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External stimulation-controllable heat-storage
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Commonly available heat-storage materials cannot usually store the energy for a prolonged

period. If a solid material could conserve the accumulated thermal energy, then its heat-

storage application potential is considerably widened. Here we report a phase transition

material that can conserve the latent heat energy in a wide temperature range, To530 K

and release the heat energy on the application of pressure. This material is stripe-type

lambda-trititanium pentoxide, l-Ti3O5, which exhibits a solid–solid phase transition to

beta-trititanium pentoxide, b-Ti3O5. The pressure for conversion is extremely small, only

600 bar (60 MPa) at ambient temperature, and the accumulated heat energy is surprisingly

large (230 kJ L� 1). Conversely, the pressure-produced beta-trititanium pentoxide transforms

to lambda-trititanium pentoxide by heat, light or electric current. That is, the present system

exhibits pressure-and-heat, pressure-and-light and pressure-and-current reversible phase

transitions. The material may be useful for heat storage, as well as in sensor and switching

memory device applications.
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P
hase transition phenomena, such as metal-insulator,
ferroelectric ferromagnetic, and spin transitions, are
attractive issues in the fields of physics, chemistry and

materials science. Phase transitions are controlled not only by
temperature change but also by other external stimuli such as
pressure, light-irradiation or electric current flow. For example,
for pressure-induced phase transitions, pressure-induced
metal-semiconductor transition in a molybdenum disulphide1,
pressure-induced superconductor transition in a fulleride2 and
pressure-induced ferroelectric–antiferroelectric transition in a
perovskite system3 have been reported. For light-induced phase
transitions, light-induced crystalline-amorphous transitions in
chalcogenides4,5, light-induced metal-semiconductor transition
in a trititanium pentoxide6 and insulator-metal transition in
perovskite manganites7,8, light-induced spin-crossover transitions
in metal complexes9–12 and light-induced charge-transfer
transition in organic molecules13,14 and metal complexes15 have
been reported. Furthermore, for current-induced phase
transitions16–18, current-induced insulator-metal transition in
organic compound and current-induced magnetic-domain-wall
switching in gallium manganese arsenide have been reported.

In recent years, heat-storage materials have been attracting
attention from the viewpoint of energy saving. Development of
high-performance heat-storage materials is important for the
effective use of waste heat from blast furnaces in factories. Phase
transition materials are considered to be useful as latent
heat-storage materials. These are divided into solid–liquid and
solid–solid phase transition types. In the former, the phase
transition at the melting point (m.p.) is used for the heat storage.
For example, water (320 kJ L� 1 at m.p.¼ 0 �C), paraffin
(140 kJ L� 1 at m.p.¼ 64 �C)19 and polyethylene glycol
(165 kJ L� 1 at m.p.¼ 20 �C)20 are known. In these cases, there
are concerns of liquid spill from the system and mixing (or
reaction) with the surrounding media. From this angle, a solid–
solid phase transition material is stiff and its form is maintained
without support, while at the same time it has chemical stability
against the surrounding media. Well-known solid–solid phase
transition materials for heat-storage usage include copolymers
(for example, hyperbranched polyurethane: 150 kJ L� 1 at
67 �C)21, organic compounds (for example, neopentylglycol:
165 kJ L� 1 at 48 �C and pentaerythritol: 360 kJ L� 1 at
188 �C)22,23 and organometallic compounds (for example,
bis(n-hexadecylammonium) tetrachlorozincate: 120 kJ L� 1 at
103 �C and bis(n-decylammonium) tetrachlorocuprate:
60 kJ L� 1 at 34 �C)19,24,25. In general, such phase change heat-
storage materials cannot store the energy for a prolonged period
below the phase transition temperature. If a solid material could
conserve the accumulated thermal energy and release it only on
demand, then its heat-storage application potential is
considerably widened. From this angle, our work focused on a
phase transition where the latent heat of thermal phase transition
could be stored.

In this paper, we report a heat-storage material composed of
lambda-trititanium pentoxide. The solid–solid phase transition of
this material can be controlled by heat, pressure application,
light-irradiation and current flow. This heat-storage material can
conserve a high accumulation of energy and release it by the
application of a remarkably small external pressure.

Results
Material and morphology. The sample of the titanium oxide, a
new series of lambda-trititanium pentoxide (l-Ti3O5), was pro-
duced by sintering rutile-TiO2 particles in a hydrogen atmosphere
(see Methods). Elemental analysis using inductively coupled
plasma mass spectrometry confirms that the formula of the

material is Ti3O5. Scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) images of the obtained
sample show a coral-like morphology with particle size of
B4� 1 mm (Supplementary Fig. 1), composed of aggregates of
rectangular-shaped nanorods, of which the majority are
B200� 30 nm dimensions (hereafter called ‘stripe-type-l-
Ti3O5’, Fig. 1a). The high-resolution TEM (HRTEM) image is
shown in Fig. 1b. The Fourier transform analysis of the HRTEM
image showed that the growth direction of the nanorods is along
the crystallographic b axis. The atomic level image from HRTEM
corresponds to the visualized electron density distribution map
on the bc plane calculated by the maximum entropy method
(MEM; Fig. 1c), described later.

Pressure-induced phase transition. X-ray powder diffraction
(XRPD) measurements were performed to investigate the
pressure (P) dependence of the crystal structure of the stripe-
type-l-Ti3O5. The XRPD pattern at 300 K under atmospheric
pressure (P¼ 0.1 MPa) is shown in Fig. 1d and Supplementary
Fig. 2. Rietveld analysis indicates that this sample is composed
of 80.0(2)% l-Ti3O5 and 20.0(2)% b-Ti3O5. l-Ti3O5

adopts a monoclinic crystal structure (space group C2/m) with
lattice parameters of a¼ 9.83119(19) Å, b¼ 3.78798(7) Å,
c¼ 9.97039(19) Å and b¼ 91.2909(7)̊, and a unit cell volume,
V¼ 371.207(12) Å3. l-Ti3O5 has three symmetry-inequivalent Ti
sites, Ti(1), Ti(2) and Ti(3), and five-symmetry-inequivalent O
sites, O(1) to O(5). All the Ti sites form a six-coordinate
structure. In the previous investigation6 of the same polymorph
prepared from anatase-TiO2 nanoparticles, we observed some
indications of a pressure effect. In the present research, the
sample was pressed at various external pressures with a pellet
press, and XRPD patterns were measured for the pellets after
pressure release. With increasing P, the intensity of the XRPD
peaks of l-Ti3O5 decreased and those of b-Ti3O5 increased
(Fig. 1d and Supplementary Fig. 3). The pressure where
the fraction of l-Ti3O5 becomes 50% (P1/2) is B60 MPa as
shown in Fig. 1e. The crystal structure of b-Ti3O5 is monoclinic
(space group C2/m; a¼ 9.75252(18) Å, b¼ 3.80034(6) Å,
c¼ 9.44413(19) Å, b¼ 91.5322(10)̊ and V¼ 349.902(11) Å3)
(Supplementary Fig. 4). After pressurizing the sample and
releasing the pressure at room temperature, heating the sample
causes b-Ti3O5 to revert back to l-Ti3O5 at 470 K (Fig. 1d,f and
Supplementary Fig. 5a). Above 530 K, l-Ti3O5 further transforms
to a-Ti3O5. On the other hand, in the cooling process from 620 to
300 K, a-Ti3O5 returns to l-Ti3O5 (Supplementary Fig. 5b). This
l-Ti3O5 is very stable in the wide temperature range of
0oTo530 K. Furthermore, when external pressure was applied
to this recovered l-Ti3O5 sample, l-Ti3O5 exhibited again the
phase transition to b-Ti3O5 (Supplementary Figs 6 and 7).

The visualized electron density distributions of l-Ti3O5 and
b-Ti3O5 obtained using MEM from the XRPD patterns, are
shown in Fig. 2a. The MEM image of l-Ti3O5 shows that the
electron density is spread between both Ti and O atoms, while in
b-Ti3O5, the electron density is localized around each atom. This
result indicates the electron delocalized character of l-Ti3O5 and
localized character of b-Ti3O5, which are consistent with the fact
that l-Ti3O5 is a metallic conductor and b-Ti3O5 is a
semiconductor. In addition, the visualized electron density
distribution of l-Ti3O5 in the bc plane well reproduces the
HRTEM image, as mentioned in Figs 1b and c.

First-principles calculation of phonon mode. To elucidate the
pressure-induced phase transition, first-principles phonon mode
calculations were conducted. Figure 2b shows the phonon density
of states (DOS) based on the lattice vibrations for l-Ti3O5 and b-
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Ti3O5. The phonon dispersion and phonon frequencies at the
Brillouin zone centre, G point, for each of the phonon dispersions
are listed in Supplementary Fig. 8. Comparison of the two crystal
structures shows that the coordination geometry of Ti(3) is dif-
ferent between l-Ti3O5 and b-Ti3O5; Ti(3) is connected to O(5)
in l-Ti3O5, while it bonds to O(4) in b-Ti3O5. Therefore, in the
pressure-induced phase transition from l-Ti3O5 to b-Ti3O5, the
Ti(3)�O(5) bond is considered to break, and the Ti(3)�O(4)
bond to form. The corresponding phonon modes of l-Ti3O5 lie at
248.6, 318.5 and 445.8 cm� 1. For example, for the Bu phonon
mode at 445.8 cm� 1, Ti(3) vibrates significantly toward O(4)
and moves further away from O(5) (Fig. 2c (upper) and

Supplementary Movie 1). On the contrary, in the course of the
thermal phase transition (that is, heat-storage process) from
b-Ti3O5 to l-Ti3O5, the Ti(3)�O(4) bond is broken and the
Ti(3)�O(5) bond is generated. The corresponding phonon
modes now lie at 226.7 and 339.3 cm� 1. For example, visuali-
zation of the Bu phonon mode at 226.7 cm� 1 shows that Ti(3)
significantly vibrates towards O(5) (Fig. 2c (lower) and
Supplementary Movie 2).

Accumulated heat energy and pressure-released energy. To
investigate the heat-storage process from pressure-produced
b-Ti3O5 to l-Ti3O5 and the amount of accumulated thermal
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Figure 1 | Morphology of stripe-type-k-Ti3O5 and pressure-and-heat-induced phase transition between k-Ti3O5 and b-Ti3O5. (a) TEM image of stripe-

type-l-Ti3O5. The scale bar below the TEM image indicates 50 nm. (b) HRTEM image of the surface of stripe-type-l-Ti3O5 showing the atomic

arrangement on the bc plane. The scale bar below the TEM image indicates 1 nm. (c) Visualized electron density maps on the bc plane of stripe-type-l-

Ti3O5 obtained by the MEM (isosurface 0.8e Å� 3). The scale bar below the electron density map (left) indicates 1 nm. (d) Pressure (P) and temperature

(T) dependence of the XRPD patterns (l¼ 1.5418 Å). The ambient-temperature XRPD pattern of the as-prepared sample at atmospheric pressure

(P¼0.1 MPa) is shown in the front, followed by XRPD patterns of the pellet samples pressurized by P¼ 15� 530 MPa, measured after pressure release.

These are followed by the XRPD patterns of pressure-produced b-Ti3O5 with increasing temperature from 300 K to 510 K. (e) Pressure evolution of the

phase fractions of l-Ti3O5 (blue) and b-Ti3O5 (red). The pressure where the fraction of l-Ti3O5 becomes 50% (P1/2) is an extremely small value of B60

MPa. (f) Temperature evolution of the phase fractions of l-Ti3O5 (blue) and b-Ti3O5 (red) in the heating process.
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energy in the system, heat capacity measurements were
performed. First, we investigated the heat capacity of the
pressure-produced b-Ti3O5. In the temperature region from 5 to
300 K, specific heat was measured by the relaxation technique
using the physical properties measurement system (Fig. 3a), and
above 300 K, specific heat accompanying the thermal phase
transition from pressure-produced b-Ti3O5 to l-Ti3O5 was
measured by differential scanning calorimetry (DSC; Fig. 3b). By
combining the results from the physical properties measurement
system and DSC measurements and integrating with temperature,
the experimental enthalpy (H) curves of l-Ti3O5 and b-Ti3O5

versus temperature were obtained up to 600 K (Fig. 3c; see
Methods). The transition enthalpy (DH) associated with the first-
order phase transition from b-Ti3O5 to l-Ti3O5 was 230±20 kJ
L� 1 (12±1 kJ mol� 1). In the temperature decreasing process of
the DSC measurement, there was no peak, indicating that the
accumulated heat energy of the phase transition from b-Ti3O5 to
l-Ti3O5 was conserved in the system.

Next the released energy of the pressure-induced phase
transition from stripe-type-l-Ti3O5 to b-Ti3O5 was measured
using a high-pressure micro-DSC measurement system at room
temperature. After applying pressure, heat energy of
240±40 kJ L� 1 was released, which almost corresponds to the
heat accumulated energy (Fig. 3d). Therefore, this material
conserves the heat energy of the phase transition from pressure-
produced b-Ti3O5 to l-Ti3O5 and releases the accumulated
heat energy by applying low pressure through the pressure-
induced phase transition from l-Ti3O5 to b-Ti3O5

(Supplementary Movie 3).

Thermal conductivity and sensible heat-storage performance.
Bricks and concrete are useful as sensible heat-storage

materials20,26–28 since they release thermal energy slowly.
Thermal conductivity measurements were performed for the
stripe-type-l-Ti3O5 and pressure-produced b-Ti3O5. The thermal
conducti-
vities were 0.20±0.02 W m� 1 K� 1 and 0.41±0.02 W m� 1 K� 1

for l-Ti3O5 and b-Ti3O5, respectively, which are similar to the
values of bricks (for example, 0.16 W m� 1 K� 1)26 and concrete
(for example, 0.57 W m� 1 K� 1)28.

Current-induced and light-induced phase transitions. Electric
current was flowed to the pressure-produced b-Ti3O5 sample at
298 K. By flowing a current of 0.4 A mm� 2, the colour
of the sample changed from brown to dark blue (Fig. 4a). The
XRPD patterns before and after flowing the current indicate
that b-Ti3O5 is transformed into l-Ti3O5 (Fig. 4b and Supple-
mentary Movie 4). The electric current dependence on the con-
version from the pressure-produced b-Ti3O5 to l-Ti3O5 shows
that the threshold current value of the current-induced phase
transition is 0.2 A mm� 2 (Supplementary Fig. 9). The origin of
this current-induced phase transition is regarded as breaking of
charge ordering or (and) Joule heat16–18. The mechanism by
breaking of charge ordering is considered as follows: b-Ti3O5 is a
charge-localized state whose charge is localized on Ti3þ (3) with
empty orbital on Ti4þ (2). In contrast, l-Ti3O5 is a charge-
delocalized state whose charge is delocalized on Ti(2) and Ti(3).
By flowing electric current to b-Ti3O5, the localized charge on
Ti(3) is forcedly moved to the empty orbital on of Ti(2), resulting
in a transition to metallic l-Ti3O5.

Light irradiation experiment was also conducted on a pressure-
produced b-Ti3O5. The reverse phase transition from b-Ti3O5 to
l-Ti3O5 was observed by irradiation of 410-nm laser light
(Supplementary Fig. 10 and Supplementary Movie 5).
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Discussion
The generation of stripe-type-l-Ti3O5 originates from the change
in the Gibbs free energy (G) of the material compared with the
bulk or single crystal Ti3O5. This change in the G value is
considered to be due to the interface (and/or surface) energy of
the nanoscale domain. It is noted that there is no oxygen vacancy,
which was confirmed by electron spin resonance. To understand
why the stripe-type-l-Ti3O5 undergoes a pressure-induced phase
transition to b-Ti3O5, we considered the thermodynamics of the
present phase transition phenomena using the mean-field model,
developed by Slichter and Drickamer29. In this model, G is

described by DH, the transition entropy (DS) and the interaction
parameter between l-Ti3O5 and b-Ti3O5 phases. The calculation
shows that at atmospheric pressure (P¼ 0.1 MPa), the sample
exists as l-Ti3O5 (Supplementary Movie 6). This is because
l-Ti3O5 is synthesized by sintering at a high temperature, and it
remains as l-Ti3O5 with decreasing temperature due to the
energy barrier between l-Ti3O5 and b-Ti3O5 as shown in
the G versus fraction (x) of l-Ti3O5 curves (Fig. 5a (i)). On the
contrary, on applying external pressure, the G versus x curves
change; for example, the energy barrier disappears o400 K when
P is 60 MPa, and hence, l-Ti3O5 transforms into b-Ti3O5 on
applying pressure (Fig. 5a (ii)). The x versus temperature curves
of P¼ 0.1 MPa and P¼ 60 MPa are shown in Fig. 5b. As shown
in Fig. 5c, x versus pressure plots indicate the threshold of the
pressure-induced phase transition. The origin of the pressure-
induced phase transition is the PDV term of DH(¼DUþ PDV),
where DU and DV are the changes of internal energy and volume,
respectively. At such a low pressure, the pressure-induced change
on DU is very small and negligible. In fact, the phonon mode
calculation under external pressure shows that the pressure-
induced change of DU is B1� 10� 3 kJ mol� 1 at 60 MPa, which
is two orders smaller compared with PDV¼ 0.19 kJ mol� 1. The
pressure-induced change on DS is also very small and cannot
contribute to the pressure-induced phase transition in the present
system (see Methods, Supplementary Fig. 11 and Supplementary
Tables 1, 2). It is noted that the observed x versus P plots of
Fig. 1e is somewhat gradual. This is explained by the presence of a
distribution in the transition pressure of the Slichter and
Drickamer model, which may be due to the crystal size
distribution. We have simulated this gradual pressure-induced
phase transition with a distribution of transition pressures
(Supplementary Fig. 12).

In summary, we report the first metal oxide capable of
conserving the accumulated heat energy of a phase transition.
Stripe-type-l-Ti3O5 can store a large heat energy of 230 kJ L� 1,
and this energy can be released by applying external pressure only
when demanded. The magnitude of the required pressure is
extremely small, B60 MPa. This value is remarkably smaller than
the typical pressures observed in the pressure-induced phase
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transitions in metal oxide materials30–35 and metallic
compounds36–41, for example, the pressure-induced phase
transition from rutile-TiO2 to baddeleyite-type TiO2 at 1,043 K
occurs at 20,000 MPa (¼ 20 GPa)30. From the viewpoint of the
energy balance of the thermodynamic cycle, pressure of 60 MPa
corresponds to B10 kJ L� 1, which is o5% of the pressure-
releasing heat energy. Pressure of B60 MPa can be realized even
by the water pressure of a high-pressure washing machine, and
hence, l-Ti3O5 has the potential to be employed as pressure-
sensitive sheets or reusable portable heating pads. In addition,
since l-Ti3O5 is a metallic conductor and b-Ti3O5 is a semi-
conductor, it has possibilities as a pressure-sensitive conductivity
sensor or pressure-sensitive optical sensor. Furthermore, because
l-Ti3O5 is composed of common elements (titanium and
oxygen), it is safe and environmentally friendly. l-Ti3O5 could
be useful for heat-retaining systems for residential use and may
realize more efficient uses of industrial waste heat generated from
furnaces (Supplementary Fig. 13)42,43. In addition, light-induced
and current-induced phase transitions from pressure-produced
b-Ti3O5 to l-Ti3O5 are also observed, that is, stripe-type-l-Ti3O5

shows reversible pressure-and-light-induced phase transition and
reversible pressure-and-current-induced phase transition. These
effects are also attractive phenomena from the viewpoint of
advanced electronic devices.

Methods
Material. A new series of l-Ti3O5 nanocrystallites was produced by sintering
rutile-TiO2 particles in a hydrogen atmosphere (flow rates of 0.7 dm3 min� 1) at
1,117 �C for 2 h, followed by a slow cooling process of B9 h from the sintering
temperature to room temperature (Supplementary Fig. 14). Elemental analysis
using inductively coupled plasma mass spectrometry confirms that the formula is
Ti3.00(1)O5.00(6); Calc.: Ti, 64.2%. Found: Ti, 64.2(1)%. The experimentally obtained
density is 4.000±0.048 g cm� 3, which is consistent with the theoretical value
of 4.00 g cm� 3 from the crystal structure of l-Ti3O5 as determined by XRPD
measurements. SEM and TEM images of the obtained sample show a coral-like
morphology with particle size of B4� 1 mm, composed of rectangular-shaped
nanorods, of which the majority are B200� 30 nm dimensions (Supplementary
Fig. 1a). The Fourier transform analysis of the HRTEM image showed that the
growth direction of the nanorods is along the crystallographic b axis. This new
series of l-Ti3O5 have larger crystal size than the previous series, which were
prepared from anatase-TiO2 (ref. 6; Supplementary Fig. 1b).

XRPD measurements. XRPD measurements were performed with a Rigaku
Ultima IV diffractometer with Cu Ka radiation (l¼ 1.5418 Å). The temperature-
dependent XRPD measurements were undertaken using a high-temperature
chamber with atmosphere control (RIGAKU-OAT003S) under N2 flow. The
RIETAN-FP computer programme was used for the Rietveld analyses, while
Dysnomia was used for the MEM analyses. The refined crystal structures and
charge densities were visualized by the computer programme VESTA. Although
both l-Ti3O5

6 and its high-temperature phase44,45 can be considered as candidates
of the present material with C2/m crystal structure, we assigned the present
material to l-Ti3O5 because it is obtained by a very slow cooling process taking of
ca. 9 h from the sintering temperature to room temperature, and it is thermally
stable.

Heat capacity measurements. To investigate the temperature dependence of the
lattice specific heat, C(T), in the temperature range of 5–300 K, we carried out curve
fitting of the observed plots with the equation based on the two-Debye model46

expressed by CðTÞ ¼
P2

i¼1 9Rci T=yið Þ3
R yi=T

0 x4ex
�

ex � 1ð Þ2dx, where R is gas
constant, ci is coefficient, yi is Debye temperature, x is ‘o=kBT , : is the
reduced Planck constant, o is phonon frequency and kB is Boltzmann constant,
with the fit parameters of c1¼ 3.2(1), c2¼ 5.6(1), y1¼ 4.1(1)� 102 K and
y2¼ 9.3(1)� 102 K for l-Ti3O5, and c1¼ 2.7(1), c2¼ 5.8(1), y1¼ 4.3(1)� 102 K
and y2¼ 9.3(2)� 102 K for b-Ti3O5. We then developed the temperature
dependence curve of the specific heat in the temperature range of 5–600 K using
both the fitted curve and the anomalous specific heat associated with the first-order
phase transition from b-Ti3O5 to l-Ti3O5 obtained from the DSC measurement.

Released heat energy on pressure application. Released heat energy on pressure
application was measured with a high-pressure DSC measurement system (mDSC
VII, SETARAM Instrumentation) at 300 K. Pressure application of 40 MPa was
achieved by instant injection of N2 gas into the sample cell.

Thermal conductivity measurements. The specific heat and thermal diffusivity of
l-Ti3O5 and b-Ti3O5 pellet samples were measured with a DSC measurement
system (DSC200F3 Maia (NETZSCH), NSST Co., Ltd.) and Light Flash Apparatus
(LFA447NanoFlash, NSST Co., Ltd.), respectively.

First-principles phonon mode calculations. First-principles calculations based on
the density functional theory were carried out for l-Ti3O5 and b-Ti3O5 using the
VASP (Vienna ab initio simulation package) code. The wavefunctions based on
plane waves and potentials of the core orbitals were represented by the projector-
augmented wave of Blöchl, and the exchange-correlation term was evaluated by the
generalized gradient approximation by Perdew, Burke, and Ernzerhof. The crystal
structures of l-Ti3O5 and b-Ti3O5 obtained from the XRPD measurements were
used for computed models as the initial structures. The lattice parameters and
atomic positions were optimized under no pressure and 1000 MPa with an energy
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cutoff of 500 eV and 3� 7� 3 k-mesh until satisfying 10� 5 eV pm� 1 force
tolerance. Supercells (1� 3� 1) of the optimized structures were used to calculate
the phonon modes and thermodynamic functions of l-Ti3O5 and b-Ti3O5, which
were calculated by the direct method implemented in Phonon code with 2 pm
displacements using the optimized structures.

Thermodynamic analysis. In the Slichter and Drickamer mean-field model, the
Gibbs free energy of the system is described as G¼ x(DH)þ gx(1� x)þT{R[x
lnxþ (1� x)ln(1� x)]� x(DS)}þGb, where x is the ratio of the charge-delocalized
unit of Ti(1)3.3þ �Ti(2)3.3þ �Ti(3)3.3þ corresponding to l-Ti3O5, g is the
interaction parameter between l-Ti3O5 and b-Ti3O5 phases, Gb is Gibbs free
energy of b-Ti3O5 set as the origin of the energies, and R is the gas constant. The
observed phase transition was considered to be a metal-semiconductor phase
transition between charge-delocalized Ti(1)3.3þ �Ti(2)3.3þ �Ti(3)3.3þ and
charge-localized Ti(1)3.0þ �Ti(2)3.7þ �Ti(3)3.3þ systems, which were regarded
as l-Ti3O5 and b-Ti3O5, respectively. The values of DH¼ 11.5 kJ mol� 1 and
DS¼ 25.2 J K� 1 mol� 1, and a suitable value of g¼ gaþ gb f(T ), where ga¼ 14
kJ mol� 1 and gb¼ 1.08� 10� 2 J K� 1 mol� 1 to be consistent with the observa-
tion results, were used. When the external pressure is applied to the sample, DH is
perturbed by the pressure-induced change on the DU and PDV terms. Compared
with the pressure-induced change on the PDV term, for example, 0.19 kJ mol� 1 at
P¼ 60 MPa, the change on DU evaluated by the first-principles phonon mode
calculations is negligibly small, for example, 1� 10� 3 kJ mol� 1 at P¼ 60 MPa.
Thus, DH is controlled by the PDV term in the present system. The pressure-
induced change on DS is also very small, for example, � 0.067 J K� 1 mol� 1 at
P¼ 60 MPa, from the results of first-principles phonon mode calculations.

Current-induced phase transition study. Stainless electrodes are attached to
b-Ti3O5 pellet by Ag paste with an adhesion area of 5 mm2 and electric current of
2 A was flowed (0.4 A mm� 2) at 298 K. After that, the XRPD pattern of the surface
of the pellet was measured.
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