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Abstract

Background: Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed
understanding of the underlying gene signaling network. Previous work has used time series microarray data to
infer gene signaling networks given a large number of accurate time series samples. Microarray data available for
many biological experiments is limited to a small number of arrays with little or no time series guarantees. When
several samples are averaged to examine differences in mean value between a diseased and normal state,
information from individual samples that could indicate a gene relationship can be lost.

Results: Asynchronous Inference of Regulatory Networks (AIRnet) provides gene signaling network inference using
more practical assumptions about the microarray data. By learning correlation patterns for the changes in
microarray values from all pairs of samples, accurate network reconstructions can be performed with data that is
normally available in microarray experiments.

Conclusions: By focussing on the changes between microarray samples, instead of absolute values, increased
information can be gleaned from expression data.

Background
Sequencing the human genome is one of the great
accomplishments in recent history. The knowledge
gained through sequencing the human genome is vast
and holds great implications for medical practice [1]. No
single gene, however, decides how an organism grows
and matures. Genes form regulatory networks where
many genes interact to produce an observable pheno-
type [2,3]. An understanding of gene regulatory net-
works is the key that will open the door to major
breakthroughs in fields as diverse as agriculture [4-6]
and medicine [7-11].
Many factors can influence each gene’s expression at

any moment. One or more proteins produced by other
genes within the regulatory network can promote or
inhibit the expression of a particular gene. An under-
standing of how genes interact with each other is

essential to developing new drugs and treatments. In
many studies where gene expression data is used, tens
of samples from a diseased organism will be compared
with tens of samples from normal individuals. Average
values from these two pools may not show statistically
significant fold changes because the expression value for
a gene may naturally vary significantly between indivi-
dual samples at different time points. It can be difficult
to infer signaling information based on these average
values.
As an illustration of this problem, imagine a car race.

Two of the drivers have a wireless headset that allows
them to communicate. Although they may never be in
the same absolute position at the same time, their velo-
city and acceleration could be correlated as they signal
each other through their headsets. If you averaged the
position of all cars throughout the race, these two cars
may not appear to be more correlated in their position
to each other than any other cars in the race. If you
examine their velocity and acceleration, however, these
two cars would appear to be much more correlated than
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other cars who may have more similar positions. The
same effect can be observed in microarray data. The
samples collected during an experiment may not show a
correlation in their average values, but the changes
(velocity and acceleration analogs) may be correlated.
This correlation in changes can be an indicator that the
genes are signaling each other, or that they are both
being modulated by an external effect. This correlation
can generate new hypotheses for connections that can
be validated through biological experiments.
Asynchronous Inference of Regulatory Networks (AIR-

net) unravels the complexity of regulatory networks
using unsynchronized microarray data that is generally
available to researchers to create a network based on
the correlation of gene expression changes between
microarray experiments. Expression values for all pairs
of samples in a data set are compared to determine the
correlation in changes between all sets of genes in the
sample. Edges between genes whose changes appear to
be correlated in the largest percentage of microarray
pairs are inserted into the inferred gene regulatory net-
work. AIRnet can then compare the network for the dis-
eased and normal data sets to determine which
pathways are being disrupted by the condition.
AIRnet has produced promising results when inferring

realistic in-silico regulatory networks. In experiments
with real mouse arrays, AIRnet has also produced a sig-
nificant number of validated connections. Research is
currently underway to validate predicted connections
through in-vivo techniques.

Related work
Many strategies have been formulated to deduce gene
regulatory networks from microarray data. In a paper
written by Wang et al. [12], a strategy is proposed that
uses multiple microarray samples from different experi-
ments to find a gene regulatory network. Each of these
data sets represents a unique experiment. Each experi-
ment is assumed to represent a unique perturbation to
the gene regulatory network. Gene regulatory networks
are also assumed to be sparse. Differential equations are
used to derive a general solution that is the best repre-
sentation of the invariant parts of the different microar-
ray data sets. Their results show that they are successful
in reconstructing small networks. Our algorithm, unlike
Wang et al., does not utilize differential equations to
form a model of the regulatory network, but employs a
much simpler method that can be extended to whole
genome studies. While differential equation based infer-
ence techniques are limited to tens of genes, AIRnet has
been shown to be effective with 44,000 gene probes.
Another popular strategy developed by Liao et al.[13],
called network component analysis, makes assumptions
about power law relationships between genes and the

factors that influence their expression. They explain that
microarray data is frequently given as a log ratio, thus
being pseudo-linear. Then, based on these premises, a
regulatory network can be written as E = A * P. Where
E is the microarray data, A represents prior information
about the network, and P represents samples of regula-
tory signals. When there is no noise associated with this
relationship, there is a unique analytic solution that can
be found. In real applications, there is noise, and
through the use of simulated and real data they are able
to reconstruct gene relationships with acceptable accu-
racy. Their results depend largely on the amount of
noise present. A shortcoming of this approach is that
prior information about a network needs to be known
and expressed in matrix form. Another problem is that
there are very stringent constraints on the characteris-
tics of matrix A. A has to have full column and row
rank, and if any connections are removed, A still has to
have full column and row rank. These restrictions make
this method cumbersome to use and limits the datasets
that it can be applied to. AIRnet’s algorithm can be
applied to any set of microarray data and will extract as
much of the signal that is present in the data.
A third method for discovering gene regulatory net-

works has been implemented by Nathan Barker [14] in
iBioSim. His method first divides the microarray expres-
sion data into three categories; high, medium and low.
Each gene is assigned one of these values based on its
relative expression level when compared to each of the
other genes’ expression levels. This categorization of
genes assigns an approximately equal number of genes
to each of the three categories. Barker’s algorithm then
uses these categories to build an influence vector that
shows the degree of influence each gene at one time
point has on every other gene in the next time point.
Barker’s algorithm assumes it has time series data when
comparisons between samples are made. This assump-
tion allows the algorithm to decide which gene is pro-
moting or inhibiting another, rather than just find that
there is a promoting or inhibiting relationship between
two genes.
AIRnet takes a new approach to microarray analysis

that avoids many of the pitfalls of existing approaches.
The focus of the algorithm is on correlation between
the changes of different genes instead of instantaneous
probe values. This approach can be extended to full
genome microarray studies, where differential equation
based approaches are limited to small numbers of genes.
AIRnet does not require prior information about gene
interactions and through examining correlation in the
changes in gene expression, it does not require time ser-
ies data. Methods that require time series data are not
practical with real microarray data. The simple fact that
several samples are taken sequentially does not
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guarantee that they are sequential as far as the biological
model is concerned. The time taken for genes to inter-
act with one another is too small for us to accurately
measure, and certainly too small to be able to generate
a microarray sample at each time step, which would be
necessary to fulfill time series assumptions.
Other methods of microarray analysis are based on

statistical significance tests. Gene Set Enrichment Analy-
sis, proposed by Subramanian et al.[15], and Significance
Analysis of Microarray Gene Sets, proposed by Dinu
et al.[16], are two methods that apply statistical tests to
previously selected groups of genes, such as genes in the
same signaling pathway. These methods attempt to
identify whether the gene sets are associated with a par-
ticular phenotype. Similarly, AIRnet can highlight a sub-
set of genes within the entire network, either treating
the subset as the entire network, or showing only genes,
which are highly correlated with one or more genes in
the specified subset. AIRnet will also compare networks
to identify phenotype-specific gene correlations.

Results and discussion
Results were gathered from in-silico regulatory network
data originally created for the DREAM3 competition
[17]. This data was generated from a TRUE network, so
inferred networks can be compared on an edge by edge
basis to the original network. Although this kind of
comparison is easy to perform, it lacks some biological
reality. The second set of results was generated by
examining real mouse microarray data. Edges in the net-
work inferred by AIRnet were validated through public
pathway databases. This approach is limited because a
legitimate gene relationship inferred by AIRnet may not
have been studied enough to make its way into a publi-
cation. But these results show that the accuracy of the
algorithm is not limited to simulated data.

In-silico validation
Three types of data are used to test AIRnet’s accuracy
for each of the in-silico regulatory networks. The data
types are labeled as heterozygous knock-down, null-
mutant, and trajectory. The heterozygous knock-down
and null-mutant data sets each contain data for the
steady states of the wild-type as well as knock-down or
knock-out data for each gene. Trajectory data sets are
comprised of time series data, with 21 time points, for
each network recovering from external perturbations.
Each network is subjected to, and has data for, a num-
ber of perturbations equal to 46% of the number of
genes within the network. Figures 1 and 2 depict regula-
tory networks inferred by AIRnet using data produced
by one of the networks generated for DREAM3. The
in-silico network is shown in Figure 3. Figures 1 and 2
show that higher threshold values produce more

selective networks by excluding connections for which
the correlation between the two genes is not great
enough. Visual verification, however, is not always the
best method for measuring the accuracy of an inferred
regulatory network, especially if the network is large.
Scoring metrics from the DREAM3 competition are

used to verify the statistical significance of AIRnet’s
reconstructed regulatory networks. The DREAM3
metrics calculate the AUROC and AUPR values and
compare the resulting values with the AUROC and
AUPR of 100,000 randomly generated networks to com-
pute the probability of randomly creating a network
with equal or greater AUROC and AUPR values, produ-
cing a p-value for both the AUROC and AUPR. The
AUROC p-values are combined by averaging the scores

Figure 1 Sample AIRnet Network inferred using 40% threshold.

Figure 2 Sample AIRnet Network inferred using 80% threshold.
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for same-sized networks. The same is done for the
AUPR p-values. The averaged AUROC and AUPR p-
values are subsequently combined as a log-transformed
average, –log10(AU ROCp * AUPRp)/2. Each log-trans-
formed average provides a single value, which sum-
marizes AIRnet’s accuracy for five individual, same-sized
networks.
Because the graphs AIRnet produces are signed and

undirected, the standards, against which AIRnet is being
measured, were modified to be undirected as well.
The score, along with the AURR and AUROC p-

values, are displayed in Table 1. The first row in each
section of Table 1, the empty network, report the values
obtained from a network with zero edges, or a network
which assumes genes do not interact in any way with
each other. The empty network is not produced by AIR-
net, but is included as a baseline for comparing AIRnet’s
accuracy using the supplied data types. Other rows cor-
respond to the type of data used to infer the networks,
as specified by the first column.
As seen in Table 1, the null-mutant data produces sig-

nificantly better results than either of the other two data
types. The networks AIRnet infers using null-mutant
data appear to be only marginally better when inferring
small networks, however, as the network size grows, the
null-mutant produced networks’ accuracy grows at a
much faster rate than the accuracy for networks pro-
duced by either the heterozygous data, or the trajectory
(time series) data.
It is interesting to note, using the trajectories data to

infer networks gave the lowest scores of all the data
types, in one case, scoring even lower than the empty

network even though the data was produced by a simu-
lator with accurate time series outputs (Table 1).
Comparing the values in Table 1 with the 300 submis-

sions to the DREAM3 competition ranks AIRnet in the
top 5 performers. This comparison ignores directional-
ity, which would probably lower the AIRnet ranking.
The results are promising and more importantly, are
obtained using microarray assumptions that can be met
by most biological experiments.

Real microarray data
Microarray data was examined from an experiment with
11 euploid and 13 trisomic Ts1Cje mice to show the
utility of AIRnet with real data. The euploid arrays were
examined separately from the trisomic arrays and the
resulting regulatory networks were then compared. One
important feature of the AIRnet approach is the
increased number comparisons that are possible. With
11 euploid arrays, there are 110 different pairs that can
be examined for changes. If the data were treated as a
time series, then only 10 comparisons could be made. If
mean values were used, then there would be only one

Figure 3 True in-silico network

Table 1 AIRnet results for DREAM3 competition

Values for 10-gene networks.

score AUPR p-value
average

AUROC p-value
average

empty
network

1.1816e+00 8.5675e-03 5.0578e-01

trajectories 1.6298e+00 2.1759e-03 2.5279e-01

heterozygous 2.2401e+00 3.6441e-04 9.0845e-02

null-mutant 2.8198e+00 4.1550e-05 5.5198e-02

Values for 50-gene networks.

score AUPR p-value
average

AUROC p-value
average

empty
network

2.4438e+00 2.6065e-05 4.9687e-01

trajectories 2.6700e+00 6.1865e-06 7.3901e-01

heterozygous 2.6207e+00 7.7215e-06 7.4297e-01

null-mutant 1.4152e+01 5.2984e-26 9.3634e-04

Values for 100-gene networks.

score AUPR p-value
average

AUROC p-value
average

empty
network

5.2312e+00 6.8572e-11 5.0297e-01

trajectories 3.8264e+00 4.7395e-08 4.6923e-01

heterozygous 5.2881e+00 6.3523e-11 4.1762e-01

null-mutant 3.7911e+01 1.0263e-71 1.4694e-05

AIRnet results for 3 network sizes from the DREAM3 competition. The empty
network row shows values for graphs with 0 edges and provide a baseline to
interpret the scores for other networks. The empty network scores were
generated by submitting an empty file with no predictions to the DREAM
score evaluator. The other rows correspond to the type of data used to infer
the networks. In the score column, larger values are better. In the other two
columns, smaller values are better. Scores reported are produced using an
80% threshold parameter for AIRnet.
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comparison between the euploid and trisomic groups.
With 13 trisomic arrays, there are 156 pairs of arrays.
The AIRnet analysis found 566 genes with significantly

correlated changes in expression between arrays. Each
edge in this network was then submitted to PathGen
[18] to determine which inferred connections have been
verified through wet-lab experiments. The PathGen
database was created using data from KEGG PATH-
WAY, PubMed abstracts, DIP (Database of Interacting
Proteins), HPRD, Reactome, MIPS, BIND, IntAct and
MINT. There are currently, over two million interac-
tions included in the PathGen database. PathGen
returned the number of intermediate nodes in the path-
way found in the database corresponding to a direct
connection inferred by AIRnet. The results in Table 2
show that nearly 70% of the interactions inferred by
AIRnet exist with some number of intermediate genes
in a public regulatory network database. It is difficult for
most inference algorithms to identify all of the hops
between two genes that are highly correlated. For this
reason, we count an inferred connection as validated if
there is multi-hop connection in a pathway database.
An inference rate of 70% is extremely good when

compared to other inference algorithms. In order to
quantify this quality an experiment was performed with
100 random networks of 566 genes. The same number
of connections were made in these random networks as
exist in the AIRnet results. These edges were then sub-
mitted to PathGen to determine how AIRnet results
would compare to random networks. Less than 30% of
the connections in random networks were found in
pathway databases, showing that AIRnet infers connec-
tions that are significantly more likely to be real than
random networks. The PathGen database is biased
towards more studied regulatory pathways, so actual
accuracy of AIRnet is probably higher than the 70%
reported.

Another benefit of inferring a regulatory network
based on changes in expression values between microar-
rays is the ability to compare the network generated by
diseased and normal arrays. In this experiment we com-
pared the network generated by the 11 euploid microar-
rays with the network generated by the 13 trisomic
arrays. The results are plotted in Figure 4. The edge
between ADAMTS1 and GATA6 is found only in the
Euploid inferred network. This may indicate that having
three copies of the trisomic gene ADAMTS1 may dis-
rupt this connection to GATA6. Further research is
being performed to validate this kind of hypothesis.

Conclusions
AIRnet infers regulatory networks from microarray data
with practical assumptions. The microarray data does
not have to have time-series characteristics and no con-
straints are placed on the structure of the matrices. Net-
works inferred by AIRnet are comparable in accuracy to
the best algorithms participating in the DREAM3 com-
petition even though many of these algorithms were
more restrictive on the kind of data they could use.
Edges predicted by AIRnet also compare favorably with
experimentally validated regulatory networks found pub-
lic databases [18]. Perhaps the most important aspect of
this approach is scale. AIRnet can perform predictions
on microarrays with 44,000 gene probes in less than 24
hours, making it practical for most analysis needs. This
new approach of looking at correlation in changes,
rather than comparisons of mean values can provide the
understanding of gene regulatory networks necessary for

Table 2 AIRnet results on experimental data

Intermediate Genes Connections Percentage

1 148 0.41%

2 3110 8.71%

3 12253 34.34%

4 8065 22.60%

5 1349 3.78%

Validated AIRnet Connections 24926 69.87%

Validated Random Network Connections 17841 27.90%

AIRnet inferred connections found in public databases. The table shows the
number of connections in the AIRnet inferred network that have the given
number of intermediate connections. A Connection count of one indicates
that the genes are directly connected in the graph. A count of two indicates
that the genes have one intermediate gene between them in the pathway
database. The percentage shows the percentage of connections in the
inferred network that have this Connection count. AIRnet connections were
validated almost 70% of the time, where less than 30% of the connections in
random networks were validated.

Figure 4 Differences between Euploid and Trisomic regulatory
networks inferred by AIRnet. Numbers on edges are the absolute
value of the difference between the edge weight in Euploid and
Trisomic samples. Red edges were found only in Euploid and Green
edges were found only in Trisomic samples. Genes with three
copies in the trisomic Ts65DN mice are shown in yellow.
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the impending major breakthroughs in agriculture and
medicine.
In the analogy where race car drivers were signaling to

each other to change velocity, an examination of instan-
taneous positions would not be able to detect this sig-
naling. Only by looking at velocity could the correlation
be detected. AIRnet examined the analogous velocity of
changes in microarray data to detect correlations that
can not be inferred by methods that focus on absolute
values. AIRnet can be downloaded from http://dna.cs.
byu.edu/airnet/

Methods
AIRnet infers a gene regulatory network by analyzing
how genes change between microarray samples instead
of focussing on their absolute values. Non-time series
data from different samples are used to find correlated
patterns in the way genes change. The samples collected
during an experiment may not show a correlations in
their average values, but the changes may be correlated.
This correlation in changes can be an indicator that the
genes are signaling each other, or that they are both
being modulated by an external effect. The correlation
of gene expression changes is used to create influence
vectors, which highlight the genes with the highest
probability of being correlated. Ultimately, AIRnet is
designed to compare two networks of different geno-
types, in order to draw out differences that will assist
researchers with the development of treatments.
The first step in analyzing microarray data is discretizing

the data (Table 3). While discretizing, the data for a single
gene across all the samples is considered a single dataset.
Each dataset is clustered using k-means clustering. After all
the data sets have been discretized, the data for each gene
in every sample is classified as a number between 0 and k
– 1. The new value represents the relative level of activa-
tion for a particular gene, as compared between samples.
The example in Table 3 shows data being discretized into
two values (0 and 1), but users can select a larger number
of discrete values for the discretization step. After discretiz-
ing the data, AIRnet performs a pairwise comparison of the
change in activation state between samples for all genes.
Comparing genes x and y, AIRnet calculates an influence

vector, vxy, representing how correlated x and y appear to
be (equations 1 and 2). An influence value is generated for
each pair of microarrays and the vector contains the set of
these values. Negative values of vxy indicate a inhibiting
relation (negatively correlated) between x and y, while a
positive value of vxy indicates a promoting relation (posi-
tively correlated). Several other similarity metrics were
examined, but this method provided the highest accuracy.
Commonly used metrics such as the Pearson correlation
coefficient do not apply well when looking for correlation
of changes instead of correlation of absolute values.
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The Dialogue for Reverse Engineering Assessments
and Methods (DREAM) organization creates benchmark
data and metrics for evaluating the accuracy of gene
regulatory network inference algorithms [17]. Table 4
shows example data for generating influence vectors.
The columns represent different microarray samples for
the DREAM knockout experiment. In the first section of
Table 4, G1 changes from a 0 to a 1 between sample G1
(—/—) and G2(—/—). The same change is observed for
G6. This would represent one vote for positive correla-
tion for G1 and G6.
The second section of Table 4 illustrates an example

of support for negative correlation. G1 changes from a 1
to a 0 between sample G2(—/—) and G3(—/—). G2
changes from a 0 to a 1 between sample G2(—/—) and
G3(—/—) providing evidence for negative correlation.
In the third section of Table 4, G3 and G4 stay the

same between sample G7(—/—) and G8(—/—). This
would represent one vote for positive correlation for G3
and G4 since neither gene changed, even though their
values are different. Change values for all pairs of
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samples are summed to generate the influence vector
for a pair of genes.
Given a practical microarray experiment with 20 sam-

ples, time series based algorithms would only be able to
perform 19 comparisons between values, even if the
experiments were performed with a perfect time period
between samples. Due to the asynchronous nature of
AIRnet inference, all pairs of samples can be used,
resulting in 190 comparisons. Even with 10 samples, 45

comparisons can be performed in to determine which
gene expression values are correlated in their changes.
Following the calculation of vxy for all values of x and

y, AIRnet reconstructs the regulatory network by includ-
ing edges that have the highest number of pairs of
experiments where the expression changes are corre-
lated. In our example with 10 experiments, there are 45
pairs of samples. If Gene A and Gene B both increased
in 20 of these pairs and both decreased in 20 of the

Table 4 Activation state change examples

equal, non-zero activation state changes - vxy incremented

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-)

G1 0 0 1 0 0 0 0 0 0

G2 1 1 0 1 1 1 1 1 1

G3 0 0 1 0 0 0 0 0 0

G4 1 0 1 0 0 1 1 1 1

G5 1 1 1 1 1 0 1 1 1

G6 0 0 1 0 0 0 0 0 0

equal magnitude, opposing-signed activation state changes - vxy decremented

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-)

G1 0 0 1 0 0 0 0 0 0

G2 1 1 0 1 1 1 1 1 1

G3 0 0 1 0 0 0 0 0 0

G4 1 0 1 0 0 1 1 1 1

G5 1 1 1 1 1 0 1 1 1

G6 0 0 1 0 0 0 0 0 0

activation state changes equal to zero - qxy incremented

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-)

G1 0 0 1 0 0 0 0 0 0

G2 1 1 0 1 1 1 1 1 1

G3 0 0 1 0 0 0 0 0 0
G4 1 0 1 0 0 1 1 1 1
G5 1 1 1 1 1 0 1 1 1

G6 0 0 1 0 0 0 0 0 0

Activation State Change Examples - genes are divided by row, samples are divided by column.

Table 3 Data discretization

Pre-discretized data for an in-silico regulatory network consisting of 5 genes

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-)

G1 0.105 0.034 0.927 0.088 0.015 0.049 0.102 0.105 0.018

G2 0.877 0.804 0.000 0.864 0.870 0.981 0.837 0.873 0.797

G3 0.054 0.000 0.838 0.000 0.103 0.000 0.069 0.000 0.085

G4 0.386 0.310 0.611 0.243 0.083 0.432 0.440 0.394 0.364

G5 0.801 0.808 0.748 0.903 0.793 0.000 0.880 0.741 0.686

Post-discretized data for the same in-silico regulatory network consisting of 5 genes, k = 2.

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-)

G1 0 0 1 0 0 0 0 0 0

G2 1 1 0 1 1 1 1 1 1

G3 0 0 1 0 0 0 0 0 0

G4 1 0 1 0 0 1 1 1 1

G5 1 1 1 1 1 0 1 1 1

Discretization of data by k-means clustering for an in-silico network consisting of 5 genes [17] - genes are divided by row, samples are divided by column.
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pairs and were uncorrelated in 5 of these pairs, then the
degree of correlation would be (20 + 20)/45 = 0.88. The
edges between genes with the highest degree of correla-
tion are included in the reconstructed network.
AIRnet produces a graph, G representation of the reg-

ulatory network, where each node, x, represents a single
gene, and each edge, ({x, y}, v) represents an interaction
between x and y. The sign of v shows the interaction
between x and y as either promoting (positively corre-
lated) or inhibiting (negatively correlated), while |v|
shows the probability of x interacting with y. To form
the graph, AIRnet adds the edges ({x, y},wxy), where wxy

= 1 – |vxy|, for all values of x and y. To prune edges out
of the graph, Kruskal’s Algorithm is used to find the
minimum cost spanning tree of the graph G, with the
addition of stopping the production of the minimum
cost spanning tree when the value of |wxy| for the next
edge to be added falls below a user-defined threshold.
The wxy values are then exchanged with their corre-
sponding vxy values. This algorithm creates a graph
with edges between genes that are most highly corre-
lated in their changes. This graph is similar to the
mutial information graph produced by MINET [19].
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