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Abstract: In this paper, we focus on the design of adaptive receivers for nonhomogeneous
scenarios. More precisely, at the design stage we assume a mismatch between the covariance
matrix of the noise in the cell under test and that of secondary data. Under the above
assumption, we show that the Wald test is the adaptive matched filter, while the Rao test
coincides with the receiver obtained by using the Rao test design criterion in homogeneous
environment, hence providing a theoretical explanation of the enhanced selectivity of
this receiver.
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1. Introduction

In recent years adaptive detection of targets embedded in Gaussian disturbance with unknown spectral
properties has received an increased attention in the signal processing community. In the seminal
paper by Kelly [1], the generalized likelihood ratio test (GLRT) is used to design an adaptive decision
scheme capable of detecting a signal known up to a scaling factor in presence of Gaussian disturbance
with unknown covariance matrix. Moreover, it is assumed that a set of secondary data free of signal
components, but sharing the same spectral properties of the noise in the cell under test (CUT), is available
(homogeneous environment). In [2] the authors derive the so-called adaptive matched filter (AMF),
whose design relies on the so-called two-step GLRT-based design procedure. In fact, its design is split
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into two steps: first a non-adaptive GLRT for known covariance matrix is derived; then, the fully-adaptive
version of the GLRT is obtained by replacing the unknown matrix with a proper estimate. Other design
criteria have been investigated as an alternative to the GLRT over the years. In particular, in [3] a novel
derivation of the AMF is proposed by resorting to the Wald test design criterion for the homogeneous
environment. In [4], the Rao test is used to derive a detector (referred to in the following as H-RAO) that
exhibits enhanced rejection capabilities of mismatched signals [5–7].

However, the homogeneous environment is an assumption that might not be met in realistic situations:
see, for example, ([8], and references therein). A slightly general model assumes that the covariance
matrix of the CUT and that of secondary data coincide only up to a scale factor. This scenario is referred
to as partially-homogeneous environment and has been firstly proposed in [9], where the authors apply
the GLRT to derive a fully-adaptive detector, referred to as the adaptive coherence estimator (ACE) but
also as adaptive normalized matched filter [10]. Interestingly, in [11] it is proven that Rao and Wald tests
for partially-homogeneous environment coincide with the ACE.

Another model of interest assumes that CUT and secondary data share the same covariance matrix
of the thermal noise plus clutter, but, in addition, the CUT contains a noise-like interferer [12]. Such a
covariance mismatch can lead to receivers that are less inclined to reveal signals that produce steering
vectors different from the nominal one (selective receivers) [13]. In [12] the authors show that the
GLRT for this problem is the ACE, providing, as a byproduct, a theoretical explanation of the good
rejection capabilities of such a receiver. The above model is modified in [14], where it is assumed that
the noise-like interferer is orthogonal to the nominal steering vector in the whitened observation space.
The goal is to induce the rejection of only those signals which are sufficiently far from the nominal
steering vector. As a matter of fact, the GLRT for this constrained problem is Kelly’s detector, which
offers a good tradeoff between detection performance of mainlobe targets and rejection capabilities of
sidelobe interferers [14].

In this work, we use the Wald test and the Rao test design criteria to solve the latter detection problem.
In particular, we show that these design criteria yield the decision statistics that have been obtained for
the homogeneous environment, i.e., the Wald test is the AMF, while the Rao test coincides with the
H-RAO. Moreover, the latter coincidence provides, as a byproduct, an alternative explanation of the
excellent selectivity exhibited by the H-RAO in the homogeneous scenario; in fact, taking into account
the noise-like interferer at the design stage can make it possible to reject the signal-plus-noise hypothesis
as the degree of mismatch between the received signal and the postulated one increases. The interested
reader is referred to ([5] and references therein) for the performance assessment of the above detectors
in comparison to existing receivers in open literature.

The remainder of the paper is organized as follows: the next section is devoted to the problem
formulation while Section III addresses detector designs. Finally, Section IV contains some concluding
remarks and potential directions for future works.

2. Problem Formulation

Assume that a linear array formed by Na ∈ N antennas senses the cell under test and that each antenna
collects Nt ∈ N samples. Denote by z ∈ CN×1 the N -dimensional vector, with N = NaNt, containing
returns from the CUT. We want to test whether or not z contains useful target echoes. As customary, we
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assume that a set of K ∈ N secondary data, zk ∈ CN×1, k = 1, . . . , K, K ≥ N , namely data free of
signal components is available.

The detection problem at hand can be formulated as follows:
H0 :

{
z = n,

zk = nk, k = 1, . . . , K

H1 :

{
z = αv + n,

zk = nk, k = 1, . . . , K

(1)

where

• v ∈ CN×1 is the nominal steering vector;
• nk ∈ CN×1, k = 1, . . . , K, are independent and identically distributed complex normal random

vectors with zero mean and unknown, positive definite covariance matrix M ∈ CN×N , i.e., nk ∼
CNN(0,M ), k = 1, . . . , K, see ([5] and references therein);

• n ∼ CNN(0,M + qq†), where q ∈ CN×1 is due to a noise-like interferer and † denotes conjugate
transpose. Moreover, we assume that q is orthogonal to the nominal steering vector in the whitened
observation space, namely

q†M−1v = 0 (2)

• α ∈ C is an unknown (deterministic) factor which accounts for both target and channel effects.

Notice that the probability density function (pdf) of z and Z ≡ [z1, . . . , zK ] under H1 (and assuming
that Equation (2) holds true) is given by

f(z,Z;θ, H1) =
exp

{
−tr

[
M−1(S + (z − αv)(z − αv)†)

]}
πN(K+1) det(M )K+1(1 + q†M−1q)

× exp

{
|z†M−1q|2

1 + q†M−1q

}
(3)

In Equation (3) S =
∑K

k=1 zkz
†
k, and θ ∈ R(2+2N+N2)×1 is the parameter vector, i.e.,

θ =
[
αr αi q

T
r qT

i f(M )T
]T

=
[
θT
A θT

B

]T (4)

where

• αr, αi ∈ R denote the real and imaginary part of α, respectively;
• T denotes transpose;
• θA = [αr αi]

T ∈ R2×1 and θB = [qT
r qT

i f(M )T ]T ∈ R(2N+N2)×1; observe that θA contains the
parameters of interest while θB contains the nuisance parameters;

• f(M ) ∈ RN2×1 is a vector that contains in univocal way the real and the imaginary parts of the
elements of M .

As a preliminary step towards the derivation of the receivers, denote by J(θ) the Fisher information
matrix, which can be written as follows [15]

J(θ)−1 =

[
JAA(θ) JAB(θ)

JBA(θ) JBB(θ)

]−1

=

[
CAA(θ) CAB(θ)

CBA(θ) CBB(θ)

]
(5)

where
CAA(θ) =

[
JAA(θ)− JAB(θ)J

−1
BB(θ)JBA(θ)

]−1 (6)
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3. Detector Designs

In this section we solve the binary hypothesis testing problem (1) by applying the Wald and the Rao
test design criteria. Notice that problem (1) amounts to testing H0 : α = 0 against the alternative that α
is unrestricted.

3.1. Wald Test Design

The Wald test is the following decision rule [15]

θ̂
T

A,1

[
CAA(θ̂1)

]−1

θ̂A,1

H1
>
<
H0

η1 (7)

where θ̂1 =
[
θ̂
T

A,1 θ̂
T

B,1

]T
with θ̂A,1 and θ̂B,1 the maximum likelihood estimates of θA and θB under H1,

respectively, and η1 is the threshold to be set to achieve a predetermined probability of false alarm (Pfa).
In order to evaluate Equation (7), observe that [13]

[CAA(θ)]
−1 = JAA(θ) = 2I2v

†M−1v (8)

where I2 denotes the 2-dimensional identity matrix, and that

θ̂A,1 =

[
2ℜ{α̂}
2ℑ{α̂}

]
=

 2ℜ
{
v†S−1z

v†S−1v

}
2ℑ

{
v†S−1z

v†S−1v

}
 (9)

where

α̂ =
v†S−1z

v†S−1v
(10)

is the maximum likelihood estimate of α, while ℜ{·} and ℑ{·} denote the real and the imaginary parts of
the argument, respectively. Now, it remains to replace M−1 in Equation (8) with its maximum likelihood
estimate under H1 given by [14]

M̂
−1

= (K + 1)

[
S−1

1 − γ
S−1

1 (z − α̂v − βv)(z − α̂v − βv)†S−1
1

1 + γ(z − α̂v − βv)†S−1
1 (z − α̂v − βv)

]
(11)

where

S1 = S + (z − α̂v)(z − α̂v)† (12)

β =
v†S−1

1 (z − α̂v)

v†S−1
1 v

(13)

γ =
1− (K + 1)(z − α̂v − βv)†S−1

1 (z − α̂v − βv)

K(z − α̂v − βv)†S−1
1 (z − α̂v − βv)

(14)

It is tedious but not difficult to show that[
CAA(θ̂1)

]−1

= 2I2v
†M̂

−1
v = 2I2(K + 1)v†S−1

1 v = 2I2(K + 1)v†S−1v (15)
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Finally, by substituting Equations (9) and (15) into Equation (7) we obtain

|z†S−1v|2

v†S−1v

H1
>
<
H0

η1 (16)

Notice that the left-hand side of Equation (16) is the decision statistic of the AMF [2], which can be
also obtained by using the Wald test design criterion assuming q = 0 (homogeneous environment).

3.2. Rao Test Design

The Rao test for the problem (1) can be written as follows [15]

∂ ln f(z,Z;θ, H1)

∂θA

∣∣∣∣T
θ=θ̂0

[
CAA(θ̂0)

] ∂ ln f(z,Z;θ, H1)

∂θA

∣∣∣∣
θ=θ̂0

H1
>
<
H0

η2 (17)

where

• ln f(z,Z;θ, H1) is the natural logarithm of the pdf of z and Z under the H1 hypothesis (see
Equation (3));

• CAA(θ̂0) =
[
JAA(θ̂0)

]−1

, where JAA(θ) is given by Equation (8);

• θ̂0 = [0 0 θ̂
T

B,0]
T , with θ̂B,0 denoting in turn the maximum likelihood estimate of θB under H0;

• η2 is the threshold to be set in order to ensure the preassigned Pfa.

It is straightforward to show that

∂ ln f(z,Z;θ, H1)

∂θA

=

[
v†M−1(z − αv) + (z − αv)†M−1v

−jv†M−1(z − αv) + j(z − αv)†M−1v

]
(18)

=

[
2ℜ

{
v†M−1(z − αv)

}
2ℑ

{
v†M−1(z − αv)

} ]
(19)

where j denotes the imaginary unit. The maximum likelihood estimate of M under the H0 hypothesis
is given by [14]

M̂ =
1

K + 1

[
S1 + γ(z − ξv)(z − ξv)†

]
(20)

where

S1 = S + zz†, ξ =
v†S−1

1 z

v†S−1
1 v

(21)

γ =
1− (K + 1)(z − ξv)†S−1

1 (z − ξv)

K(z − ξv)†S−1
1 (z − ξv)

(22)

It follows that

∂ ln f(z,Z;θ, H1)

∂θA

∣∣∣∣
θ=θ̂0

=

 2ℜ
{
v†M̂

−1
z
}

2ℑ
{
v†M̂

−1
z
}  (23)

= (K + 1)

 2ℜ
{

v†S−1z

1 + z†S−1z

}
2ℑ

{
v†S−1z

1 + z†S−1z

}
 (24)
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and [
JAA(θ̂0)

]−1

= 2I2
1

v†M̂
−1
v

= 2I2
1

(K + 1)

(
v†S−1v − |v†S−1z|2

1 + z†S−1z

) (25)

Gathering the above results, the Rao test can be recast as

|v†S−1z|2

v†S−1v(1 + z†S−1z)

 1

1 + z†S−1z − |v†S−1z|2

v†S−1v

 H1
>
<
H0

η2 (26)

or, equivalently, as

|v†(S + zz†)−1z|2

v†(S + zz†)−1v

H1
>
<
H0

η2 (27)

which is the H-RAO [4].

4. Conclusions

This work addresses the adaptive detection of point-like targets in nonhomogeneous scenarios. In
particular, at the design stage it is assumed that the CUT contains a noise-like interferer in addition
to thermal noise, clutter, and to the possible signal of interest; a set of secondary data, free of signal
components, is available: such data share a common covariance matrix that is equal to that of thermal
noise plus clutter in the cell under test. Observe that the covariance mismatch between the CUT and
the secondary data can lead to receivers that are less inclined to reveal a signal with the actual steering
vector different from the nominal one (selective receivers). In addition, we assume that the noise-like
interferer is orthogonal to the nominal steering vector in the whitened observation space. Under the above
assumptions, we show that the Wald test coincides with the AMF, while the RAO test is the H-RAO.
The latter result provides an alternative explanation of the good selectivity properties exhibited by the
H-RAO [5]. Moreover, observe that the condition (2) makes the H-RAO less selective than the DN-AMF,
derived in [13] using the Rao test design criterion without any constraint on the noise-like interferer.

As a final comment, it would be of interest to investigate under which conditions these design criteria
are invariant with respect to different classes of detection problems. A preliminary step towards this
direction is given in [16].
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