimum follow-up of 6 months. For

both preoperative and postoperative full-length radiographs,

patients were positioned standing with their elbows flexed, at

approximately 45�, with their fingertips touching their clavi-

cles. As patient data needs to be deidentified for third-party

analytics, only radiographic factors were included in the ML

model; thus, patient factors such as age, gender, and body mass

index were not included.

A comprehensive list of sagittal spinopelvic measurements

was recorded preoperatively and postoperatively. Regional

radiographic measurements included C2 slope, cervical lordo-

sis (CL) (C2-C7 Cobb angle), T1 slope, T1 – CL (T1 minus

CL), thoracic kyphosis (TK, T4-T12 Cobb angle), thoracolum-

bar kyphosis (TL, T10-L1 Cobb angle), and lumbar lordosis

(LL, L1-S1 Cobb angle). Pelvic parameters included pelvic

incidence (PI), pelvic tilt (PT), sacral slope (SS), and lumbo-

pelvic mismatch (PI minus LL). Kyphosis was measured across

the fused (instrumented TK) and unfused (uninstrumented TK)

thoracic spine. Global radiographic parameters included sagit-

tal vertical axis (SVA), cervical SVA (cSVA), T1 spinopelvic

inclination (T1-SPI), T9 spinopelvic inclination (T9-SPI), C2

pelvic angle (CPA), cervicothoracic pelvic angle (CTPA), and

T1 pelvic angle (TPA).

Thoracic compensation in the uninstrumented spine was

defined as the difference between the postoperative (or pre-

dicted) and the preoperative baseline TK values and pelvic

compensation was defined as the difference between post- and

preoperative PT values. Independent t tests and analysis of

variance (ANOVA) was used for continuous variables and sta-

tistical significance was defined as a P value <.05. SAS Studio

Version 3.4 (SAS Institute Inc) was used for all statistical

analyses.

Model Generation

In a data-driven capacity, deidentified data was processed by an

ML system-based platform (Medicrea) to predict the post-

operative TK and PT for each patient. More specifically,

Medicrea used the Python programming language and the

Scikit-Learn, which is a free software machine learning library

for Python, for data processing and the development of

regression-based algorithms. The proprietary model was used

to analyze preoperative images and set the actual postoperative

lumbar lordosis (LL) as the “target LL” (Figure 1). In Figure 1,

the “red” line is the preoperative alignment and the “thin blue”

line is the predicted alignment based on a target LL. The “thick

blue” line is the planned surgery from T10 to pelvis. The ML

algorithm has more than 4000 patients in its database and thus

performs predictive analytics to anticipate postoperative global

and regional alignment parameters (Figure 2). The target align-

ment is also used to generate custom precontoured rods to be

used intraoperatively for these patients. A difference of up to 6�

between the predicted and actual postoperative TK was con-

sidered acceptable and a difference of up to 4� between the

predicted and actual postoperative PT was accepted. Outliers

were defined as those with a difference greater than acceptable.

The outliers were included in the comparative analyses and

linear regressions. To validate the predictive models, the post-

operative TK (T4-T12, instrumented thoracic, and uninstru-

mented thoracic) and the PT were compared against the

predicted values. The model’s ability to identify successful

(PT � 25�, uninstrumented DTK � 15�) and unsuccessful

(PT > 25�, uninstrumented DTK > 15�) outcomes was also

evaluated. Higher PT is known to correlate with worse patient

outcomes and this threshold has been used in prior literature.22

The DTK refers to the difference between postoperative (or

predicted) minus the preoperative uninstrumented TK. The

DTK threshold was used to define reciprocal kyphosis which

has also been used in prior literature.23
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Results

A total of 20 adult patients with a minimum 6-month follow-up

were included in this study. The most recent postoperative full-

length standing films were taken at a mean + standard devia-

tion of 22.4 + 11.3 months after surgery. Three patients had

postoperative films taken prior to their 1-year postoperative

follow-up. All patients had a primary diagnosis of ASD. The

mean age was 62.0 + 10.5 years, and 55.0% were female.

About 45.0% of patients had a prior spine surgery.

Significant improvement in several sagittal parameters were

observed between the postoperative and preoperative values,

including L1-L4 (postoperative�10.4� vs preoperative�0.05�,
P¼ .01), LL (postoperative�42.1� vs preoperative�26.5�,P¼
.003), PI-LL (postoperative 9.3 vs preoperative 25.1, P¼ .002),

T5-T12 (postoperative 34.5� vs preoperative 20.3�, P < .001),

T9 SPI (postoperative �12.1 vs preoperative �8.2, P ¼ .019),

and TK (postoperative 38.3� vs preoperative 24.7�, P < .001).

The TK for instrumented levels did not significantly change

between preoperative versus postoperative (P ¼ .057). Most

of the change in TK was driven by the uninstrumented levels

of the thoracic spine (postoperative 29.8� vs preoperative 20.9�,
P ¼ .014) (Table 1).

When comparing the predicted against the postoperative

values, there were no significant differences for TK (predicted

Figure 1. A proprietary model was used to analyze preoperative
images and set the actual postoperative lumbar lordosis (LL) as the
“target LL.” The “red” line is the preoperative alignment and the “thin
blue” line is the predicted alignment based on a target LL. The “thick
blue” line is the planned surgery from T10 to pelvis.

Figure 2. A schematic for the machine learning algorithm.

Table 1. The Pre- and Postoperative Cervical, Thoracic, and
Lumbopelvic Radiographic Parameters.

Parameter Preoperative Postoperative P

C2 slope 16.9 (15.3) 16.6 (11.5) .942
CL �9.8 (16.5) �12.2 (14.8) .643
CPA 26.7 (14.5) 22.3 (9.6) .290
CTPA 1.7 (1.6) 2.2 (1.4) .385
L1-L4 �0.05 (14.4) �10.4 (9.7) .011*
L4-S1 �26.4 (15.2) �31.8 (10.7) .205
LL �26.5 (19.1) �42.1 (11.4) .003*
PI 51.6 (12.2) 51.5 (12.2) .981
PI-LL 25.1 9.3 (10.2) .002*
SS 26.5 (9.3) 28.9 (9.2) .429
SVA 67.5 (73.5) 38.2 (37.6) .122
T1 SPI 0.26 (7.1) �2.4 (3.9) .147
T1 slope 29.7 (16.4) 29.9 (12.5) .956
T1-CL 19.7 (14.7) 17.9 (11.4) .682
T2-T5 14.4 (9.5) 13.6 (9.4) .783
T5-T12 20.3 (13.1) 34.5 (8.2) <.001*
T9 SPI �8.2 (6.1) �12.1 (3.8) .019
TL 5.8 (16.0) 8.7 (13.1) .526
TPA 25.3 (13.5) 20.2 (8.7) .166
cSVA 17.0 (13.7) 20.4 (12.5) .446
TK (T4-T12) 24.7 (13.8) 38.3 (9.5) <.001*
Instrumented TK 3.8 (8.1) 8.4 (7.1) .057
Uninstrumented TK 20.9 (11.9) 29.8 (9.6) .014*
Pelvic tilt 25.1 (9.6) 22.7 (8.3) .403

Abbreviations: CL, cervical lordosis; CPA, C2 pelvic angle; CTPA, cervicothor-
acic pelvic angle; LL, lumbar lordosis; PI, pelvic incidence; SS, sacral slope; SVA,
sagittal vertical axis; SPI, spinopelvic inclination; TL, thoracolumbar kyphosis;
TPA, T1 pelvic angle; cSVA, cervical sagittal vertical axis; TK, thoracic kyphosis.
*Statistically significant (P < .05).
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37.6� vs postoperative 38.3�, P ¼ .847), uninstrumented TK

(predicted 33.9� vs postoperative 29.8�, P ¼ .188), and PT

(predicted 23.4� vs postoperative 22.7�, P ¼ .754). (Table 2).

In the linear regression analysis, the predicted PT and the TK of

the un-instrumented thoracic spine correlated well with post-

operative values (uninstrumented TK R2¼ 0.764, P< .001; PT

R2 ¼ 0.868, P < .001) (Figures 3 and 4). The mean error with

which kyphosis through the uninstrumented thoracic spine can

be measured was 4.8� + 4.0�. The mean error for predicting PT

was 2.5� + 1.7�. No statistically significant differences

between the predicted and postoperative values were seen for

the amount of compensation in the uninstrumented TK (pre-

dicted 12.9� vs postoperative 8.8�, P¼ .080) and PT (predicted

�2.4� vs postoperative �2.4�, P ¼ .988). The positive predic-

tive value (PPV) and negative predictive value (NPV) for

excessive PT was 77.8% and 81.8%, respectively. The PPV

and NPV for reciprocal uninstrumented TK was 50% and

100%, respectively.

There were 6 patient outliers for predicting TK in the unin-

strumented spine and 2 outliers for predicting the PT. One

patient was an outlier for both TK and PT. All outliers for the

uninstrumented TK were over-estimated compared to post-

operative values (error range: 7.8-12.7), which suggests that

the model over estimates the flexibility of the uninstrumented

spine. This explains the excellent NPV and relatively worse

PPV for reciprocal TK. Interestingly, these outliers had higher

instrumented TK than preoperative values (postoperative 8.3 vs

preoperative 2.9, P ¼ .130), but these differences were not

significant between outlier and no outlier groups (outlier 5.4

vs no outlier 4.4, P ¼ .608).

An example of an outlier can be represented by patient XY

(Figure 5). Patient XY was a 76-year-old man with adult spinal

Table 2. A Comparison of the Predicted and Postoperative Thoracic
Kyphosis (TK) and Pelvic Tilt.

Postoperative Predicted P

TK (T4-T12), deg 38.3 (9.5) 37.6 (10.2) .847
Uninstrumented TK, deg 29.8 (9.6) 33.9 (9.8) .188
Pelvic tilt, deg 22.7 (8.7) 23.4 (7.1) .754

Figure 3. The predicted versus the postoperative values for the
thoracic kyphosis in the uninstrumented spine after surgery. Outliers
are included.

Figure 4. The predicted versus the postoperative values for the
pelvic tilt after spine surgery. Outliers are included.

Figure 5. Patient XY is an example of an outlier for thoracic kyphosis
in our study. He underwent fusion from T10 to pelvis. Preoperative
lateral film is on the left and the postoperative film is on the right.
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deformity and a positive sagittal imbalance. Surgical treatment

included a posterior spinal instrumentation and fusion from

T10 to the ilium. Preoperatively, his PT and TK were measured

as 22� and 21�, respectively. The PT correction achieved was

greater than predicted (postoperative 11�; predicted 17�). The
TK compensation was underestimated (postoperative 40�; pre-
dicted 28�). The apparent knee flexion differences between

preoperative (69�) and postoperative (22�) likely contributed

to unaccounted compensatory mechanisms as the ML algo-

rithm in its current state does not analyze reciprocal changes

in the lower extremities.

One patient in our study had radiographic PJK at 1-year

postoperatively but was not considered an outlier for uninstru-

mented TK (5.9�). She was asymptomatic and did not require a

revision surgery. Briefly, this was a 61-year-old woman with

long-standing low back pain and lower extremity radiculopa-

thy. She had prior spine surgery (posterior spine decompression

and fusion L2-4) nearly 10 years ago. Given persistent symp-

toms and disability likely related to the pseudoarthrosis at L2-3

and overall sagittal imbalance, she underwent revision surgery

from T10 to ilium, posterior column osteotomy, and transfor-

aminal lumbar interbody fusion L3-4 and L4-5. Preoperatively,

her T4-12 TK was 14.5� and her PT was 26.1�. The predicted
PT was similar (postoperative 27.9� vs predicted 27�); how-
ever, the postoperative T4-12 TK was substantially higher than

predicted (postoperative 37.4� vs predicted 29.6�). This differ-
ence was most likely due to the excessive TK in the instrumen-

ted spine (postoperative 20.3� vs predicted 6.6�) and less

related to the uninstrumented TK (postoperative 17.1� vs

predicted 23�).

Discussion

Spurred by advances in technology and an ever-increasing

accumulation of data, ML has become a focus in health care

over the past 10 years. Major reasons for the growing attraction

toward ML include the potential for models to quickly learn

from new data and process complex, nonlinear relationships

that conventional regression models might fail to comprehend.

Spine studies are already showing promise in the ability of ML

methods to provide improved diagnostics, risk stratification,

and even leverage imaging data for better clinical prognostica-

tion.19,21,24-27 A high-risk spine population that will likely ben-

efit from continued ML research are patients with ASD.28,29

In ASD surgery, it is well-established that restoring sagittal

balance is correlated with improved health-related quality of

life and clinical outcomes.30-33 However, when surgery is per-

formed, the correction of a deformity can induce spontaneous

compensatory mechanisms in unfused segments.1,34,35 These

changes can be progressive leading to worse pain, disability,

and complications, such as pseudarthrosis or PJK, that require a

revision surgery as well as undesirable costs.36-38 Although it is

recognized that maximizing preoperative planning is essential

to avoid suboptimal postoperative alignment and anticipate

potential compensatory changes, predicting these changes in

alignment remains a significant challenge for spine surgeons.39

A number of prior studies have proposed mathematical for-

mulas to improve a surgeon’s ability to predict postoperative

alignment. In a retrospective series of 219 patients, Lafage

et al40 were the first to construct and validate predictive models

for PT and SVA in patients with ASD after undergoing a pedi-

cle subtraction osteotomy. Using multilinear regressions, these

authors determined that postoperative PT could be predicted by

the following equation: PT ¼ 1.14 þ 0.71 � PI – 0.52 �
(maximal lumbar lordosis) – 0.19 � (maximal thoracic kypho-

sis). Similarly, SVA could be calculated based on the following

equation: SVA ¼ �52.87 þ 5.9 � PI – 5.13 (maximal lumbar

lordosis) – 4.45 � PT – 2.09 � (maximal thoracic kyphosis) þ
0.566 � age. These models demonstrated good performance

with a mean error of 4.3� for PT and a mean error of 29 mm for

SVA. A clear advantage of these 2 models is that they included

either fixed (eg, PI, age) or surgically modifiable (eg, LL, TK)

factors. In other words, a surgeon could intraoperatively correct

the LL and use these equations to predict subsequent pelvic

retroversion and global alignment. These same authors further

validated their results through a multicentered study.22 The

median absolute error for predicting PT was 4.1� and the med-

ian absolute error for predicting SVAwas 27 mm. Their models

were successful in predicting unsuccessful outcomes (NPV ¼
0.98), but less reliable in predicting successful outcomes (PPV

¼ 0.76). In another retrospective review, Smith et al41 com-

pared 5 mathematical models to predict optimal postoperative

SVA (<5 cm) in ASD surgery patients. The reported formulas

by Lafage et al40 demonstrated the greatest accuracy. Although

these models provide tremendous insight, it is important to note

that the coefficients of these current models are static in nature.

In other words, these models are not capable of adapting to new

data. Therefore, significant model performance variability

might occur for different spine surgical practices. Furthermore,

these models did not account for changes that might occur in

the unfused spine. It is known that the unfused spinal segments

often move independently into positions that are opposite to the

direction of the fused spinal segments.1,42 A predictive model

that can predict these changes preoperatively would be invalu-

able for reducing future PJK risk.

Currently, there is a paucity of literature with regard to

predicting thoracic compensation after ASD surgery. Ohba

et al43 studied 66 ASD patients who underwent spinal fusion

from the lower thoracic spine (T8-10) to the pelvis with a

minimum 1-year follow-up. In their study, they found a signif-

icant positive correlation between increased LL and increased

TK (r ¼ 0.51, P < .001). Furthermore, they found that those

with a decreased postoperative lordosis distribution index had a

higher postoperative TK, which likely contributed to the PJK

risk.43 In another study, Protopsaltis et al23 performed a multi-

center retrospective review to study thoracic compensation and

its association with postoperative reciprocal thoracic kyphosis

and PJK in patients with ASD who underwent a fusion to the

sacrum with an upper instrumented vertebra in the lower thor-

acic spine. In contrast to our study, these authors calculated the

expected thoracic kyphosis (eTK) from the following equation

eTK ¼ PI – 20. This equation was derived from the validated

Lee et al 5
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formula from Schwab et al44 (LL¼ ½ (PIþ TK)þ 10 with the

assumption that LL ¼ PI. The eTK was not statistically differ-

ent from the postoperative TK for those who either maintained

TK or had reciprocal change in TK (�15� in the unfused thor-

acic spine). Interestingly, patients exhibiting reciprocal change

in TK were more likely to develop PJK and have worse health-

related quality of life scores. The findings of this study demon-

strate that mathematical equations can approximate thoracic

kyphosis for those with and without compensation; however,

it is unclear how accurate these predictions are for the unfused

spine against actual postoperative values. Furthermore, the suc-

cess of this model hinges on the assumption that LL ¼ PI,

which may be inconsistent to apply to all patients with ASD.

In comparison to prior studies, this is the first study to

examine the degree to which ML can predict compensation for

ASD patients. In our study, strong correlations were observed

between postoperative and predictive values for both pelvic tilt

and TK (uninstrumented TK R2 ¼ 0.764, P < .001; PT R2 ¼
0.868, P< .001). The mean error for the predicted estimates for

TK in the uninstrumented spine was <5�. These findings

demonstrate that a ML model can accurately predict the post-

operative compensation in the pelvis and the unfused portions

of the thoracic spine. With this level of precision, thoracic

kyphosis and pelvic compensation can be anticipated and

accounted for during preoperative planning.

A number of limitations should be considered for this study.

First, this study had a relatively small sample size, which may

limit the identification of possible differences in other radio-

graphic parameters in this study. Normally, a small sample size

limits the generalizability of a study’s findings as well; how-

ever, the purpose of this study was to demonstrate the capabil-

ity of ML. By its very nature, ML is meant to be personalized

and adapt for each user based on the perpetual flow of new

data. Next, the minimum follow-up was 6 months postopera-

tive. It is likely that TK and pelvic compensation changes with

time which may affect model reliability. It is important to note,

however, that the mean follow-up was closer to 2 years (mean

21.9 months) with only 3 patients with follow up prior to

1-year. Finally, the ML model did not include a comprehensive

set of patient factors such as medical comorbidities, bone den-

sity, or surgical techniques which can influence PJK risk.

Although, even without this data, the ML model still performed

significantly well.

Conclusion

ML algorithms can accurately predict compensation in the un-

instrumented thoracic spine and pelvis after spinal fusion from

the lower thoracic spine to the sacrum. These findings suggest

that surgeons may be able to leverage this technology in the

preoperative setting to reduce the risk of complications, such as

PJK. It is important to note that even a perfectly calibrated

model will not eliminate all uncertainty nor will it directly

translate into better care for patients. As ML technology con-

tinues to be integrated in spine care, the task for the surgeon

should be to combine machine learning with experienced clin-

ician judgement to allow for improved delivery of care.
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