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Abstract: Paralytic shellfish toxins (PSTs) are produced mainly by Alexandrium catenella (formerly
A. tamarense). Since 2000, the National Institute of Fisheries Science (NIFS) has been providing
information on PST outbreaks in Korean coastal waters at one- or two-week intervals. However, a
daily forecast is essential for immediate responses to PST outbreaks. This study aimed to predict the
outbreak timing of PSTs in the mussel Mytilus galloprovincialis in Jinhae Bay and along the Geoje coast
in the southern coast of the Korea Peninsula. We used a long-short-term memory (LSTM) neural
network model for temporal prediction of PST outbreaks from environmental data, such as water
temperature (WT), tidal height, and salinity, measured at the Geojedo, Gadeokdo, and Masan tidal
stations from 2006 to 2020. We found that PST outbreaks is gradually accelerated during the three
years from 2018 to 2020. Because the in-situ environmental measurements had many missing data
throughout the time span, we applied LSTM for gap-filling of the environmental measurements. We
trained and tested the LSTM models with different combinations of environmental factors and the
ground truth timing data of PST outbreaks for 5479 days as input and output. The LSTM model
trained from only WT had the highest accuracy (0.9) and lowest false-alarm rate. The LSTM-based
temporal prediction model may be useful as a monitoring system of PSP outbreaks in the coastal
waters of southern Korean.

Keywords: paralytic shellfish toxins; Mytilus galloprovincialis; LSTM neural network model

Key Contribution: Water temperature is the important factor associated with PSTs outbreak. LSTM-
based temporal prediction model can be useful to monitor daily PSTs outbreak with high accuracy.

1. Introduction

Alexandrium species belong to one of the major genera with respect to the diversity,
magnitude, and consequences of harmful algal blooms (HABs) [1,2]. The more than
30 morphologically defined species in genus Alexandrium produce paralytic shellfish toxins
(PSTs) [3]. It amasses in filter feeding bivalves, causing disease and death in human
consumers, namely paralytic shellfish poisoning (PSP). Toxic dinoflagellates pose several
problems to the aquaculture industry and continue to endanger human health [4–7].

In the case of Korea, spring blooms of Alexandrium species causing PSP are mainly
affected by Alexandrium catenella. The blooms are distributed limitedly in the southeast
coast, especially in Masan-Jinhae Bay and Geoje coasts [8,9]. In 1986 and 1996, the deaths
of four people in Geoje and Busan were related to PSTs ingested through the consumption
of the mussel M. galloprovincialis (formerly M. edulis) [10]. M. galloprovincialis is the most
preferred shellfish in Korea after oysters. Although many peoples consumed mussels, they
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paid little attention to the potential for toxin contamination before the first accident in PSP
in 1986 [8]. Since then, the PSP has emerged as a possible intimidation to public health and
a primary trouble for the shellfish aquaculture industry. The second occurrence of PSP on
the Geoje coast in relation to the consumption of mussels off the coast of Busan and Masan-
Jinhae Bay in 1996 prompted the Korean government to pay more attention to the public
action plan. To restrain harvesting and marketing of shellfish whose PST concentration
exceeds the quarantine limit (80 µg STX diHCI equivalents 100 g−1), monitoring of shellfish
toxicity is carried out in shellfish production area. Since 2000, the NIFS has provided
information on PST-inducing species and PSP outbreaks every 1–2 weeks by default [11].
Additionally, such information may be provided at shorter intervals during an intensive
period of PST outbreaks. However, regular data on at least a daily basis are be needed for an
immediate response to PST outbreaks. In fact, if information pertaining to the Alexandrium
blooms that produce PSTs could be obtained, PST outbreaks could be anticipated directly.
Unfortunately, the red-tide breaking news provided by the NIFS does not often provide
information about Alexandrium blooms, making it difficult to obtain information about
such blooms.

Because the annual trend of PST outbreak is related to A. catenella blooms, it is es-
sential to understand the factors controlling the development, maintenance, and decline
of these blooms. Although physical and biological couplings, such as stratification and
vertical migration, have been accepted as important mechanisms for Alexandrium bloom
formation [12], it is difficult to generalize the environmental controls of bloom dynamics
due to the complex interrelations between physical, chemical, and biological factors. Water
temperature (WT) and salinity play essential role in cyst germination and cell growth of
A. catenella. Baek et al. [13] investigated the environmental factors affecting the dynamics
of A. catenella that generate PSTs along the Geoje coast during bloom season. PSTs were
constantly found at levels above safe level for human consumption at 15 ◦C. The authors
also reported that the amount of discharges from the Nakdong River affected the envi-
ronmental conditions along the Geoje coast, which resulted in lower salinity and higher
nutrient levels, promoting A. catenella blooms. A. catenella strain were grown within a wide
WT range [14], but WT was optimum at 15 ◦C. In addition, A. catenella cells appeared when
WT was from 10 to 19 ◦C, which means that WT range suitable for A. catenella growth.
Kim et al. [15] reported that A. catenella populations swelled considerably from March to
May, decreased sharply in June when WT passed 20 ◦C, and then reappeared in the winter
season. Seasonal blooms of A. catenella occur mostly on the southern coast of the Korean
Peninsula in spring [15,16]. These studies showed that the increase in A. catenella popula-
tion can be affected by WT, especially since the optimum WT range in early spring and late
autumn is relatively narrow, from 12 ◦C to 15 ◦C. Meanwhile, horizontal movement due to
tidal effect affects the movement of A. catenella along the coast of Geojedo. In both 2017 and
2018, Back et al. [13] reported that the first PST outbreaks occurred off the coast of Busan
coast near the Nakdong River. Then, PST-producing A. catenella populations developed
in Jinhae Bay and at the Geoje coast during spring. They demonstrated that A. catenella
blooms along the coast of Geoje may have been fortified by tidal currents. These findings
help us qualitatively understand the environmental factors affecting the occurrence of
PST-causing blooms but that there is a limitation for predicting the emergence of PSTs,
which is important information for reducing losses caused by PSTs.

The objective of this study was to predict the timing of PST outbreaks in the mussel M.
galloprovincialis. We used environmental data from three tidal stations and a long-short-
term memory (LSTM) neural network model. The LSTM, a recurrent neural network, was
used for time series predictions of environmental factors, such as red-tide blooms [17] and
water quality [18]. First, we collected environmental measurements at three tidal stations
and PST outbreak timing information provided by the NIFS from 2006 to 2020. Then, to fill
in the missing data within the daily measured environmental data, we trained the LSTM
regression model. Finally, an LSTM classification model was trained and evaluated for
temporal prediction of PST outbreaks from environmental data.
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2. Results
2.1. Periodic Tendency of Paralytic Shellfish Toxins Outbreak

Figure 1 shows the period and duration of PST outbreaks in the study area for the
15 years from 2006 and 2020. In general, PST outbreaks begin to occur around March and
disappear around June (Figure 1a). In 2019, PSTs occurred at the earliest date of 7 March
and disappeared by 8 April. On the other hand, in 2017, PSTs first occurred on 17 April,
which is the latest date during the study period. We confirmed that the timing of PST
outbreaks gradually accelerated during 2018–2020. As shown in Figure 1b, PSTs occurred
for 850 days of the 5479 days. This number of days represents 16% of the total study period,
and events occurred for an average of 57 days per year. In 2016, PSTs occurred for 101 days,
which was the longest duration; in 2014, they occurred for 26 days, the shortest duration of
days. The duration showed no specific tendency.

Figure 1. (a) Period and (b) duration of paralytic shellfish toxins (PSTs) outbreak from 2006 to 2020.
The information was obtained by National Institute of Fisheries Science (NIFS).

2.2. Gap-Filling of Environmental Factors

To predict the timing of PST outbreaks, we used WT, tidal height, and salinity data
obtained every day from tidal stations at Geojedo, Gadeokdo, and Masan from 2006 to 2020
(5479 days). Figure 2 shows the missing days among the environmental data. The Masan
and Geojedo tidal stations had the highest and lowest missing data rates, respectively. The
WT at the Masan station had the highest missing data rate of 57.1% (3127 days). Specifically,
there were no data for the seven consecutive years (2922 days) from 2006 to 2013. The
tidal height data at the Geojedo station had the lowest missing data rate of 1.8% (96 days).
The three stations had no missing data in common from 1 January 2014 to 31 June 2017
(period 1) and from 1 February 2018 to 31 October 2020 (period 2). To fill the gaps of missing
data days, we trained an LSTM regression model with the data measured during period 1
(1277 days) and tested the model with the period 2 data (1004 days).
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Figure 2. Missing patterns of environmental data for three tidal stations. Ge, Ga, and Ma correspond
to Geojedo, Gadeokdo, and Masan tidal stations, respectively. Gray box represents the missing days
of measurement.

Table 1 shows the environmental data gap-filling performance of the trained LSTM
regression models. Among the three stations, we used measurements from only one station
or the other two stations. The missed environmental factors of each station shown on
the left of Table 1 were estimated with the measurements from the stations specified at
the top of Table 1. In the case of two stations, the remaining station was estimated using
the two other stations. The root mean squared errors (RMSEs) of WT estimation ranged
from 0.84 to 2.22. The result showed the best performance when Geojedo data were gap-
filled with Gadeokdo data. It showed the lowest performance when Masan data were
gap-filled with Geoje data. The WT of the Geojedo and Masan stations had the lowest
RMSE when estimating using Gadeokdo data, whereas Gadeokdo had the best results
when using two stations. In the case of tidal height, the RMSEs ranged from 10.86 to 35.76.
Unlike WT, the poor performance showed when estimating Geojedo data with Gadeokdo
data. The lowest RMSEs for all stations showed when using 2 stations. The RMSEs of
salinity were from 1.32 to 3.69. Among the station data, the Geojedo data showed the
best performance (1.32–1.83), whereas the Masan data had the highest RMSEs (3.44–3.69).
Unlike other environmental factors, the salinity at all three stations showed the best results
when estimating the variable with only one station. To fill the day gaps of the missing
environmental data, we chose the available LSTM regression model at each missing section.
Among the three possible models for each station, the model with the smallest RMSE was
selected first. If it could not be selected due to a lack of the factors needed to construct the
model, a suboptimal model was selected.
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Table 1. RMSEs of LSTM models with test dataset from 1 February 2018 to 31 October 2020. In the
case of 2 stations, the environmental factor of the specific station is estimated from the other two
stations. For example, water temperature (WT) of Geojedo is estimated from WT values of Gadeokdo
and Masan stations.

Variable Tidal Station
1 Station

2 StationsGeojedo Gadeokdo Masan

WT (◦C)
Geojedo - 0.84 1.22 0.89

Gadeokdo 1.08 - 1.33 0.92
Masan 2.22 1.82 - 1.91

Tidal height (cm)
Geojedo - 35.76 19.15 18.45

Gadeokdo 30.77 - 12.17 10.86
Masan 33.40 21.09 - 15.53

Salinity (PSU)
Geojedo - 1.32 1.83 1.33

Gadeokdo 2.08 - 2.77 2.22
Masan 3.44 3.69 - 3.45

We filled the day gaps of the daily environmental data (WT, tidal height, and salinity
as oceanographic factors) to generate daily full-sequence data by LSTM regression models.
Figure 3 shows the daily tendency of the environmental data from 2006 to 2020 after
gap-filling. In the case of WT, the Masan station showed the largest variation (Figure 3a).
The minimum and maximum WT values were 5 ◦C and 30 ◦C, respectively. On the other
hand, the Geojedo station showed the smallest variation (10–29.2 ◦C). WT values gradually
increased from March to August of each year. We calculated the R2 value to confirm
the similarity between the gap-filled environmental factors of the three stations. The R2

of WT ranged from 0.87 to 0.96, showing high similarity. There was no clear difference
in tidal height levels among the three stations (Figure 3b). The Geojedo station had the
highest maximum tidal height level (243 cm), whereas the Gadeokdo station had the lowest
maximum level (215 cm). The R2 of tidal height between stations was high (0.87–0.89). The
Geojedo and Gadeokdo stations had similar patterns of salinity variation (Figure 3c). The
salinity level of the Masan station with the lowest maximum level (33.3 PSU) was lower
than that of other stations. The R2 of salinity between stations was the low (0.18–0.47).

The WT showed a dominant seasonal pattern every year, while tidal height fluctuated
due to the influence of tidal currents irrespective of the season. Salinity was mainly
dependent on the season. However, the salinity level fluctuated greatly due to fresh water
incursions or typhoon events. Therefore, because the Masan station is directly affected by
fresh water, its WT and salinity fluctuations were large. In particular, the salinity level of
the Masan station fluctuates exceptionally, as shown by the data from 1 January 2014 to
31 July 2017. The degree of agreement between the three stations for salinity had a low
R2 (0.09–0.23) in the period. Thus, when the salinity data of the Geojedo and Gadeokdo
stations were used to supplement the missing data of the Masan station, these fluctuations
were not well revealed (Figure 3c). In addition, the salinity level of the Gadeokdo station
showed greater volatility than the level of the Geojedo station because of the effect of fresh
water from the Nakdong River.
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Figure 3. Temporal variations of the gap-filled environmental factors, (a) WT, (b) tidal height, and
(c) salinity from 2006 to 2020. The red, the dashed blue, and the dotted green lines represent factors
of Geojedo, Gadeokdo, and Masan stations, respectively.

2.3. Temporal Prediction of PSTs Outbreak

To predict the timing of PST outbreaks, we trained and tested LSTM classification
models with different combinations of the three environmental factors (WT, tidal height,
and salinity). To train and test the models, we used the gap-filled environmental factors of
three stations from 2006 to 2017 (4382 days) and from 2018 to 2020 (1096 days), respectively.
Table 2 and Figure 4 show the performance results of four LSTM classification models. The
compositions of the models have the WT variable in common. The tidal height and salinity
factors were included differently for the training models. The LSTM-1 model, which used
only the WT variable, had the highest accuracy (0.9). The LSTM-4 model, which used all
factors, showed poor performance. In terms of false alarm, i.e., the sum of false negatives
and false positives, the LSTM-1 model had the smallest number of 105, and the LSTM-4
model had the greatest value of 154. The LSTM-2 and 3 models had a similar performance,
with an accuracy of 0.89. Hence, we chose the LSTM-1 model to predict the timing of
PST outbreaks.

Table 2. Performance of four LSTM classification models for temporal prediction of PSTs outbreak
using test dataset.

Models Factors (1) (2) (3) (4) Accuracy

LSTM-1 WT 871 64 41 120 0.90
LSTM-2 WT + Tidal 822 33 90 151 0.89
LSTM-3 WT + Salinity 811 21 101 163 0.89
LSTM-4 WT + Tidal + Salinity 766 8 146 176 0.86

(1) True negative; (2) false negative; (3) false positive; and (4) true positive.
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Figure 4. Comparison of ground-truth and the prediction from four LSTM models: (a) LSTM-1,
(b) LSTM-2, (c) LSTM-3, and (d) LSTM-4. The x-axis and y-axis represent the time point of test period
and the result of PST outbreak, respectively.

3. Discussion
3.1. Performance of LSTM Models

In this study, two LSTM models were used. LSTM regression and classification models
were trained for gap-filling of the environmental data and prediction of PST outbreaks,
respectively. The classic proven-useful models have been applied for time-series analysis
in various fields [19–22]. Kim et al. [23] applied auto-regressive integrated moving average
(ARIMA), multi-layer perceptron (MLP), and LSTM models to fill the missing period of
groundwater levels. ARIMA assume that the present data is a linear function of past data
points and past errors [24,25]. They reported that the ARIMA and LSTM models are more
accurate than the MLP model. In particular, in the case of the LSTM model, the errors
according to the type of input variable was small. In addition, the connection with the
before and after data was found to be good when predicting missing values. The error of
LSTM model is hardly decreased even if the amount of data increases. Qin et al. [26] used
a hybrid model of ARIMA and a deep belief network (DBN) to predict the occurrence of
red-tide blooms. ARIMA can express only linear patterns in time series data; however, it
is not applicable in nonlinear patterns. With the development of artificial neural network
(ANN), machine learning and deep learning approaches become very important nonlinear
techniques in the time series forecasting field. Shin et al. [17] proposed a LSTM model for
predicting the daily occurrence time series of Margalefidinium polykrikoides bloom using
satellite-based data. They showed that LSTM model is useful for early prediction of red-tide
bloom. Based on these previous literatures, we chose a LSTM model for filling missing
values and predicting PST outbreaks.

The LSTM regression model showed good average RMSEs of 0.99 (WT), 24.45 (tidal
height), and 1.49 (salinity) for the predicted data at Geojedo station. We used the available
LSTM models in Table 1 to fill in missing sections. In the case of tidal height, the model
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with two stations was available at all stations. On the other hand, the salinity prediction
model with two stations was not available at all stations because the salinity data at the
Masan station had a higher rate of missing data than the data at the other two stations. In
addition, data from the Geojedo station, with the lowest missing data rate, were used most
frequently to estimate other factors. Even in the case of tidal height at the Geojedo station,
data from other stations were not available; thus, the LSTM was trained with only the tidal
height data of this station. The RMSE of the LSTM model showed poor performance, with
a value of 58.64. The other two factors of WT and salinity also had poor performances of
7.18 and 2.07, respectively.

To identify the impacts of environmental factors on the performance of the LSTM-based
temporal prediction model, we constructed four different combinations of environmental
inputs. As a result, the LSTM-1 model trained with only the WT factor showed the
best performance, and the LSTM-4 model trained with all factors showed the poorest
performance. Moreover, we trained the LSTM models with only tidal height (LSTM-TH)
and salinity (LSTM-S) sequence data in three stations. As a result, the accuracy of LSTM-TH
and LSTM-S models showed 0.74 and 0.81, respectively. Compared to LSTM-1 model (0.9)
with only WT data, the accuracy levels were lower. In the case of recall level, LSTM-TH
(0.29) and LSTM-S (0.3) models was very low rather than LSTM-1 model (0.65). This
indicates that WT may be the most important factor for predicting the timing of PST
outbreaks. We calculated the mean WT value at three stations at the start and the end
dates of PST outbreaks during 2018–2020. The mean WT values at the start dates in three
years (2018–2020) were 9.83, 11.63, and 11.03, respectively. The mean WT values at the
end dates in three years were 15.43, 12.97, and 17.07, respectively. These results suggest
that the WT data have a great influence on PST outbreak, but it is difficult to determine
the start and end of PST outbreak only with the WT data. To investigate the degree of
collinearity between variables, we calculated the condition index by Belsley collinearity
diagnostics [27]. This index shows the degree of multicollinearity in a regression design
matrix. In the case of three variables of Geoje tidal station, the maximum condition index
is 8.4. Kennedy [28] mentioned that the condition index greater than 30 indicates strong
collinearity. According to the Kennedy’s report, we concluded that three environmental
variables have weak collinearity.

Table 2 shows the performances of the models developed with the gap-filled data
of the three tidal stations. Even when the model was trained with only the gap-filled
WT of each station, the model showed good performance, with RMSEs of 0.88–0.90. To
determine the effectiveness of the gap-filling on temporal prediction of PST outbreaks,
we compared LSTM classification models using non-gap filled (LSTM-5) and gap-filled
(LSTM-6) data. For training of the LSTM-5 and LSTM-6 models, we used the daily sequence
data from 1 January 2014 to 31 June 2017 (1277 days) and from 1 January 2006 to 31 June
2017 (4198 days), respectively. Test data were from 1 February 2018 to 31October 2020
(1003 days). The LSTM-6 model with gap-filled data showed better performance, with an
accuracy of 0.9, than the LSTM-5 model with non-gap filled data (accuracy of 0.84). In
terms of false alarms, the LSTM-6 model had a low level of 98, whereas the LSTM-5 model
had 139. This indicates that gap-filling of data improves the performance of the temporal
prediction model for PST outbreaks.

3.2. Environmental Factors

Figure 5 depicts the growth process of PSTs in mussel. Alexandrium blooms are caused
by various environmental factors, and mussels feed on PST-producing dinoflagellates,
including Alexandrium species. It would be good to build a direct model to predict PST
outbreak through Alexandrium blooms; however, it is difficult to collect the relevant daily
reports from NIFS and field survey. Due to the lack of the ground truth, we cannot build
a good model to predict PST outbreaks through Alexandrium bloom. Furthermore, NIFS
provides the approximate toxin levels of shellfish. When the PST concentration is greater
than the reference value, with 80 µg STX diHCI equivalents 100 g−1, they designate the area



Toxins 2022, 14, 51 9 of 14

as prohibited. To generate ground truth data of PST outbreaks, we used the start and the
end dates of PST outbreaks provided by NIFS and labelled the value of one in the period of
PST outbreaks.

Figure 5. Growth process of PSTs in mussel. Environmental factors include oceanographic, meteoro-
logical, and biological factors.

In our study, only WT, tidal height, and salinity, which could be acquired continuously
at a daily interval, were used. Our result showed that WT is the most important factor
associated with PSTs outbreaks. However, these results are limited to the study area
in Korea, and the influence of the environmental factors on PST outbreaks depends on
the region. A. catenella appears in Osaka Bay, Japan during winter-spring periods. The
magnitudes of the abundances and the PST levels are varied depending on years. In
this case, the LSTM model trained with only WT might not be appropriate to predict PST
outbreaks in Osaka Bay [29,30]. Other oceanographic, biological, and meteorological factors
can determine the initiation, development, and decline of A. catenella blooms [7,12]. The
Tsushima Warm Current creates a counterclockwise current along the coast of Geoje [13].
Such currents make the Geoje coast greatly affected by freshwater discharged from the
Nakdong River during torrential rain. Baek et al. [13] found that A. catenella blooms
occurred during the one or two weeks following the high nitrate + nitrite concentrations
and low salinity levels associated with a Nakdong River discharge. High A. catenella cell
concentrations occurred in March and April when nutrient concentrations were relatively
high [15,16]. Their results showed that the plentiful nutrients furnished by freshwater from
the Nakdong River enabled the development of A. catenella blooms.

In terms of biological factors, Marsden and Shumway [31] mentioned that the first
introduction of viable vegetative A. catenella cells into the water column could play an
important role in development of A. catenella blooms. The cells produce resting cysts. This
species is widespread in the southern coast of Korea [12]. Thus, the germination of resting
cysts leads to the early existence of vegetative cells. The life-cycle transitions of Alexandrium
species are species-specific and regulated by environmental factors. Eventually, the internal
changes of life-cycle stages and the complex external changes in the environment need
to be simultaneously to forecast spring blooms most effectively. Kim et al. [32] tracked
A. catenella from seed-bed to bloom at a hot spot of cyst deposition on the southern coast of
Korea from June 2016 to February 2020. They mentioned that cyst germination at a rate of
about 73% occurred synchronously in the month of November from 2016 to 2019, when
the bottom WT was approximately 15 ◦C. Overwintering populations initiated growth
in March and then proliferated into high-density spring blooms in mid-April 2017, when
moderate temperatures (~15 ◦C) were recorded.

In addition to tidal effects, a major factor in the transport of blooms is wind-induced sur-
face currents. This factor could be a key regulator of cell accumulation along coasts [13,33,34].
Baek et al. [13] found that wind speeds were mostly > 10 ms−1 when the population of
A. catenella gradually expanded around Geojedo and Jinhae Bay. They suggested that strong
winds and the surface WT caused physical acceleration of mixing of the entire water column
in the spring season. The nutrient loading to the superjacent euphotic layer from bottom
layers attributable to this factor and this nutrient supply played an important role in the
growth of A. catenella population. Moreover, topography and shore geometry can influence
cell accumulation of phytoplankton [35]. In conclusion, various coupled factors, including
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cell dispersal, population accumulation, and bloom distribution, play important roles in the
dynamics of Alexandrium bloom.

4. Conclusions

In this study, we developed a daily temporal prediction model of PSTs in the mussel
M. galloprovincialis along the Geoje coast and in Jinhae Bay in southern Korean coastal
waters using environmental data and an LSTM neural network model. The major results
were the following: (i) the timing of PST outbreaks gradually accelerated in a span of three
recent years (2018–2020); (ii) as a result of the LSTM regression model for gap-filling of
environmental data, the average R2 values of WT, tidal height, and salinity over the three
stations were 0.92, 0.88, and 0.29, respectively; and (iii) among the four LSTM models, the
LSTM-1 model trained with only gap-filled WT sequence data showed the best performance.
The LSTM-based temporal prediction model can monitor PST outbreaks. In addition to
mussel, NIFS provides information on toxin of various shellfish, such as oyster, manila clam,
and scallop. Our study is focused on mussel; however, if toxin information of other shellfish
can be collected, the LSTM models developed in this study can be applied. Furthermore,
if the LSTM model was expanded to predict PSPs as well as make hourly predictions, it
would provide useful data for building a pre-disaster system for PSPs.

5. Materials and Methods
5.1. Study Area

The study area covered the Geoje coast and Jinhae Bay in the southern Korean coastal
waters (Figure 6). This area is in nearshore water open toward the outer sea and is affected
by the Jeju Warm Current and Tsushima Warm Current. In addition, the area is influenced
by tidal effects and fresh water from the Nakdong River located to the northeast [36]. The
second largest river in South Korea, the Nakdong River, releases 20% of its discharge during
the dry season and 60–70% during the summer monsoon season. A. catenella blooms have
been occurring along the Geoje coast and in the proximal Jinhae-Masan Bay. Since the first
record of a bloom in 1986 [8], outbreaks of PSTs during spring have been reported by the
NIFS [11]. In addition, there is considerable shellfish aquaculture along this coast.

Figure 6. (a) Location of the study area on the southern coast in Korean Peninsula. (b) Locations of
Masan, Gadeokdo, and Geoje tidal stations. The red boxes represent aquaculture farms for shellfish,
such as mussel and oyster.

5.2. Data

The start and end dates of PST outbreaks along the Geoje, Gadeokdo, and Masan coasts
were provided by the NIFS from 2006 to 2020 [11]. Figure 7 shows an example of National
Water Service map for 28 April 2020. There are 129 survey points along the southern coast
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of the Korean Peninsula, and the PST concentration was measured at each survey point to
provide information about whether it is greater than or equal to the reference value (80 µg
STX diHCI equivalents 100 g−1). If the detected PST concentration exceeds the standard
value, the area is designated a prohibited area. We generated timing data of 5479 daily PSTs
as ground truth data.

Figure 7. National watch service map at 28 April 2020 provided by NIFS. The map shows spatial
occurrence of PSTs and areas where shellfish collection has been banned in the coast.

Environmental factors data were obtained from the Ocean Data in Grid Framework
provided by the Korea Hydrographic and Oceanographic Agency [37]. The agency operates
48 tidal stations along the coast of the Korean Peninsula. The information includes tidal
height, WT, salinity, wave height, air temperature, and wind speed. As shown in Table 3,
we used the information from the Geojedo, Gadeokdo, and Masan tidal stations, which are
located in the study area. Among these three tidal stations, the Gadeokdo station has been
in operation for the longest time. We collected WT, tidal height, and salinity data for the
15 years from 2006 to 2020, from three stations, as environmental factor data potentially
affecting PST outbreaks. The data were measured at every minute, but we constructed
daily data by selecting the first measurement of the day. Finally, a daily data sequence of
5479 data of the three environmental factors was generated for each of three stations.

Table 3. Specification of three tidal stations considered in this study.

Station Name Latitude (◦N) Longitude (◦E) Availability

Geoje (Ge) 34.80 128.70 1 January 2006–Present
Gadeokdo (Ga) 35.02 128.81 1 January 1977–Present

Masan (Ma) 35.20 128.58 1 December 2002–Present

5.3. LSTM Neural Network Model

Figure 8 shows the scheme of the LSTM network models. A deep LSTM is a recurrent
neural network well-suited to learning the relations of time steps in sequence data [38,39]
and model nonlinear functions [40]. In this study, we used two types of LSTM network
models for the regression and classification tasks. To fill any day data gaps of environmental
factors, a regression output layer was implemented. On the other side, a classification layer
was used to predict the timing of PST outbreaks. The input layer feeds WT, tidal height,
and salinity sequential daily data into the LSTM model. For regression, the LSTM layer is
connected to the fully connected regression layer. On the other side, for classification, the
LSTM layer is sequentially connected to the fully connected, softmax, and classification
layers. The LSTM layers of both the regression and classification models contain 200 hidden
units. Each hidden unit learns the dependencies between previous and current time steps
by updating or removing information accumulated from previous hidden units through
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three control gates, including the input gate (i), forget gate (f ), and output gate (o). Ct and
ht represent the cell state and hidden state, which contain information acquired from
the previous hidden units and the LSTM output at the current time step (t), respectively.
g indicates a cell candidate, which contains the information to be added.

Figure 8. Schemes of LSTM network models for regression and classification tasks, which gap-fill
environmental sequence data and temporally predict PSTs outbreak, respectively.

5.4. Performance Assessment

We evaluated the accuracy of the LSTM models for temporal prediction of PST out-
breaks in terms of the confusion matrix [41]. The pst and npst symbols in Table 4 indicate the
occurrence timings of PSTs and non-PSTs in the ground truth data, respectively, and the PST
and nPST indicate the occurrence timings of PSTs and non-PSTs in the predicted occurrence
of PSTs, respectively. The accuracy ([(1) + (4)]/[(1) + (2) + (3) + (4)]) was evaluated using
only the occurrences of PSTs from the ground truth data and the predicted occurrence data.

Table 4. Confusion matrix for evaluating the accuracy of the Sargassum detection.

Ground Truth Data

False (npst) Ture (pst)

The Predicted Result
False (nPST) (1) True negative (2) False negative
True (PST) (3) False positive (4) True positive

Author Contributions: Conceptualization, J.S.; methodology, J.S. and S.M.K.; data curation, J.S.;
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