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Dendritic cells (DCs) are key antigen-presenting cells that control the induction of both 
tolerance and immunity. Understanding the molecular mechanisms regulating DCs com-
mitment toward a regulatory- or effector-inducing profile is critical for better designing 
prophylactic and therapeutic approaches. Initially identified in dexamethasone-treated 
thymocytes, the glucocorticoid-induced leucine zipper (GILZ) protein has emerged as 
a critical factor mediating most, but not all, glucocorticoids effects in both non-immune 
and immune cells. This intracellular protein exerts pleiotropic effects through interactions 
with transcription factors and signaling proteins, thus modulating signal transduction 
and gene expression. GILZ has been reported to control the proliferation, survival, and 
differentiation of lymphocytes, while its expression confers anti-inflammatory phenotype 
to monocytes and macrophages. In the past twelve years, a growing set of data has 
also established that GILZ expression in DCs is a molecular switch controlling their 
T-cell-priming capacity. Here, after a brief presentation of GILZ isoforms and functions, 
we summarize current knowledge regarding GILZ expression and regulation in DCs, 
in both health and disease. We further present the functional consequences of GILZ 
expression on DCs capacity to prime effector or regulatory T-cell responses and highlight 
recent findings pointing to a broader role of GILZ in the fine tuning of antigen capture, 
processing, and presentation by DCs. Finally, we discuss future prospects regarding 
the possible roles for GILZ in the control of DCs function in the steady state and in the 
context of infections and chronic pathologies.

Keywords: dendritic cells, tolerance, TSC22D3, glucocorticoid-induced leucine zipper, antigen presentation, 
regulatory T cells

inTRODUCTiOn

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), with recognized ability 
to orchestrate tolerance and immunity. In parallel to antigen processing, they integrate antigen-  
and microenvironment-associated stimuli and translate them into membrane and cytokine 
signals for appropriate T-cell priming and polarization or T-cell tolerization (1). Thus, DCs are 
key regulators of immune homeostasis and gaining knowledge in the mechanisms controlling 
their polarization toward tolerogenic or immunogenic APCs is of critical importance for both 
prophylactic and therapeutic approaches in allergy, autoimmunity, inflammatory diseases, infec-
tions, and cancers.
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FiGURe 1 | Glucocorticoid-induced leucine zipper (GILZ) isoforms and partners. Five murine GILZ (m-GILZ) isoforms, namely m-GILZ 1–4 and long GILZ  
(m-Long GILZ) have been identified in mouse (13, 28), with different N-TER domains while m-GILZ1, 2, 4 and m-Long GILZ encompass conserved TSC, LZ, and 
PRR domains. RAF1 (37) and AP1 (33) interact with GILZ1 and presumably GILZ3 N-TER domain. RAS interacts with the TSC (blue) domain (38). LZ (gray) domain 
allows dimerization (33). Nuclear factor Kappa B interacts with the PRR (green) domain and requires an EAP motif in positions 121–123 of GILZ1 (39). Predicted 
posttranslational modification sites are annotated with their positions (X) and the nature of the modification, i.e., phosphorylation, p; glycosylation, g; and 
sumoylation, s. Tsc22-d3 transcription starts either at a canonical AUG codon or at an upstream non-canonical AUG codon. GILZ isoforms derived from the use of 
the same codon display identical N-TER domain (orange or yellow, respectively). Protein sequences were aligned using BLAST. The scale is proportional to the real 
size of the protein. N-TER, N-terminal domain; TSC, TGF-β-stimulated clone; LZ, leucine zipper; PRR, proline-rich region.
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Transcriptomic, phenotypic, and functional analyses have 
identified three steady-state DC subsets in human and mouse 
(2, 3). Conventional DCs (cDCs) excel in antigen presentation 
and encompass two subpopulations, namely cDC1 and cDC2, 
the former being functionally specialized in cross-presentation 
and type 1 T-helper (Th1) responses induction and the latter 
promoting Th2 and Th17 T-cell responses (4). The third subset 
corresponds to plasmacytoid DCs (pDCs) that are specialized 
in antiviral immunity (5). While each DC subset displays 
specialized immune-activating functions, all of them have 
also been shown to promote tolerance and favor regulatory 
T cells (Treg) differentiation, expansion, and/or activation in 
certain contexts. This points to mechanisms controlling DCs’ 
functional switch between tolerogenic and immunogenic  
APCs (6–8). In addition to these three well-defined DC subsets, 
inflammatory DCs can arise from monocytes in the course of 
inflammation, which contribute to innate immune responses 
and T-cell priming (9).

Among factors reported to skew DCs maturation toward 
a tolerogenic profile (10), glucocorticoids (GCs), rapamycine, 
interleukin (IL)-10, transforming growth factor-β (TGF-β), and 
vitamin D3 (vitD3) have been shown to promote the expression 
of the glucocorticoid-induced leucine zipper (GILZ) protein (11). 
GILZ was initially described in murine thymocytes treated with 
synthetic GCs (Dexamethasone, Dex) (12), but this intracellular 
protein is expressed in most tissues, including immune cells 
(12–19). GILZ has since been demonstrated to mediate GCs’ 
effects in human DCs (20, 21) and has more generally emerged 
as a regulator of DCs tolerogenic function in both mouse and 
human (20–27). More recently, we have unraveled that GILZ 
expression by DCs controls their efficiency at antigen capture and 
cross-presentation (27), suggesting that the extent of GILZ action 
in DCs may be broader than initially expected.

Herein, we provide a comprehensive review of recent insights 
into GILZ expression and functions in DCs and emphasize its 
implication as a regulator of DCs function, which modulates 

key processes ranging from antigen capture and presentation to 
functional maturation and T-cell priming.

GiLZ’S GeneRAL PROPeRTieS

Glucocorticoid-induced leucine zipper is encoded by the TGF-
β-stimulated clone (TSC) 22 domain family protein 3 (Tsc22d3) 
gene located on the X-chromosome and is constitutively 
expressed in most tissues (12, 16, 28). GILZ is among the earli-
est and highest GC-induced genes. In addition to GC response 
elements, GILZ promoter harbors binding sites for several 
transcription factors, including Forkhead-Box O3, C-AMP 
Response Element-Binding protein, and Serum Responsive 
Factor. Two E-boxes, one GATA Box as well as putative-binding 
sites for signal transducer and activator of transcription 6, 
nuclear factor of activated T-cells and Octamer are also reported 
(29–32). Five GILZ isoforms exist in mouse, generated upon use 
of alternative initiation and splicing sites (13, 28). They differ in 
their N-terminal parts but four of them share conserved TSC 
and Leucine Zipper (LZ) domains and a C-terminal proline-rich 
region (PRR) (Figure 1). The term GILZ usually refers to the 137 
amino acid (aa)-long GILZ1/Tsc22d3-2 protein in mouse and to 
the 134 aa-long isoform in human. As only this canonical iso-
form has been studied in DCs so far (20, 23, 24, 26, 27), we will 
adopt this nomenclature. Nevertheless, the other GILZ isoforms 
could be of functional relevance in DCs, as they may modu-
late GILZ1 function upon dimerization (33), competition, or 
ensure autonomous function owing to their unique N-terminal 
domain. GILZ has a short half-life [2–3 h (34–36)] and is quickly 
degraded upon ubiquitin-proteasome degradation (34). Several 
sites for posttranslational modification have been predicted in 
GILZ sequence (Figure 1), but only polyubiquitination by K48 
ubiquitins has been confirmed so far (34).

In mouse lymphocytes, GILZ controls a wide range of pro-
cesses including their activation, proliferation, survival, and 
differentiation (12, 40–43). GILZ also confers anti-inflammatory 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Vétillard and Schlecht-Louf GILZ-Mediated Regulation of DCs Function

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1232

phenotype to innate immune cells, including human monocytes 
(25, 44, 45), mouse and human macrophages (35, 36, 46–48), 
human mastocytes (49), and mouse and human neutrophils 
(50, 51). Studies mostly done in T cells have reported that GILZ 
can exert its pleiotropic effects through direct interactions with 
transcription factors and signaling proteins, according to its 
cytoplasmic and nuclear distribution (12). GILZ directly binds 
to NF-κB-p65 (39, 46, 52), AP-1 (33), C/EBP (53), PU.1 (51) 
and prevents the nuclear translocation of FoxO3 (54). GILZ also 
interacts with Ras, Raf-1, and mTORC2, thereby inhibiting the 
MEK/ERK-1/2 and mTORC2/AKT pathways respectively (37, 
38, 55). Finally, GILZ can also associate with nuclear DNA (19, 
51, 56, 57) and modulate transcription upon competition with 
positive Th17-polarization regulators (56, 57) or relief of PU.1-
mediated repression (51).

GiLZ eXPReSSiOn in DCs

Glucocorticoid-induced leucine zipper expression by steady-
state human and murine DCs was initially reported by our 
group, using quantitative RT-PCR, Western Blot, and flow 
cytometry (21, 23, 27). In mouse, we further documented 
heterogeneity in GILZ levels among splenic DC subsets, the 
cDC1 population displaying higher levels than the cDC2 and 
pDC subsets (27). As in monocytes (25, 44, 45), GILZ mRNA is 
quickly downregulated upon human blood DCs culture ex vivo 
(21), pointing to the requirement for an active mechanism to 
maintain GILZ expression in these cells. This tonic signal is most 
likely provided, at least in part, by endogenous GCs as in vivo 
glucocorticoid receptor (GR) blockade reduces GILZ expression 
in murine splenocytes (58). Accordingly, GILZ mRNA levels 
follow robust circadian rhythm in adipose tissue and muscle 
(59–61), and increase, upon restraint stress, in spleen and mac-
rophages (62). However, daytime and stress-induced variations 
of GILZ levels in DCs have not been explored so far. As in other 
cell types, exogenous GCs promote GILZ expression in DCs, 
both in  vitro and in  vivo (11, 20, 21, 25, 58, 63). Thus, GILZ 
expression, which is quite low in mouse bone marrow-derived 
DCs (BMDCs) (23, 26, 27) and absent in human monocytes-
derived DCs (Mo-DCs) (20, 45) is dose-dependently upregu-
lated upon Dex treatment (11, 20, 45). GILZ transcription in 
Mo-DCs is modulated by DC-SCRIPT, a co-repressor of GR (64, 
65) (Figure 2). Remarkably, DC-SCRIPT mRNA is selectively 
and highly expressed in cDCs in the steady state, but not in 
other immune cells [The immunological Genome Project (66)], 
suggesting a cDC-specific limitation of GILZ induction by GCs. 
While the contribution of DC-SCRIPT to GILZ level control in 
DC-subsets and its modulation upon cell-activation remain to 
be explored in vivo, the selective limitation of GR-induced GILZ 
expression in cDCs could potentiate the impact of other GILZ-
inducing factors in these cells. Indeed, several molecules present 
in tissues at the steady state, such as vitD3 (11) and hepatocyte 
growth factor (HGF) (22), or produced in immunosuppressive 
microenvironments, as IL-10 and TGF-β, promote GILZ expres-
sion in DCs (20, 22, 25), supporting the hypothesis that GILZ 
is primarily induced in anti-inflammatory contexts (Figure 2). 
However, GILZ is also overexpressed in clinical grade Mo-DCs 

exposed to a maturation cocktail containing TNF-α, IL-1β, IL-6, 
and PGE2 (24), suggesting that pro-inflammatory factors can 
upregulate GILZ levels in certain conditions.

So far, few microbial products were tested for their ability to 
control GILZ expression in DCs. Mouse DCs exposure to lipopol-
ysaccharides downregulates GILZ at the transcript and protein 
levels, in vitro and in vivo (26, 27) (Figure 2). Conversely, fungal 
proteases from Aspergillus oryzae promote GILZ overexpression 
in human Mo-DCs, independently from the GR (68). Alteration 
of GILZ expression by microbial products has been reported in 
other cell types. In human epithelial cells, Yersinia enterocolitica 
YopT and Clostridium difficile Toxin B induce GILZ expression 
through USF-1 and -2 binding to TSC22D3 promoter (31). In 
microglia, Tsc22d3 was among the most downregulated genes 
from antibiotic-treated mice, suggesting a possible contribution 
of tonic signals from microbiota to GILZ levels control (69). 
Regarding viruses, Chikungunya and Respiratory Syncytial Virus 
infections downregulate GILZ expression in primary murine 
astrocytes (70) and in human epithelial cells (71), respectively. 
Conversely, Infectious Bursal Disease Virus protein VP4 sup-
presses GILZ degradation (34), thereby preventing type 1 IFN 
production in human fibroblast and keratinocyte cell lines (72). 
Whether GILZ modulation in the course of infections also occurs 
in DCs and the possible consequences and importance of such 
regulation remain to be addressed.

Altered GILZ expression in DCs has also been reported in 
the course of chronic pathologies. Blood DCs from respiratory 
allergic patients harbor reduced GILZ levels as compared to 
non-allergic healthy volunteers (21). Besides, GILZ overexpres-
sion has been found in tumor-associated DCs from A20 B-cell 
lymphoma-engrafted mice (26). While GILZ levels in tumor-
infiltratring DCs have not been studied in humans so far, the 
hypothesis that GILZ could be induced in such pathologies is 
supported by the high GILZ expression detected in infiltrat-
ing macrophages in Burkitt’s lymphoma (46). Regarding the 
mechanisms that could contribute to such GILZ induction, 
Wang et  al. found that hypoxia upregulated GILZ expression 
in macrophages and rats spleens (62). In addition, Lebson 
et al. reported GILZ induction in BMDCs exposed to A20- and 
B16-tumor cells conditioned medium, pointing to a role for 
soluble factors in this increased expression (26). These factors 
may include known GILZ inducers as reported in epithelial cell-
conditioned medium-treated BMDCs (67). Additional studies 
have pointed to GILZ levels modulation in cells other than DCs 
during chronic inflammation. Thus, GILZ expression is reduced 
in skin lesions from atopic dermatitis (73) and psoriasis patients 
(63), as well as in macrophages from Crohn’s disease granuloma 
(46). Conversely, GILZ is overexpressed in the synovia of 
patients with active rheumatoid arthritis (RA) (58). Whether 
GILZ acts as an endogenous inhibitor of inflammation, as sug-
gested by exacerbated imiquimod-induced psoriatic-like lesions 
in GILZ knock-out mice (63) and increased inflammation upon 
GILZ knock-down in synovial tissues in a murine model of RA 
(58), or whether it primarily mediates exogenous GCs effects 
(43) remains debated. The contribution of GILZ induction to 
GCs therapeutic effects is supported by several studies, two 
of them having assessed it in DCs. First, restoration of GILZ 
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FiGURe 2 | Glucocorticoid-induced leucine zipper (GILZ) regulation and functions in dendritic cells (DCs). GILZ expression in DCs can be induced by steady-state 
factors (11, 21, 22), immunosuppressive cytokines like TGF-β or interleukin (IL)-10 (20, 25), DC-maturation cocktail containing TNF-α, IL-1β, IL-6, and PGE2 (24), 
cell-derived factors (26, 45, 67), immunosuppressive drugs as synthetic GCs, rapamycin, and mitomycine C (11), fungal proteases (68), and cancer 
microenvironment (26). So far, the only exogenous GILZ repressor reported in DCs is LPS (26, 27). In addition, GILZ levels are reduced in blood DCs from respiratory 
allergic patients (21). DC-SCRIPT acts as an endogenous GR-repressor, thus limiting GILZ induction upon GCs exposure (64, 65). High GILZ levels promote PD-L1 
expression and IL-10 production while limiting IL-12 and IL-23 secretion. Thus, GILZhi DCs are poor inducers of Th1 and Th17 T cells but efficient Treg and Tr1 
activators (20, 23, 25). GILZ inhibits NF-κB functions upon interaction with p65 subunit (39, 46, 52). GILZ repression promotes macropinocytosis, likely upon 
increased p38-MAPK phosphorylation (27). GILZ deletion reduces antigen cross-presentation (27). GCs, glucocorticoids; TGF-β, transforming growth factor-β; 
IL-10, interleukin-10; HGF, hepatocyte growth factor; LPS, lipopolysaccharide; ICOS, inducible co-stimulator; Foxp3, Forkhead box p3; NF-κB, nuclear factor kappa 
B; CTLA4, cytotoxic T-lymphocyte-associated protein; Tr1, Type 1 regulatory T cells; Treg, regulatory T cells; p38-MAPK, p38 mitogen-activated protein kinase; GR, 
glucocorticoid receptor; cDC, conventional dendritic cell; tsc22d3, TGF-β-stimulated clone (TSC) 22 domain family protein 3.
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expression in DCs to normal levels was required for the increase 
of IL-10+CD4+ T  cells, known to mediate oral GC-therapy 
beneficial effects in respiratory allergic patients (21). Second, in 
lupus patients, GILZ/prednisolone ratios in pDCs and myeloid 
DCs exhibited a negative correlation with disease activity 
(74). In addition to GCs, several therapeutic agents have been 
reported to induce GILZ in DCs, although the importance of 
this expression for their effects has not been explored. Thus, 
GILZ was identified among the most induced genes in Mo-DCs 
treated by Mitomycine C (75) and the Ca2+-targeting drug rapa-
mycine (11) (Figure 2). Altogether, these data identify GILZ as a 
common intracellular marker upregulated upon treatment with 
several immunosuppressive therapeutic molecules. However, its 
importance in the drug’s effect on DCs function has been proven 
only for GCs so far.

FUnCTiOnAL COnSeQUenCeS OF GiLZ 
eXPReSSiOn in DCs

Seminal work from our laboratory established that GILZ was 
required for Dex-, IL-10- and TGF-β-induced downregulation 
of CD80, CD86, and CD83 costimulatory molecules and the 
increase of immunoglobulin-like transcript 3, programmed 
death ligand 1 (PD-L1), and IL-10 in human DCs. These results 
were obtained in Mo-DCs and CD34+ cells-derived DCs, using 
both lentiviral transduction to overexpress GILZ and RNA-
interference on Dex-treated cells to demonstrate GILZ require-
ment in the tolerogenic polarization of DCs (20, 25). Other groups 
established that GILZ was necessary for Dex-induced CD86 
downregulation in BMDCs (26), PD-L1 induction, and IL-12 
inhibition in clinical grade human DCs matured with a standard 
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cocktail (24) and IL-10 secretion by splenic DCs isolated from 
HGF-treated mice in the course of experimental autoimmune 
encephalitis (22). GILZ overexpression was then further associ-
ated with regulatory phenotype in both human and mouse DCs 
(11, 23, 68). Of note, in certain studies, the GILZhiPD-L1hi DCs 
retained high expression of costimulatory molecules (22, 24). 
Using mice constitutively overexpressing GILZ in DCs (CD11c-
GILZhi) and in line with the report of Cohen et al. (25), we could 
establish that the sole increase of GILZ levels did not alter DCs 
steady-state phenotype nor cytokine secretion, suggesting that 
the consequences of GILZ overexpression may depend on the 
context of GILZ induction. However, upon cognate interaction 
with T  cells in  vivo, GILZhi DCs produced higher amounts of 
IL-10 than control DCs and presented reduced MHC class II 
molecules levels (23), confirming their regulatory commitment. 
Additional insights into the importance of GILZ expression for 
DCs function came from total (63) and conditional (27) GILZKO 
mouse models. While these studies pointed to minor impact of 
GILZ deletion on DCs phenotype (27, 63), the cytokine response 
to TLR4 and TLR7 stimulations was markedly increased in 
GILZKO BMDCs, with higher IL-1α and β, IL-6, and IL-23 secre-
tion (63), in line with GILZ inhibition promoting IL-12, TNF-α, 
and CCL5 production by Mo-DCs (20, 24, 45). In conclusion, 
GILZ expression in DCs promotes immature phenotype and 
IL-10 production while limiting secretion of Th1- and Th17-
inducing cytokines (Figure 2), thereby favoring DCs polariza-
tion toward a tolerogenic profile (20–27).

The consequences of GILZ levels in DCs on their capacity 
to activate T-cell responses were first investigated in recall 
responses toward vaccine and cytomegalovirus antigens (20, 
24). In these studies, Dex-induced GILZhi human Mo-DCs 
promoted poor autologous CD4+ T-cell proliferation and IFN-γ 
production, and this was reversed upon GILZ silencing. Along 
this line, clinical grade activated Mo-DCs were later shown to 
activate more efficiently CD8+ T-cell secondary responses when 
GILZ was knocked-down (24). Similar results were obtained for 
primary T-cell responses in vivo, the adoptive transfer of GILZhi 
DCs inducing poor effector T-cell (Teff) activation and IFN-γ 
secretion (23) while that of GILZKO (22) or GILZ-silenced (26) 
DCs led to enhanced CD4+ T  cell proliferation, activation, as 
well as IFN-γ and IL-17 production (Figure  2). Remarkably, 
the poor Teff activation by GILZhi DCs was associated with the 
expansion of antigen-specific IL-10+CD4+ T cells in both human 
and mouse (20–23), which was abolished by GILZ silencing 
or genetic deletion in DCs (20–22). These IL-10+CD4+ T cells 
included Foxp3− cells, a phenotype consistent with Tr1 cells  
(20, 21), and Foxp3+ Treg (20–23), and inhibited Mo-DCs-
induced autologous CD4+ and CD8+ T-cell proliferation through 
an IL-10-dependent antigen-specific mechanism (20, 21). We 
further established in vivo that Treg expansion by GILZhi DCs 
was abrogated upon depletion of pre-existing Treg (20, 23), sup-
porting the conclusion that GILZhi DCs could expand thymus-
derived Treg (tTreg) more efficiently than control DCs. Such an 
expansion might explain the spontaneous accumulation of Treg 
in CD11c-GILZhi mice, with an increased frequency of induc-
ible co-stimulator (ICOS)hi Treg. Importantly, in the absence of 
transferred tTreg, GILZhi DCs still poorly induced conventional 

T cells activation, thus suggesting that GILZhi DCs were intrinsi-
cally inefficient in Teff priming, a characteristic of tolerogenic 
DCs (10). Altogether, the results from these studies identify 
GILZ expression levels in DCs as a critical switch controlling 
their ability to prime Teff versus Treg, mediating Dex- and 
HGF-induced effects on DCs phenotype, cytokine secretion, 
and T-cell priming capacities and required for their beneficial 
effects in respiratory allergic patients (21) and experimental 
autoimmune encephalitis (22).

Finally, GILZ expression in murine DCs has also been shown 
to control their antigen capture capacity. The initial report 
was made by Lebson et al., who observed that GILZ silencing 
led to increased ovalbumine (OVA) capture in BMDCs (26). 
Consistently, analysis of antigen uptake by DCs from CD11c-
GILZKO mice revealed an increase in Dextran-FITC inter-
nalization by the splenic cDC1 subset in  vivo. Using GILZKO 
and GILZhi BMDCs, we showed that GILZ selectively regulated 
Dextran, OVA, and Lucifer Yellow macropinocytosis, but not the 
phagocytosis of particulate zymosan. This control operated in 
immature and recently activated BMDCs, through a mechanism 
that may at least partly depend on the control of p38 mitogen-
activated protein kinase phosphorylation (27). The fact that 
GILZ limits antigen internalization while Dex-treated DCs dis-
play enhanced antigen capture (76, 77) points to opposite effects 
of GILZ and GCs on certain DCs functions. Unexpectedly, the 
higher OVA macropinocytosis in GILZKO DCs did not result in 
increased peptide presentation to a CD4+ T-cell hybridoma and 
was even associated to reduced cross-presentation to a CD8+ 
T-cell hybridoma, despite efficient antigen degradation (27). 
These results suggested that the fine-tuning of antigen capture 
by GILZ in DCs might serve to regulate the quality rather that 
quantity of antigen available for presentation to T cells. It might 
also regulate antigen internalization for later transfer to B cells 
(78). Alternatively, GILZ might control additional steps in the 
antigen degradation and/or cross-presenting machinery of 
DCs. Further studies will be needed to address the physiologi-
cal relevance of GILZ-mediated macropinocytosis modulation 
in DC subsets in adequate models in vivo. The link established 
between the macropinocytic process and the regulation of DC 
migration (79–81) suggests that GILZ expression might also 
control DCs trafficking in vivo, a question deserving dedicated 
analysis.

COnCLUSiOn

Glucocorticoid-induced leucine zipper has initially been identi-
fied in DCs as a key mediator of GCs’ effects, piloting DCs com-
mitment toward a tolerogenic profile. Indeed, GILZ promotes 
immature phenotype and IL-10 production in DCs while limiting 
secretion of IL-12 and IL-23, thus favoring regulatory responses. 
In addition, GILZ also regulates DCs access to antigen by modu-
lating macropinocytosis, thus pointing to its regulatory role at 
many steps of DCs function. Recent studies have revealed that 
GILZ expression in DCs is constitutive and can be modulated by 
their ontogeny and microenvironment, with cell-specific regu-
latory systems. Thus, GILZ may control DCs access to antigen 
and the issue of their interactions with T cells in the steady state 
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as well as in certain pathologies. Furthermore, considering the 
wide effects reported for GILZ in other cell types, GILZ might 
impact DC biology in an even broader scale with possible effects 
on proliferation, cell survival, and migration. Deciphering the 
regulation of GILZ expression in DCs as well as its role in DC 
subsets function in vivo will deserve additional studies, which will 
provide insights into the fine mechanisms controlling DCs and 
might open new avenues for therapeutic approaches.
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