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ABSTRACT “Candidatus Aenigmarchaeota” (“Ca. Aenigmarchaeota”) represents one
of the earliest proposed evolutionary branches within the Diapherotrites,
Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN)
superphylum. However, their ecological roles and potential host-symbiont interac-
tions are still poorly understood. Here, eight metagenome-assembled genomes
(MAGs) were reconstructed from hot spring ecosystems, and further in-depth com-
parative and evolutionary genomic analyses were conducted on these MAGs and
other genomes downloaded from public databases. Although with limited metabolic
capacities, we reported that “Ca. Aenigmarchaeota” in thermal environments harbor
more genes related to carbohydrate metabolism than “Ca. Aenigmarchaeota” in non-
thermal environments. Evolutionary analyses suggested that members from the
Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum
and Euryarchaeota contribute substantially to the niche expansion of “Ca. Aenigmarchaeota”
via horizontal gene transfer (HGT), especially genes related to virus defense and stress
responses. Based on co-occurrence network results and recent genetic exchanges among
community members, we conjectured that “Ca. Aenigmarchaeota” may be symbionts asso-
ciated with one MAG affiliated with the genus Pyrobaculum, though host specificity might
be wide and variable across different “Ca. Aenigmarchaeota” organisms. This study provides
significant insight into possible DPANN-host interactions and ecological roles of “Ca.
Aenigmarchaeota.”

IMPORTANCE Recent advances in sequencing technology promoted the blowout dis-
covery of super tiny microbes in the Diapherotrites, Parvarchaeota, Aenigmarchaeota,
Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, the uncultur-
able properties of the majority of microbes impeded our investigation of their behav-
ior and symbiotic lifestyle in the corresponding community. By integrating horizontal
gene transfer (HGT) detection and co-occurrence network analysis on “Candidatus
Aenigmarchaeota” (“Ca. Aenigmarchaeota”), we made one of the first attempts to infer
their putative interaction partners and further decipher the potential functional and
genetic interactions between the symbionts. We revealed that HGTs contributed by
members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota
(TACK) superphylum and Euryarchaeota conferred “Ca. Aenigmarchaeota” with the
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ability to survive under different environmental stresses, such as virus infection, high
temperature, and oxidative stress. This study demonstrates that the interaction partners
might be inferable by applying informatics analyses on metagenomic sequencing data.

KEYWORDS “Ca. Aenigmarchaeota”, DPANN, symbiont, horizontal gene transfer, co-
occurrence network, coevolution network

ith advances in sequencing technologies and bioinformatic approaches, insight

into the “unseen majority” prokaryotes has become possible, even when they
inhabit complex microbial communities, leading to a tremendous expansion of known
archaeal diversity (1-7). Among recently proposed major archaeal lineages, the
Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota
(DPANN) superphylum has inspired considerable research attention, which has uncovered
their surprisingly small genome sizes, lack of genes associated with core biosynthetic
pathways (3, 8, 9), and extensive phylogenetic and functional diversity (10-12).
“Candidatus Aenigmarchaeota” (“Ca. Aenigmarchaeota”), which represent the “A” of the
DPANN superphylum, were first uncovered and named as the “Deep Sea Euryarchaeotic
Group (DSEG)” (13). Later, based on single-amplified genomes (SAGs), this lineage was
defined and proposed as a novel phylum (2). Other studies integrating metagenomic and
metatranscriptomic sequencing revealed that this phylum lacks many essential metabolic
pathways and may possess fermentative and symbiotic lifestyles (3, 8). However, our
understanding of the metabolic characteristics, functional diversity, and potential host-
symbiont interactions of “Ca. Aenigmarchaeota” is far from sufficient.

Here, we apply comparative and evolutionary genomics analyses on eight new
metagenome-assembled genomes (MAGs) along with 15 publicly available genomes
to fill these gaps. Our study reveals a symbiotic lifestyle for “Ca. Aenigmarchaeota”
based on the absence of many genes involved in core metabolic pathways. Further
analyses suggest that the occurrence of horizontal gene transfer (HGT) improves the
competitiveness of “Ca. Aenigmarchaeota” by expanding their gene repertoires rele-
vant to stress response and virus defense. We also integrate the HGT inference and co-
occurrence network construction to reveal potential functional and genetic interac-
tions between “Ca. Aenigmarchaeota” and other microbes.

RESULTS AND DISCUSSION

Phylogeny and distribution of “Ca. Aenigmarchaeota.” Eight MAGs of “Ca.
Aenigmarchaeota” were successfully reconstructed from five hot spring sediment sam-
ples collected in Tengchong county in Yunnan, China (Fig. 1a), including four from a
single sample from Diretiyanqu-6 (DRTY-6) and one for each of the other springs
Diretiyanqu-7 (DRTY-7), Gumingquan (GMQ), Qiaoquan (QQ), and Jinze (JZ-2) (Table 1)
(14). “Ca. Aenigmarchaeota” represents a rare group in hot spring ecosystems with rel-
ative abundances of all MAGs of <0.4% (Fig. 1b). Most MAGs are of high quality, with
completeness of >90%, nearly no contamination, and detectable 16S rRNAs and tRNAs
(>21) (Table 1; Data Set S1 in the supplemental material) (15). Compared to MAGs of
“Ca. Aenigmarchaeota” from other studies (Table S1), they have smaller genome sizes
(0.64 versus 0.86 mega base pairs [Mbp]; Mann-Whitney U test, P=0.0003; Fig. S1) and
a lower range of GC content (average 31.74% versus 38.59%; Mann-Whitney U test,
P=0.012) (2, 3, 8); they also harbor a smaller number of genes (752 versus 1,070;
Mann-Whitney U test, P=0.002), shorter average gene length (771 versus 683 bp;
Mann-Whitney U test, P=0.0005), and remarkably high coding density (88 to 94.6%)
and percentage of overlapping genes (~20.6%) (Table 1). This is consistent with previ-
ous studies suggesting that thermophiles harbor small genome sizes as a result of
genomic streamlining due to high fitness costs of life at high temperatures (16). Both
whole-genome-based phylogenomic and 16S rRNA gene-based phylogenetic analyses
revealed that the eight MAGs from this study branched within the phylum “Ca.
Aenigmarchaeota” with high bootstrap confidences (Fig. 1¢; Fig. S2). 16S rRNA sequen-
ces of “Ca. Aenigmarchaeota” were retrieved from the NCBI-nr database and used to
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FIG 1 Phylogenetic analysis of reconstructed genomes of “Ca. Aenigmarchaeota” sampled from hot spring sediments in Yunnan, China. (a) Sampling sites
of “Ca. Aenigmarchaeota” in Tengchong, Yunnan, China. Hot spring sediments from a total of five sites were collected in January 2016 and May 2017. (b)
Relative abundances of “Ca. Aenigmarchaeota” MAGs were calculated by the coverage of the scaffolds of each MAG over the coverage of all the scaffolds
of the corresponding metagenome. (c) Phylogenetic placement of the reconstructed MAGs. Maximum likelihood phylogeny of eight “Ca. Aenigmarchaeota”
MAGs in this study and reference genomes from TACK and DPANN superphyla. Phylogeny was constructed based on a concatenated set of 16 ribosomal
proteins with 1,000 bootstrap iterations.

illustrate the geographical distribution (see Materials and Methods). The results dem-
onstrated that “Ca. Aenigmarchaeota” represented an evolutionarily diverse group that
inhabits a broad range of ecosystems (Data Set S2), including freshwater (40.96%), ma-
rine water (27.71%), hot springs (7.63%), hydrothermal vents (6.83%), and groundwater
(7.63%). A minor portion of the 16S rRNA gene sequences was retrieved from hypersa-
line lakes and soils (<5%).

Metabolic features of “Ca. Aenigmarchaeota.” Based on 8 MAGs from this study
and 3 SAGs and 12 MAGs from previous studies, we constructed the metabolic path-
ways of “Ca. Aenigmarchaeota” (Fig. 2). Consistent with previous studies on the
DPANN superphylum, all 23 “Ca. Aenigmarchaeota” MAGs have limited metabolic
capacities. Pathways including the tricarboxylic acid cycle (TCA), fatty acid metabolism,
and dissimilatory/assimilatory sulfur and nitrogen metabolism were missing (8, 17, 18).
“Ca. Aenigmarchaeota” MAGs from hot springs and hydrothermal vents possess an
incomplete glycolytic pathway (Fig. 2). All MAGs except DRTY-6_2 bin 201 lack the key
enzyme phosphofructokinase (PFK), which impedes the formation of fructose-1,6-bis-
phosphate (fructose-1,6P) from fructose-6-phosphate (fructose-6P) (Data Set S1). DRTY-
6_2 bin 201 seems to have a rather complete glycolysis pathway. However, the lack of
glucokinase indicates the incapacity in the production of glucose-6-phosphate (glu-
cose-6P) from glucose. Interestingly, the solely detected glycogen phosphorylase in
this MAG and widely distributed phosphoglucomutase suggest that DRTY-6_2 bin 201
can phosphorylate glycogen into glucose-1-phosphate (glucose-1P) and further enter
the glycolysis pathway by converting glucose-1P into glucose-6P, which could
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FIG 2 Reconstructed metabolic pathway of “Ca. Aenigmarchaeota.” Key genes involved in glycolysis, gluconeogenesis, pentose phosphate pathway,
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subsequently enter the rest of glycolysis pathway. The absence of pyruvate kinase (PK)
and pyruvate kinase isozymes R/L (PKLR) prohibits the conversion of phosphoenolpyru-
vate (PEP) to pyruvate during the last step of glycolysis in DRTY-6_2 bin 201. However,
phosphoenolpyruvate synthase (pps), which might perform the same function as PK in
thermophiles (19, 20), was detected in most MAGs in this study, including DRTY-6_2 bin
201. As a result, these genes may provide an alternative glycolysis pathway to DRTY-6_2
bin 201. Subsequently, genes encoding 2-oxoglutarate/2-oxoacid ferredoxin oxidoreduc-
tase (korAB) in most of the MAGs suggest that “Ca. Aenigmarchaeota” is able to catalyze
the reaction from pyruvate to acetyl-CoA. The reverse reaction could be performed by py-
ruvate ferredoxin oxidoreductase (por), which is widely detected in MAGs of hydrothermal
vents and groundwater. Three MAGs can generate membrane proton motive force (PMF)
via a hydrolysis process encoded by the membrane-bound H*-phosphatase (H"-PPase)
(21). Alternatively, PMF could be generated via reactions involved in the degradation of
amino acids or Na*/H* antiporters (22). However, the absence of the electron transport
chain (ETC), especially V/A-type ATPase, may suggest that “Ca. Aenigmarchaeota” could
not produce ATP via PMF. Each “Ca. Aenigmarchaeota” contains at least one type of fer-
mentation pathway. All MAGs from hot springs and groundwater except DRTY-6_2 bin
201 and GMQ_1 bin 18-1 harbor acetate-coenzyme A (acetate-CoA) ligase, which performs
the conversion of acetate and ATP from acetyl-CoA, ADP, and phosphate. DRTY-6_2 bin
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201, QQ_2 bin 128, and most MAGs from groundwater could utilize adhE to produce acet-
aldehyde and utilize aldehyde dehydrogenase to produce acetate. In addition, QQ_2 bin
128 is predicted to produce lactate and ethanol, based on the presence of (-lactate dehy-
drogenase, and acetaldehyde dehydrogenase/alcohol dehydrogenase. Moreover, MAGs
from hydrothermal vents and DRTY-6_2 bin 201 could utilize acetyl-CoA synthetase (ACSS)
to produce acetate as previously described for other DPANN genomes (3). The production
of acetate is predicted to support the growth of aerobic/anaerobic respiratory organisms,
indicating the role of “Ca. Aenigmarchaeota” in the energy cycle of the microbial commu-
nity (8). These results show that fermentation pathways could be the main sources of ATP
generation for “Ca. Aenigmarchaeota” (23).

Two genes relevant to polysaccharide degradation, including a-amylase (for starch
and glycogen) and a-1,6-glucosidase (for starch and disaccharides), were identified in
many of the hot spring MAGs (Data Set S1). DRTY-6_1 bin 65 might also degrade and
utilize pullulan (GH13_20) and xyloglucan (GH16) (24, 25). Aside from a-amylase, MAGs
from hydrothermal vents harbored different and more glycoside hydrolases, including
B-glucosidases (for disaccharides), glucoamylases (for starch), 8-1,2-mannosidases (for
B-1,2-mannotriose and B-1,2-mannobiose), and endo-1,4-B-mannanase (for B-1,4-
mannans, B-1,4-galactomannans, and pB-1,4-glucomannans). However, MAGs from
groundwater only had «-1,4-galactosaminogalactan hydrolase (for galactosaminoga-
lactan). This might reflect a more active carbohydrate metabolism in thermal environ-
ments. None of the known carbon fixation pathways were detected in these MAGs,
though three MAGs contain archaeal ribulose-bisphosphate carboxylase (RuBisCO). As
previously described in other archaea, RuBisCO genes may function in the CO,-incor-
porating AMP pathway, together with genes encoding AMP phosphorylase and ribose-
1,5-biphosphate isomerase (26, 27). This pathway could produce glycerate-3-phos-
phate that enters the glycolysis pathway. Phylogenetic analysis suggests that the six
RuBisCO genes recovered from “Ca. Aenigmarchaeota” belong to the form Il group, of
which five are from thermal environments (Fig. 3a). Four of them belong to form lll-b,
and the remaining two could be classified as a novel lineage that clustered with
RuBisCO genes from candidate phyla radiation (CPR) genomes, which were previously
suggested to have been passed by HGT from “Ca. Aenigmarchaeota” to CPR (26).
Additionally, five MAGs distributed in both thermal and nonthermal ecosystems were
identified to encompass all three genes involved in the AMP pathway (Data Set S1).
We also identified different types of hydrogenases in “Ca. Aenigmarchaeota.” Eight
MAGs from thermal environments harbor NiFe 3b-type hydrogenases, which are clus-
tered into one clade (Fig. 3b). This type of hydrogenase is functionally reversible and is
capable of catalyzing the oxidation for anabolic metabolism or evolution of H, during
fermentation (28). Unlike the MAGs from thermal environments, NiFe 3b-type of hydro-
genases are absent in nonthermal environments. Instead, membrane-bound hydroge-
nases (group 4) are identified, illustrating that different strategies are used by nonther-
mophiles in producing PMF and H..

Despite the possession of genes involved in glycolysis and the fermentation path-
way, the absence of many pivotal pathways strongly suggests a symbiotic lifestyle for
“Ca. Aenigmarchaeota.” First, this archaeal phylum is devoid of de novo amino acid bio-
synthetic pathways. Although we found a variety of extracellular peptidases, mem-
brane peptidases, and cytoplasmic peptidases that can degrade extracellular and intra-
cellular proteins and peptides (Data Set S1) (3), only a few amino acid transporters
were detected. The only identified one is an uncharacterized amino acid transporter
(arCOG00009), suggesting a poor ability in the transport of peptides/amino acids
extracellularly. Therefore, “Ca. Aenigmarchaeota” presumably obtain amino acids from
hosts by physical contact, similar to Nanohaloarchaeota and Nanoarchaeota (29-31),
and rely on a great number of peptidases to recycle their amino acids. Second, de novo
nucleotide biosynthetic pathways are absent in most of the genomes of this phylum
(32). Moreover, genes for purine and pyrimidine salvage pathways are rarely detected
in most MAGs from hot springs (Data Set S1), illustrating the further reliance on a host
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the supplemental material for details.

to provide requisite nutrients. Third, “Ca. Aenigmarchaeota” genomes are unable to syn-
thesize cell membranes de novo due to the lack of genes for synthesis of sterol isopre-
noids involved in the mevalonate pathway (MVA), although genes encoding mevalonate
kinase, glycerol-1-phosphate dehydrogenase, and associated enzymes for phospholipid
biosynthesis have been detected (33, 34).

Cell-surface structures might enable the interactions between DPANN archaea with
their hosts (30). Genes encoding S-layers, a subset of confirmed archaellum proteins
(FlaG, Flal, and Flal), and several adjacent archaellum homologs are identified in most
“Ca. Aenigmarchaeota” MAGs. Notably, type-IV pili in “Ca. Aenigmarchaeota” are solely
found from MAGs inhabiting thermal environments (35-37). To a certain extent, these
genes endow “Ca. Aenigmarchaeota” with protection, motility, and cell-to-cell attach-
ment abilities, which might consequently facilitate host-symbiont interactions.

Stress responses used by “Ca. Aenigmarchaeota.” Comparative genomics
showed that “Ca. Aenigmarchaeota” inhabiting thermal environments harbor higher
abundances of genes involved in genetic information processing, including “transcrip-
tion,” “translation,” “replication and repair,” and “folding, sorting, and degradation”
(Fig. S3a). In addition, genes involved in “cell motility” and “posttranslational modifica-
tion, protein turnover, and chaperones” predominantly were enriched in thermophiles
(Fig. S3b). This reflects the fact that cells at high temperatures have to combat constant
thermal denaturation of both macromolecules and monomers (38-40). “Ca.
Aenigmarchaeota” MAGs from thermal environments have evolved multiple strategies to
overcome this stress. Chaperonin GroEL, associated with the repair of DNA and pro-
tein damage caused by high temperature, was present in all “Ca. Aenigmarchaeota”
genomes (Fig. 4) (8, 41). The prevalence of DNA repair protein RadA could be used
for homologous recombination and as an alternative strategy for DNA repair (42),
indicating the pervasiveness of genome reduction among these genomes. Type |

"o " ou
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(IA- and IB-type) topoisomerases and reverse gyrases, the latter considered a hallmark of
hyperthermophily, were solely detected in MAGs from thermal environments, which
could stabilize DNA and modulate DNA topology to maintain the structure and integrity
of chromosomes (40, 43, 44). HSP70 (DnakK), Dnal, and GrpE were absent in MAGs
from thermal environments but were commonly detected in groundwater MAGs
(Fig. 4), which is consistent with the potential role of this system in the adaptation
to mesophily (45).

The presence of cell defense systems protects prokaryotic cells from virus infection.
Based on the results of functional annotation, we investigated cell defense systems in
“Ca. Aenigmarchaeota.” DRTY-7_1 bin 34 was detected to contain a CRISPR-Cas system
(Class llI-A; Fig. S4a). All three types of restriction modification (RM) systems were
found in “Ca. Aenigmarchaeota” (46) (Fig. S4b). The most frequently detected type IlI
RM system was found in 15 (65%) of the total MAGs. Five of the eight MAGs from this
study harbor a type Il RM system, indicating an alternative common strategy for terres-
trial thermal microbes to resist virus infection. Additionally, the recently discovered
Hachiman system was detected in DRTY-6 bin 65 and the Gabija system was detected
in DRTY-6 bin 215, providing broad protection against viruses (47) (Fig. S4c). The wide
distribution of defense systems in thermophilic “Ca. Aenigmarchaeota” suggests that
viruses could be an important threat to the survival of microbes in hot spring ecosystems
(48-50). Viruses with different morphologies have been detected in hot springs and are
highly active in situ (14, 47). Hence, it seems plausible that “Ca. Aenigmarchaeota” may
confer their hosts with immunity to viruses by serving as “viral decoys” (51). The attracted
virus could be degraded, and the released DNA could be recycled as a nucleotide source
(51). Therefore, the host-symbiont interaction between “Ca. Aenigmarchaeota” and its
potential hosts appear to be mutually beneficial.

Horizontal gene transfer in “Ca. Aenigmarchaeota.” Horizontal gene transfer has
been recognized as a substantial force in shaping the genetic diversity of prokaryotes
(52-55). To ensure a high-quality detection of HGTs, we removed three low-quality
genomes for HGT analysis (see details in Materials and Methods). Surprisingly, results
uncovered a lower proportion of HGT-derived genes in “Ca. Aenigmarchaeota” than in
thermophilic, free-living archaea, for example, Aigarchaeota (mean 14.2% versus 22.9%;
Mann-Whitney U test, P=8.687E—06) (7). Intriguingly, “Ca. Aenigmarchaeota” MAGs from
different ecosystems possessed comparable percentages of HGT-derived genes (Fig. 5a),
in which significant positive correlation (Pearson’s R? = 0.57, P=7.213E—05) was observed
between detected HGTs and predicted gene totals in corresponding genomes regardless
of ecosystems and genome sizes (Fig. 5b). By looking into the potential donors, we found
that members from Euryarchaeota (998, 38.7%), “Ca. Bathyarchaeota” (193, 7.49%), and
Firmicutes (147, 5.70%) are the top three contributors to the genetic innovations of “Ca.
Aenigmarchaeota” MAGs (Fig. 5¢c and Data Set S3). Among the HGTs from Euryarchaeota,
186 (7.2% among all HGTs) are derived from Methanomicrobia and 178 (6.9%) are from
Methanococcus. The high percentage of HGTs derived from Euryarchaeota, Crenarchaeota,
and “Ca. Bathyarchaeota” is consistent with previous studies reporting of symbioses
between DPANN and TACK and Euryarchaeota (10, 29, 30, 56).

To reveal potential factors that facilitate the adaptation of “Ca. Aenigmarchaeota”
across groundwater, hot springs, and hydrothermal vents, we compared the acquired
genes between these groups. Results indicated very little overlap between HGT-
derived genes among these three ecosystems. Only 54 KEGG orthologs (KOs) and 67
archaeal clusters of orthologous groups (arCOGs) (11.04% and 12.27% among all KO
and arCOG assignable HGTs) are shared by all the three groups (Data Set S3), suggest-
ing that they have distinct adaptation strategies.

Through the BLAST-based analysis, as well as phylogenetic analysis, we can verify
that HGT plays a crucial role during the adaptation to different stresses. For instance,
the detected reverse gyrases in “Ca. Aenigmarchaeota” genomes seem to derive from
“Ca. Bathyarchaeota,” which may have improved the fitness of these organisms to
inhabit high-temperature environments (Fig. S5a). Also, several genes encoding
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in Materials and Methods.

superoxide dismutase (SOD2) (Fig. S5b) and 8-oxo-dGTP diphosphatase (mutT)
(Fig. S5¢) were identified as HGTs, which could be used to resist oxidative damage and
to generate PMF (22). Two genes, including transcription initiation factor IIB (TFIIB) and
phage integrase, in these two MAGs DRTY-6_1 bin 65 and DRTY-7_1 bin 34 were iden-
tified as belonging to phyla outside DPANN, both of which show high identity to
Euryarchaeota. However, neither of them was identified as HGTs by HGTector. From
the constructed phylogeny, the TFIIB gene in Theionarchaea archaeon DG-70 is sur-
rounded by genes from “Ca. Aenigmarchaeota,” suggesting that members of “Ca.
Aenigmarchaeota” are possible gene donors rather than recipients (Fig. S5d). In DRTY-
6 bin 65, both genes are in the same scaffold. The taxonomic information of genes
close to TFIIB is mostly affiliated with “Ca. Aenigmarchaeota,” consolidating the infer-
ence of vertical inheritance of this gene. The phage integrase may be horizontally
transferred from Euryarchaeota, since 6 of the 10 downstream genes are close relatives
to Theionarchaea (51.3 to 77.4%) and three are close relatives to Thermoplasmata (48.3
to 61.1%). Among them, three genes exhibit homologies to methyltransferase, DNA-
binding protein, and restriction endonucleases associated with type Il restriction modi-
fication (RM) systems. This suggests that integrase-mediated HGT may confer “Ca.
Aenigmarchaeota” the special niche to resist virus infection. Overall, the above obser-
vations further support that HGT plays a substantial role in shaping the genetic diver-
sity of “Ca. Aenigmarchaeota” for stress response.

Putative functional and genetic interaction partners of “Ca. Aenigmarchaeota
inferred from in situ communities. Cell-to-cell contact possibly leads to an opportu-
nity for extensive HGTs (57-59). The inferred HGTs of “Ca. Aenigmarchaeota” may facili-
tate us to infer their potential hosts. However, only xenologous sequences with high
identities, the so-called “recent HGTSs,” could be used for the inference of current sym-
biotic relationships between the associated donor and recipient (59). Therefore, we

”
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ruled out the possibilities of Bacteria as potential hosts since most of the transferred
genes represent ancient events with high divergence, though some Bacteria may con-
tribute a lot to the genomic innovation of “Ca. Aenigmarchaeota.” For instance, those
genes transferred from Firmicutes only shared ~42% of the identities to the recipient
genes in “Ca. Aenigmarchaeota.” Additionally, most DPANN, such as Nanoarchaeota,
Nanohaloarchaeota, and “Ca. Micrarchaeota,” are incapable of synthesizing membrane
spontaneously and must rely on assistance from their hosts (8, 30, 60, 61). Therefore, it
is more likely that the putative hosts are restricted to Archaea due to the similar mem-
brane structure shared by DPANN and most other archaea (8). Additionally, all previous
studies support our conjecture that DPANN archaea were exclusively associated with
archaea to form the symbiotic relationship (e.g., Nanoarchaeum equitans and Ignicoccus
hospitalis, “Ca. Micrarchaeota acidiphilum” Mia14 and Cuniculiplasma divulgatum PM4,
“Ca. Nanohaloarchaeota antarcticus” and Halorubrum lacusprofundi, “Ca. Huberiarchaeum
crystalense,” and “Ca. Altiarchaeum hamiconexum?”) (17, 29-31, 62, 63).

To further explore the potential host-symbiont relationships between “Ca.
Aenigmarchaeota” and other archaea, a network interface of microbial communities
in hot springs was constructed (see Materials and Methods), aiming to reveal micro-
bial co-occurrence patterns and possible ecological interactions (59, 62-65). The
network encompasses 97 nodes with 257 edges, and only one of them is identified
as “Ca. Aenigmarchaeota” (Fig. 6a). After extracting the module that contains an “Ca.
Aenigmarchaeota” operational taxonomic unit (OTU) (GMQ-1 bin_18-1), we observed
tight connections (Jrho| = 0.6 and pseudo-P values of <0.05) between GMQ-1 bin_18-1
and 11 OTUs from Crenarchaeota (rho values are listed in Data Set S4; Fig. 6b).

Notably, we identified a recent HGT event between “Ca. Aenigmarchaeota” and one
of the Crenarchaeota OTUs, which strengthened the putative symbiont-host relationship
between them. The SOD2 gene in GMQ_1 bin 18-1 shows 89.1% identity and 100% of
coverage to the gene in Pyrobaculum sp. WP30. By looking into the belonging sample,
we identified a SOD2 gene from the GMQ_1 bin 7 that shares a high identity (89%) to the
one in GMQ_1 bin 18-1. Remarkably, the GMQ_1 bin 7 MAG could be assigned to the ge-
nus Pyrobaculum as well. BLAST searches suggest that all SOD2 genes except the one in
GMQ_1 bin 18-1 show identities of <30%, indicating the recent HGT event specifically
occurs in GMQ_1 bin 18-1 rather than in all “Ca. Aenigmarchaeota” members. In addition,
the OTUs that GMQ_1 bin 7 and GMQ_1 bin 18-1 belonged to have a statistically signifi-
cant positive correlation (Pearson’s R? = 0.85, P < 1.68E—14; Fig. 6¢). These two bins are
the first and fourth most abundant organisms in one sample by taking up greater than
50% of the cells in total. Based on the metabolic features of “Ca. Aenigmarchaeota” and
Pyrobaculum, we proposed the potential interaction scenario between them (Fig. 7) (66).
Specifically, for the MAGs of this study, Pyrobaculum GMQ_1 bin 7 could provide amino
acids, nucleotides, membrane lipids, ATP, and active sugars to support growth of GMQ_1
bin 18-1, and GMQ_1 bin 18-1 possessed RM systems to protect the host for cell defense,
which were absent in GMQ_1 bin 7. Additionally, the recent HGT of the SOD2 gene from
GMQ_1 bin 7 provides GMQ_1 bin 18-1 with the capacity of oxidative stress resistance.
However, the Pyrobaculum OTU is completely absent in the five communities where other
“Ca. Aenigmarchaeota” MAGs in this study came from (Data Set S4). These results indicate
that “Ca. Aenigmarchaeota” microbes in this study are likely to be associated with differ-
ent interaction partners.

Conclusions. The enigmatic “Ca. Aenigmarchaeota” is still underexplored due to the
insufficient cultured representatives or assembled genomes available. Here, we expanded
the phylogenetic diversity of “Ca. Aenigmarchaeota” in hot spring environments and
showed that “Ca. Aenigmarchaeota” can be found in diverse ecosystems on earth. They
harbor limited metabolic capacities by missing several pivotal biosynthetic pathways,
such as nucleotide, amino acid, and cell membrane biosynthesis, suggesting that such
molecules need to be obtained from the environment or from the host as symbionts.
Comparative genomics analysis reveals that genomes from thermal environments possess
smaller genome sizes but stronger capacities in metabolizing carbohydrates. HGT
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identifies a salient number of gene flows from TACK and Euryarchaeota to “Ca.
Aenigmarchaeota,” especially the genes related to stress responses. By conducting co-
occurrence network and recent HGT detection analyses, we highlight the power of infor-
matics analysis in identifying putative interaction partners. However, even though signifi-
cant correlations and genetic interactions are observed, further analyses such as fluores-
cence in situ hybridization, should be integrated to confirm the inference of host-
symbiont relationship. Overall, this study enables us to better understand the metabolic
potentials and possible interactions between “Ca. Aenigmarchaeota” and their putative
hosts, shedding light on the understanding of coevolution between hosts and symbionts.

MATERIALS AND METHODS

Site description, sampling, DNA extraction, and sequencing. All five hot spring sediment samples
were collected from Tengchong County, Yunnan, China (24.95, 98.44) in January 2016 and May 2017. DRTY-
6_1, DRTY-7_1, and GMQ_1 samples were collected from DiReTiYanQu (DRTY), GuMingQuan (GMQ), and
QiaoQuan (QQ) hot springs in Rehai National Park in January 2016. DRTY-6_2 and QQ_2 samples were col-
lected from DiReTiYanQu and QiaoQuan (QQ) hot springs in May 2017. JZ-2_2 was collected from the JinZe
Hot Spring Resort in May 2017. DiReTiYanQu is an artificial concrete hot spring landscape experiencing
area. DRTY-6 and DRTY-7 are two medium-size pools that have mixtures of spall, sand, and soil on the bot-
tom. The pH and temperatures of DRTY-6 were 6.1/50°C in January 2016 and were 6.0/60°C in May 2017.
The pH and temperature of DRTY-7 were 6.0 and 56°C, respectively, in January 2016. GuMingQuan (GMQ) is
a pool with a hot spring fall above and with a length, width, and depth of around 98, 79, and 9.5cm,
respectively. Leaf litter and other debris on the bottom could be seen clearly. The sampling site is located
upstream of the GMQ pool, which was named GMQS. The pH and temperature of GMQ were 9.0 and 89°C,
respectively, in January 2016. QiaoQuan (QQ) is a hot spring stream flowing out from a soil slope with a
rust-color trace. This spring is surrounded by bush and grass. The pH and temperature of QQ were 7.2 and
77°C, respectively, in May 2017. The JinZe-2 (JZ-2) pool is an artificial concrete cubic hot spring water reser-
voir with a ceiling covering the top in JinZe Hot Spring Resort. The JZ-2 pool contains turbid water and sedi-
ments on the bottom of the pool. The pH and temperature of JZ-2 were 7.6 and 63°C, respectively, in May
2017. The top 1cm of sediment of each site was collected with a sterile iron spoon and transferred to a 50-
ml centrifuge tube. All sediment samples were then stored in liquid nitrogen before transporting to the lab
and were stored at —20°C in the lab until DNA extraction.

Community DNA was extracted from approximately 20 g of sediment for each sample using the
PowerSoil DNA isolation kit (MoBio). Libraries with an insert size of 350 bp were constructed by using an
M220 Focused-ultrasonicator NEBNext and an Ultra Il DNA library prep kit. The concentration of genomic
DNA was measured with a Qubit fluorometer. The total genomic DNA was sequenced using an lllumina
Hiseq 4000 instrument at Beijing Novogene Bioinformatics Technology Co., Ltd. (Beijing, China). On aver-
age, 30 giga base pairs (Gbp) (2 x 150 bp) of raw sequencing data for each sample were generated.

Metagenomic assembly and genome binning. Raw sequencing data were preprocessed to elimi-
nate replicated reads and trim bases with low qualities, following workflows that were described previ-
ously (67). All quality reads of each data set were de novo assembled using SPAdes v3.9.0 (68) with the
following parameters: -k 33,55,77,99,111 -meta. Scaffolds with a length of <2,500 bp in each assembly
were removed. BBMap v38.85 (http://sourceforge.net/projects/bbmap/) with the parameters k=15
minid =0.97 build=1 was used to compute the coverage information by mapping clean reads to the
corresponding assembled scaffolds without cross-mapping. Genome binning was performed based on
the calculated sequence depth and tetranucleotide frequency (TNF) of each scaffold using MetaBAT
v2.12.1 (69). Marker genes that occurred more than once in each bin were treated as contaminations,
and associated contigs were removed manually. Specifically, genome bins were visualized by fragment-
ing each scaffold into pieces with the length ranging from 5 to 10 kb using ESOM v1.1 (70) for further
curation, in which the discordant points were removed manually from the clusters. Scaffolds with similar
TNFs but abnormal sequence depth (the abnormal sequences depth were examined manually, and the
difference was mostly over 10-fold) compared to other scaffolds in the corresponding bins were also dis-
carded. Subsequently, quality reads of the associated samples of each optimized genome bins were
recruited by mapping onto all optimized genome bins using BBMap and were reassembled using SPAdes
under the “~careful” mode with the parameter “-k 21,33,55,77,99,127.” Contaminations and strain heteroge-

FIG 6 Legend (Continued)

OTUs are colored by modularity classes. Nodes have the same size, and edges have the same
thickness. (b) The subnetworks that contain “Ca. Aenigmarchaeota” rpS3 genes. Only nodes and
edges that have connections with “Ca. Aenigmarchaeota” in the corresponding modules are shown.
Modules 1 in (a) were detected to contain “Ca. Aenigmarchaeota” rpS3 genes. The size of each node
is proportional to the number of connections (i.e., degree). OTUs are colored by the phylum-level
taxonomy. The thickness of edges denotes the Spearman rank correlation coefficients (rho values).
Edges in purple show the connections between “Ca. Aenigmarchaeota” (green circles deviated from
core networks) and other members. (c) Correlation between Pyrobaculum GMQ_1 bin 7- and GMQ_1
bin 18-1-associated OTUs. The two OTUs are observed in 33 out of 88 metagenomic samples. Results
show a statistically significant positive correlation (Pearson’s R? = 0.85, P < 1.68E—14) between the
sequence depths of these two OTUs.
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neity were estimated by CheckM v1.0.12 (71); genome completeness was estimated by calculating the pro-
portion of detected marker genes among 54 conserved archaeal single-copy genes (SCGs) (Data Set S1) (3).
Finally, eight MAGs identified as “Ca. Aenigmarchaeota” were kept for the later analysis.

Functional annotation of “Ca. Aenigmarchaeota” genomes. The eight MAGs were submitted to
the Integrated Microbial Genomes & Microbiomes (IMG-M) (https://img.jgi.doe.gov/cgi-bin/m/main.cgi)
database for gene prediction and functional annotation. For comparative genomics analysis, the annota-
tion pipeline was also conducted locally. In brief, putative protein-coding sequences (CDS) of all MAGs,
including eight MAGs from the present study and 15 genomes downloaded from public databases, were
determined using Prodigal v2.6.3 (72) under the “-p single” model. Functional annotations were performed
by comparing predicted CDSs against KEGG (73), evolutionary genealogy of genes: nonsupervised ortholo-
gous groups (eggNOG) (74), Pfam (75), and arCOG (76) databases using DIAMOND v0.7.9 (77) with a cutoff
E value of <1E—5. rRNA-coding regions were identified using RNAmmer v1.2 (78). All MAGs were uploaded
to the web server of tRNAscan-SE v2.0 (79) to identify the tRNA. The dbCAN2 webserver (80) was used to
identify carbohydrate-active enzymes based on the carbohydrate-active enzymes (CAZy) database. The
localization signals of genes annotated as peptidases were determined using the online tool PSORTb v3.0
(81). To detect the putative CRISPR-Cas systems in “Ca. Aenigmarchaeota” MAGs, tandem repeats, and
spacers were identified using the online tool CRISPRFinder (82). Then, the genes nearby the region (both
the upstream and downstream) were investigated manually to decide the type. The restriction modification
(RM) systems and other cell defense systems, including Hachiman and Gabija reported in a previous study
(44), were identified according to the KEGG and arCOG annotation results.

Phylogenetic and phylogenomic analysis. Sixteen ribosomal protein sequences (L2, L3, L4, L5, L6,
L14, L15, L16, L18, L22, L24, S3, S8, S10, S17, and S19) were selected to reconstruct the phylogenomic
tree (83). These sequences were identified by AMPHORA2 (84) and aligned using MUSCLE v3.8.31 with
100 iterations (85). The poorly aligned regions were eliminated using TrimAl v1.4.rev22 (86) with the
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parameters set as -gt 0.95 -cons 50. Then, multiple alignments were concatenated and applied to recon-
struct a maximal likelihood phylogenetic tree using IQ-TREE v1.6.11 with the following parameters:
igtree -s a -alrt 1000 -bb 1000 -nt AUTO (87, 88).

16S rRNA genes were predicted for each MAG using RNAmmer. MAGs without 16S rRNA genes were fur-
ther searched against the Ribosomal Database Project (RDP) database (downloaded on 18 October 2018) (89)
using the BLASTn v2.8.1+ program, and sequences with a length of >300bp were selected and combined
with those retrieved by RNAmmer. All 16S rRNA sequences were aligned using the online tool SINA v1.2.11
(90). Columns containing more than 95% gaps were removed, after which a maximum likelihood phyloge-
netic tree was constructed using IQ-TREE with the parameters iqtree -s a -alrt 1000 -bb 1000 -nt AUTO.

Reference sequences of RuBisCo large subunit were obtained from a previous study (26). All sequen-
ces were aligned using MAFFT v6.864b (91). Poorly aligned regions were removed using TrimAl v1.4.
rev22 (86). The unrooted phylogeny was generated using RAXML v7.2.7 (86) with the following parame-
ters: -f a -n boot -m PROTGAMMALUTT -c 4 -e 0.001 -p 13452 -x 1165 -# 1000.

Reference sequences of hydrogenases were selected from a previous study (28). Alignments were
generated using MUSCLE v3.8.31 (85), and divergent regions were filtered using TrimAl (86). The same
model and detailed parameters of RAXML as RuBisCo large subunit phylogeny were used to construct
the phylogeny of hydrogenase sequences.

Recruiting 16S rRNA from NCBI. Seventeen 16S rRNA gene sequences recovered from currently avail-
able “Ca. Aenigmarchaeota” genomes were used as input to search against the NCBI-nt (https://www.ncbi
.nlm.nih.gov/) database via the BLASTn program with the default parameters. BLAST hits with coverage
of >95% and identity of >85% were kept for the phylogenetic tree construction. Sequences were aligned,
while poor alignment regions were eliminated. A maximum likelihood-based phylogeny was generated
using RAXML v7.2.7 (86). Finally, we identified 236 16S rRNA gene sequences of “Ca. Aenigmarchaeota” by
the result of phylogenetic analysis.

Detection of horizontally transferred genes. Twenty genomes with completeness of >75% and
contamination of <5% evaluated by CheckM were taken into consideration for the inferences of hori-
zontal gene transfers (HGTs). As a result, three SAGs were removed because of the low quality. Putative
HGTs were identified for each genome using HGTector v2 (92). To determine the interaction partners or
possible hosts of “Ca. Aenigmarchaeota,” recent horizontal gene transfers were identified by applying
BLAST searches against the genome bins reconstructed from the corresponding communities. Only
genes from outside DPANN are considered the so-called interphylum HGTs. Due to a lack of representa-
tive archaeal genomes in the prebuilt default database, especially the genomes from DPANN and TACK
superphyla, 3,358 genomes were downloaded from the RefSeq database on 14 May 2019. Genome qual-
ity was evaluated using CheckM except microbes from the DPANN superphylum. Genome quality of the
DPANN superphylum was performed using the same procedure as mentioned above. Genomes with
completenessof <80% and contaminationof >10% were discarded. The remaining high-quality
genomes were dereplicated at the phylum level using dRep v2.3.2 (93). Finally, 1,133 genomes were
picked out, and 689 of those genomes complementary to the default database were appended. The
combined sequences were compiled into a database using DIAMOND (77), and the relevant taxonomy
files were changed correspondingly. Then, the “search” step was performed for the 20 high-quality “Ca.
Aenigmarchaeota” genomes with default parameters. During the “analyze” step, genomes belonging to
the DPANN superphylum (taxonomy ID, 1783276) were treated as “closeTax,” but different species were
used as “selfTax.” Specifically, Aenigmarchaeum subterraneum SCGC AAA011-O16 (taxonomy ID, 743730)
was set as the “selfTax” for all MAGs for DRTY-6_2 bin 215 and JZ-2_2 bin 245; Aenigmarchaeota
archaeon ex4484_224 (taxonomy ID, 2012503) was used as “selfTax” for GMQ_1 bin 18-1 and QQ_2 bin
128; Aenigmarchaeota archaeon ex4484_14 (taxonomy ID, 2012502) was used as “selfTax” for DRTY-6_2
bin 201; and Aenigmarchaeota archaeon JGI 0000106-F11 (taxonomy ID, 1130284) was used for DRTY-
6_1 bin 65, DRTY-7_1 bin 34, and DRTY-6_2 bin 202. The identified interphylum HGTs for each genome
were visualized using SankeyMATIC (http://sankeymatic.com/).

In more detail, preliminary genome binning was conducted as described above for each “Ca.
Aenigmarchaeota”-containing microbial community. The taxonomic information was determined
using GTDB-tk v.0.2.2 (94). Then, gene calling was performed for all genome bins. The predicted puta-
tive coding sequences were formatted into a BLAST database. A BLAST search against this database
was conducted with genes identified from “Ca. Aenigmarchaeota” as input. Only BLAST hits from out-
side DPANN with a sequence identity of =70% and aligned region of =100 amino acids were retained.
The target genes and BLAST hits that represented the first or last genes of the belonging scaffolds
(=5,000 bp) were discarded. The remaining genes were used for inferring the potential functional
interactions between putative hosts and symbionts.

Phylogenetic analysis of four horizontally transferred genes. (i) Reverse gyrase (rgy). Scaffolds
identified as rgy in “Ca. Aenigmarchaeota” were collected and used as input to blast against the NCBI-nr
database (E value of <1E—5). The top 50 hits for each query were kept. The obtained rgy genes for all
queries were combined and clustered using CD-HIT v4.6 (95), with a sequence identity cutoff of 90%.
The identified representative sequences were used to build the phylogenetic tree. Sequences were
aligned using MUSCLE, and poorly aligned regions were eliminated using TrimAl. Phylogeny was gener-
ated using IQ-TREE v1.6.11 (87) by integrating 1,000 times with the best model “LG+F+R9.” The gener-
ated phylogenetic tree was rooted using MAD v2.2 (96) with the default parameters.

Superoxide dismutase (SOD2). The same procedures as the rgy phylogeny construction were applied,
including sequence recruitment, clustering, alignment, and poorly aligned region elimination, except
the sequence identity cutoff was set to 0.8 during the clustering using CD-HIT. The phylogenetic tree
was generated using IQ-TREE with the best model “WAG+R10.”
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(ii) 8-oxo-dGTP diphosphatase (mutT). The same procedures as the rgy phylogeny construction
were applied, including sequence recruitment, clustering, alignment, and poorly aligned region elimina-
tion, except the sequence identity cutoff was set to 0.65 during the clustering using CD-HIT. The phylo-
genetic tree was generated using IQ-TREE with the best model “VT+F+R10.”

(iii) Transcription initiation factor 1IB (TFIIB). The same procedures as the rgy phylogeny construc-
tion were applied, including sequence recruitment, clustering, alignment, and poorly aligned region
elimination. The phylogenetic tree was generated using IQ-TREE with the best model “LG+R10.”

Network-based co-occurrence analysis. A total of 88 hot spring samples across the time and spatial
scale were used to reveal the co-occurrence pattern of “Ca. Aenigmarchaeota” with other community mem-
bers (Data Set S4). Metagenomic sequencing was conducted for all samples. Detailed quality control and as-
sembly steps were done as described above. Genome binning was conducted for each community (as
described above), and only genome bins with completeness of >50%, contamination of <5%, and rpS3
gene called by AMPHORA2 (84) occurring exactly once in one genome were taken into consideration. The
corresponding nucleotide sequences were extracted for the later analysis. Taxonomic information of each
bin was obtained using GTDBtk v.0.2.2 (94). All predicted rpS3 gene sequences from different data sets
were combined and clustered into OTUs using USEARCH 9.2.84 with the following parameters:
-cluster_smallmem -id 0.95. Taxonomy of the representative sequences was assigned according to the
taxonomic information of belonging bins. The sequence depth of each rpS3 gene sequence was used to
build the OTU table and was calculated by mapping clean reads in each sample to the dereplicated
rpS3 gene sequences. Specifically, clean reads from each sample were mapped to rpS3 gene sequences
using BBmap with the same parameter settings as described above. The generated .bam files were
sorted using SAMtools v.1.3.1 (97). Sequence depth was subsequently calculated using the “jgi_summari-
ze_bam_contig_depths” program in MetaBAT. OTUs that occurred in less than six samples were filtered out
to reduce the complexity, and 844 OTUs were kept for the subsequent network construction. The co-occur-
rence network was constructed using SparCC (98) with the default parameters, and 100 bootstrap samples
were used to infer pseudo-P values. Those significant (P < 0.05, two-sided) and robust correlations
(rho > 0.6) between pairwise OTUs were used to infer a reliable network. Network visualization and relevant
parameter calculations regarding modularity, betweenness, closeness, average clustering coefficient, aver-
age weighted degree, and average shortest path length were conducted in Gephi v.0.9.2 (99).

Data availability. All genomes in our study are available at Joint Genome Institute (JGI) IMG-MER under
the study ID Gs0127627 and whole-genome sequencing accession numbers Ga0181641 (unclassified
Aenigmarchaeota DRTY7 bin_34), Ga0181640 (unclassified Aenigmarchaeota DRTY6 bin_65), Ga0181639
(unclassified Aenigmarchaeota GMQ bin_18-1), Ga0227293 (unclassified Aenigmarchaeota JZ-2 bin_245),
Ga0227294 (unclassified Aenigmarchaeota DRTY-6 bin_215), Ga0261588 (unclassified Aenigmarchaeota
DRTY-6 bin_201), Ga0261590 (unclassified Aenigmarchaeota DRTY-6 bin_202), and Ga0261591 (unclassified
Aenigmarchaeota QQ bin_128). All genomes are also available in the NCBI database. The BioProject
number is PRINA544494. The genome accession numbers are JAHLMMO00000000 (Aenigmarchaeota_
DRTY-6_1_bin_65), JAHLMNO0O0000000 (Aenigmarchaeota_DRTY-7_1_bin_34), JAHLMO000000000
(Aenigmarchaeota_GMQ_1_bin_18-1), JAHLMP000000000 (Aenigmarchaeota_DRTY-6_2_bin_201),
JAHLMQO000000000 (Aenigmarchaeota_DRTY-6_2_bin_202), JAHLMR000000000 (Aenigmarchaeota_
DRTY-6_2_bin_215), JAHLMS000000000 (Aenigmarchaeota_JZ-2_2 bin_245), and JAHLMT000000000
(Aenigmarchaeota_QQ_2_bin_128).
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