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Abstract: Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human
malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which
has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome,
or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from
a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it
had a sequence element required for replication initiation (the replication initiation region/matrix
attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this
article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of
such extrachromosomal circles are summarized and discussed by reviewing recent articles on these
topics. Such studies are critical in the understanding and treating human cancer, and also for the
production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes
in the cells.

Keywords: gene amplification; extrachromosomal DNA; double minutes; micronucleus; cancer;
genome plasticity; chromothripsis; gene expression; repeat-induced gene silencing

1. Gene Amplification and the Extrachromosomal Circles in Human Cancer

The amplification of oncogenes or drug-resistant genes plays a pivotal role in human
cell malignant transformation by conferring growth advantage to the cells through the
overproduction of the amplified gene product. A classical cytogenetic study located the
amplified genes at the extrachromosomal double minutes (DMs) or the chromosomal
homogeneously staining region (HSR) [1]. DMs and HSR mutually interconvert [2,3], and
share the same sequence [4]. DMs are stable extrachromosomal elements that contain
circular DNA. Circularity has been suggested based on electron microscopy [5], sensitivity
to radiation-mediated breakage [6], and the absence of telomeric structures [7]; this was
recently re-enforced by integrating ultrastructural imaging, long-range optical mapping,
and computational analysis of whole-genome sequencing [8]. In contrast, cytogenetically
undetectable circular DNA has been identified in many normal and cancer cell lines and
normal tissues more than three decades ago [9]. Recently, many reports have described
circular extrachromosomal DNA in normal or cancer cells [10]. In general, the circles
in normal cells [11,12] were smaller in size (less than 1 kbp) than those in cancer cells
(1–2 Mbp) [13]. The former is referred to as extrachromosomal closed circular DNA
(eccDNA), and the latter are referred to as extrachromosomal DNA (ecDNA). EcDNAs
are equivalent to conventional DMs; however, the term ecDNA was recently used instead
of DMs because it does not always appear as a doublet among the chromosome spread
specimens. Several extensive studies that used a large number of clinical samples together
with the most advanced techniques, unambiguously, reinforced the tight relationship
between malignancy and the appearance of ecDNA/DMs [13,14].

It is important to note that gene expression from the same amplicon sequence is
higher in the extrachromosomal context than in the chromosomal context [15] because
the chromatin of extrachromosomal DNA is more favorable for gene expression [8,16].
Consistently, DMs were replicated early in the S phase, while the HSRs of the same
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amplicon were replicated at the end of the S phase [4]. The higher gene expression
may reflect the circular nature that poses a topological constraint that favors DNA helix
unwinding [8]. Alternatively, I now propose that it may reflect the plausible localization of
extrachromosomal elements in the interchromosome domain (ICD)compartment, where
gene expression is favored [17].

2. Intra-Cellular Behavior of the Extrachromosomal Circles

As described above, oncogene amplification contributes to the malignancy of hu-
man cells. Conversely, the elimination of amplified genes from cancer cells results in
cellular differentiation, growth arrest, and apoptotic cell death [18–20]. Therefore, if we
could eliminate the DMs/ecDNA-bearing amplified oncogenes, we could cure many
types of cancers. The extrachromosomal DMs are devoid of both telomeres [7] and cen-
tromeres [1]/kinetochores [21]. Therefore, the number of such acentric elements per cell
fluctuates during cell proliferation. Such fluctuations may generate genetic heterogeneity
among cells in the cancer tissue [22]. Furthermore, targeted therapy resistance develops if
the amplified genes are localized at the extrachromosomal circles [23].

The acentric DMs should stick to the mitotic chromosome arm during mitosis and
cytokinesis to segregate to the daughter cell nucleus [24], similar to the strategy used
by the nuclear episomes of many DNA viruses (reviewed in [25]). Detachment from
the chromosome arm results in cytoplasmic localization after mitosis [26]. On the other
hand, low concentrations of replication inhibitors such as hydroxyurea (HU) induced the
cytoplasmic micronuclei that were highly enriched with DMs [18,27]. The same conditions
also induced the elimination of DMs bearing the amplified genes [18–20]. Therefore, the
elimination of DMs might be mediated by entrapment into the cytoplasmic micronucleus.
The incorporation was highly selective; thus, purification of such micronuclei provided
almost pure DM DNA [28]. Subsequent studies revealed that such micronuclei were
derived from the intra-nuclear aggregates of numerous DMs (see Figure 1), namely, a low
concentration of HU induced double-strand breakage throughout the nucleus, and HU also
induced aggregation of numerous DMs in the nucleus [29]. The CRISPR/Cas9-induced
specific breakage of DMs was sufficient for aggregation and subsequent micronucleation
of DMs [30]. Homologous recombination machinery may be involved in the aggregation
process because it occurs only after the S phase. Such aggregates of DMs did not stick to
the chromosome, were left behind the separating anaphase chromosomes, and generated
micronuclei with almost pure DMs [26,31].
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Figure 1. A model explaining how double minute (DM) breakage results in their aggregation, repair, and micronucleation.
DM-derived sequences are shown in green, double-strand breakage (DSB) is shown in magenta, and chromatin is shown in
gray. Modified from Figure 6G in [30].
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Interestingly, the linear DNA microinjected into the nucleus rapidly aggregated [32],
suggesting that numerous damaged DNA, in general, were aggregated. Such aggregated
DNA could pass through the interphase nuclear membrane and appear in the cytoplasm
of living cells [32]. Similarly, nuclear budding or nuclear herniation (rupture) [33,34]
generated cytoplasmic chromatin. Nuclear budding was induced by a large cytoplasmic
bleb (protrusion), which was induced by fresh serum or the microtubule inhibitor nocoda-
zole [31]. Such cytoplasmic blebs pulled out the chromatin from the interphase nucleus
through the lamina break. This process generates cytoplasmic micronuclei without lam-
ina [31]. This has important implications because chromatin in the cytoplasm stimulates
the cGAS-STING pathway, which evokes an inflammatory response (reviewed in [35]).

3. Generation of DMs/EcDNA and HSR from Small eccDNA

“The episome model” of gene amplification [2,36] argued that the submicroscopic
circular episome derived from the chromosome arm was maintained and multimerized
to generate larger DMs. If such a circle is integrated into the chromosome arm, it induces
the breakage-fusion-bridge cycle (BFB) and generates chromosomal HSR. This hypothe-
sis was demonstrated using a plasmid bearing a replication initiation region (IR) and a
nuclear matrix (scaffold) attachment region (MAR/SAR), both of which are required for
replication initiation. Such plasmids, if transfected into human colorectal carcinoma COLO
320DM cells, spontaneously and efficiently generated DMs and/or HSRs in stable transfor-
mants, which were morphologically indistinguishable from those detected in malignant
cells [37,38]; see Figure 2). For amplification, both IR and MAR were required. The mini-
mum sequence required for efficient amplification was isolated from DHFR, c-myc [39], and
β-globin IR [40], and such core IR has many kinds of sequence elements that are required for
replication initiation. The mechanism of gene amplification was studied using this system
(Figure 3, black arrows). The circular plasmid DNA with IR/MAR was multimerized to
large circles, where the sequences were arranged in tandem repeats [38]. The large circle
may be identified as DMs under light microscopy if it becomes sufficiently large [41]. The
tandem repeat of the IR/MAR plasmid was then integrated into the chromosome arm,
where it efficiently initiated the BFB cycle that generated HSR [41,42].
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Figure 2. Amplification of IR/MAR-bearing circular plasmid in the transfected cells. An IR/MAR plasmid was transfected
to human colorectal carcinoma COLO 320DM cells. Stable transformants were selected by drug for more than one month.
The chromosome spread was hybridized with a probe prepared from the transfected plasmid. The hybridized probe was
detected by green fluorescence, and the DNA was counterstained with propidium iodide (shown in red). The plasmid
generated extrachromosomal double minutes (DM) or several types of homogeneously staining region (HSR). The photos of
DM [43] and large HSR [38] appeared previously, and the other photos are unpublished.
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Figure 3. Mechanism of amplification of an IR/MAR-bearing circular plasmid. The IR/MAR plasmid is shown in red
arrows. DMs, if pre-existed in the same cells, are shown in green, and the chromosome arm is shown in cyan. The processes
in wild-type cells are indicated by black arrows, and the ones only in SIRT 1 knock-out cells are indicated by red arrows.
Modified from Figure 7 of [44].

Importantly, the IR/MAR sequences that support gene amplification are scattered
throughout the human genome because replication is initiated at ca. 100 kbp intervals [45].
Therefore, among the numerous small eccDNAs generated from the chromosome arm, at
least a portion of them should be amplified similarly to the IR/MAR plasmid. Furthermore,
any DNA co-transfected with the IR/MAR plasmid was efficiently co-amplified in the trans-
fected cells [38], suggesting frequent recombination between the extrachromosomal DNA.
This was consistent with the fact that natural DMs/ecDNA were a patchwork of sequences
derived from several separate chromosome regions [46,47]. Such co-amplification of extra-
chromosomal circles drives the co-amplification of distantly located enhancer sequences
together with the oncogene, thus enhancing the expression of oncogenes [48]. Furthermore,
the efficiency of IR/MAR gene amplification varied significantly between normal and
tumor cells as well as between the different tumor cell lines ([43,49] our unpublished data).
This may correspond to the fact that DM/ecDNA and/or gene amplification is restricted
to certain types of cancer cells [13], and may reflect that the stability of the circles bearing
the IR/MAR sequence is only limited to amplification-prone cell types [49]. We do not
know which gene may determine the amplification phenotype; however, SIRT1 stabilizes
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the extrachromosomal element [44]; Figure 3, red arrows by preventing activation of latent
origin of replication initiation [50].

4. From Chromosome Arm to Gene Amplification

The episome/eccDNA bearing the IR/MAR sequence was multimerized to generate
larger and complex DMs/ecDNAs. The mechanism that generates an initial small circle
from the chromosome arm was discussed as follows: The most plausible mechanism is
chromothripsis, which is mediated by micronuclei. Chromothripsis has been suggested
by cancer genomics, and it involves the abrupt fragmentation of a specific chromosome
followed by re-ligation and extensive rearrangement of many fragments [51,52]. The
fragmentation of a specific chromosome might occur in micronuclei [53,54] if the nuclear
membrane of the micronuclei ruptures [55,56]. It has been reported that replication [57]
and transcription [58] are defective in lamina-negative micronuclei. The re-ligation of the
fragment produces a large number of circular molecules [59]. Among such circles, the
circles with IR/MAR would be amplified as described above. A model system reproduces
this process in culture [49]. It is known that human chromosomes are specifically eliminated
in human-rodent hybrid cells. In such hybrids, the human chromosome was selectively
incorporated into micronuclei because of the malfunctioning of the human centromere in
such hybrids. Then, the micronuclear content was broken, and the human chromosome
was eliminated. Importantly, there remained numerous acentric stable DMs with a mark
of the human genome, that is, Alu, among stable rodent chromosomes. Such DMs are
composed of a patchwork of sequences derived from multiple human chromosome regions,
consistent with the structure of natural DMs/ecDNA in human cancer [46].

5. Applications of the Extrachromosomal Element-Mediated Gene Amplification

The circular plasmid DNA bearing the IR/MAR mimics gene amplification, thus
providing an excellent model to study genetic plasticity associated with human malignancy.
Furthermore, the system provides a novel platform for recombinant protein production,
whose efficiency needs to be increased, especially in the case of biopharmaceutical produc-
tion. However, this application has two major limitations. One is the cell-type dependency
of the amplification efficiency ([43] our unpublished results). The problem was techni-
cally solved by amplifying the target genes on the artificial chromosome [60,61] in the
amplification-prone cells, followed by its transfer to the amplification-difficult cells by
micronuclei-mediated chromosome transfer [61]. Another problem was that the amplifi-
cation produced an ordered tandem repeat, which was subjected to repeat-induced gene
silencing (RIGS; [62,63]). RIGS is an important cellular mechanism that heterochroma-
tinizes the pericentric region to increase mechanical strength [64], prevent transposon
spreading [65], or silence transgenes [66,67]. The problem was, at least in part, overcome
by the finding that RIGS is sequence-dependent [68]. Some sequences, which included
the core IR [69], the MAR, or the human genomic B-3-31 sequence, resulted in a reverse
phenomenon, that is, repeat-induced gene activation (RIGA), while other sequences, which
included bacterial plasmid, phage, or human transposon sequences, resulted in RIGS. Fur-
thermore, knock-out of a histone deacetylase SIRT1 might alleviate RIGS, in combination
with butyrate treatment, which inhibits another type of histone deacetylase [44]. Therefore,
we are now able to amplify sequences of interest that are not subject to RIGS. We anticipate
an increase in recombinant production in a gene number-dependent manner from the
amplified recombinant genes.

6. Future Task

There is no doubt about the importance of circular extrachromosomal DNA for cancer
development. Much has been understood about what they are, how they are generated, and
how they behave in cells. However, the following questions need to be addressed. (1) How
were the small eccDNAs generated from the chromosome arm? The detailed molecular
mechanisms should be clarified. (2) Which portion of eccDNA is stable and contributes
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to gene amplification? Such a stable circle should contain at least the IR/MAR sequence,
which is required for extrachromosomal replication, multimerization, and recombination
with other circles. Furthermore, some additional sequence(s) may be required for the stable
segregation of daughter cells by sticking to the mitotic chromosome. (3) What genetic
background of the cells supports the stability of the circle? It would likely determine
the amplification-prone phenotype of certain tumor cells and would be crucial for cancer
diagnostics. This understanding is important for industrial applications.

Another important question is the fate of the micronuclei. As described, the initial
study [20,28] suggested the involvement of micronuclei in the elimination of DMs/ecDNA.
A later study uncovered the mechanism by which DMs/ecDNA are selectively entrapped
by micronuclei [26,29,30]. However, the question of how the micronuclei content is elimi-
nated has not yet been clarified. Micronuclei were detected in culture fluid [70]. Such extra-
cellular micronuclei were enriched with DMs/ecDNA, had intact lamina, non-damaged
DNA, and cytoplasmic membrane. Large cytoplasmic blebs, which were induced by the
addition of fresh serum, might entrap the micronuclei [31]. The bottom of the bleb was
constricted, where actin and phosphorylated myosin were located just like a contractile
ring during cytokinesis (Figure 4). Therefore, such blebs were easily broken by fluid flow,
releasing the extracellular micronuclei (unpublished observation). Consistent with this,
microvesicles with amplified oncogene DNA [71] or ecDNA [72] were detected in human
plasma, which is useful for cancer diagnostics. Such a process is important and ought to
be addressed.
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Figure 4. Possible involvement of cytoplasmic bleb in the elimination of extrachromosomal circles. Large cytoplasmic bleb
(protrusion) induced by fresh serum could entrap the micronuclei [31]. The bottom of such bleb was constricted (grayscale
DIC image), where actin (red in (A)) and phosphorylated myosin (MRLC-2P; green in (B)) was located (noted as “+” in (B))
just like a contractile ring during the cytokinesis. DMs were detected in green by Lactose repressor-GFP binding to lactose
operator sequence on DMs [29]. These are unpublished images.
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Clarifying these questions is important in understanding and treating human cancer
as well as for industrial applications.
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