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Abstract

Objective

Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as
International Classification of Diseases 9™ edition (ICD-9) diagnostic codes are notoriously
unreliable disease predictors. Our objective was to develop, evaluate, and validate an auto-
mated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from
EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence
patterns of medical comorbidities in ASD.
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Methods

We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard
patient set was labeled by clinicians at Boston Children’s Hospital (BCH) (N = 150) and Cin-
cinnati Children’s Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were
created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Man-
ual of Mental Diseases 4" edition, (2) predictive classifier. The positive predictive values
(PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clus-
tered the patients based on grouped ICD-9 codes and evaluated subgroups.

Results

The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b)
CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation
at Children’s Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbid-
ities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, develop-
mental, and seizure disorder clusters.

Conclusions

In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs pro-
vide further hypothetical evidence for distinct courses in ASD. The proposed automated
algorithms for cohort selection open avenues for other large-scale EHR studies and individ-
ualized treatment of ASD.

Introduction

With the prevalence of Autism Spectrum Disorders (ASD) at 1 in 68 children under the age of
8 years,[1] understanding the distinct clinical courses among patients with ASD is of great clin-
ical relevance. In particular, increasing attention has been given to the comorbidity patterns of
patients with ASD. Being able to effectively subcategorize patients with ASD has broad implica-
tions. A characterization of clinical courses can assist in risk stratification for future complica-
tions and inform more promising treatment directions. Dividing patient cohorts into more
homogeneous subpopulations is also the first step toward more powerful genomic and molecu-
lar studies that can lead toward a better understanding of the etiologies involved in ASD.

Unfortunately, most studies to date that have examined the comorbidity patterns in ASD
have been limited to smaller cohorts, as medical experts are needed to either query the patients
directly or review their electronic health records (EHRs). These smaller studies do not have the
statistical power to discover correlations across a large number of potentially relevant comor-
bidities.[2-6]

Studies based on large-scale EHR analysis have the potential to discover more complex rela-
tionships, such as clusters, among patients with ASD. For example, a recent study found dis-
tinct phenotypic clusters across a broad range of comorbidities using only diagnostic codes
from the EHR.[7] The Electronic Medical Records and Genomics (eMERGE) Network[8] is a
national consortium to study phenotype-genotype associations derived through large-scale
high-throughput computing.[9-15] Similar computational approaches to cohort-extraction
algorithms have proven successful by other major initiatives such as the Pharmacogenomics
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Research Network (PGRN)[16] and Informatics for Integrating Biology and the Bedside
(12b2).[17-19] The discipline of Electronic Health Record Driven Genomic Research (EDGR)
is flourishing and has been reviewed in the mainstream genetics literature, a recognition that
this domain of genomic research has come into its own.[20-21]

However, given the large numbers of patients involved, it is resource intensive to manually
validate that each individual in the cohort actually has ASD via evaluation or chart review. The
lack of a validated cohort limits what can be inferred from such large-scale studies. For exam-
ple, the disease trajectories of patients who have simply been evaluated for ASD may be mixed
with patients who have ASD. Similarly, genetic and molecular characterizations may be incor-
rect if the cohort is too impure. To reliably harness the power of large-scale, multi-institutional
EHR data, we must be able to perform high-fidelity cohort-selection in an automated fashion.

The objective of this study is to employ the EHRs of multiple institutions to advance the
study of ASD by 1) developing an automated algorithm for extracting cohorts and 2) examin-
ing the co-occurrence patterns of comorbidities associated with patients with ASD. Our algo-
rithm is an important contribution in itself for future EHR-based studies of ASD; it provides a
method for increasing the power and lowering the cost of cohort identification for genomic (or
other clinical investigation) studies of ASD. Reproducing comorbidity associations in this
cohort lends additional support to the subgroups of ASD found in both smaller studies with
less statistical power and larger studies without validated cohorts.

Patients and Methods
Patients

The initial cohort consisted of all patients with International Classification of Diseases 9" edi-
tion (ICD-9) diagnosis codes of 299.0, 299.80, 299.9 (Autism, Asperger’s, Pervasive Develop-
mental Disorder Not Otherwise Specified (PDD-NOS), respectively) from the Boston
Children’s Hospital (BCH) and Cincinnati Children’s Hospital Medical Center (CCHMC)
EHR databases (14,758 and 4,229 patients, respectively) (Fig 1, ICD-9 Inclusion). Patients with
diagnosis codes relating to Rett Syndrome, Childhood Disintegrative Disorder, Schizophrenia,
Tuberous Sclerosis, and Fragile X Syndrome as well as severe Intellectual Disability (cognitively
delayed or IQ < 40) or psychiatric illnesses (e.g. Bipolar Disorder, Schizophrenia) were
excluded. The Institutional Review Board at each institution involved (Cincinnati Children's
Hospital Medical Center, Boston Children's Hospital, Children's Hospital of Philadelphia,
Vanderbilt University Medical Center) approved protocols using retrospective human subject
data from electronic health records for this study. The waiver of consent was granted by the
respective IRBs due to the nature of the retrospective study.

Gold standard set. The initial cohort, selected as described above, still contains false posi-
tive cases, patients who have an ICD-9 code in their medical record, but do not meet the clini-
cal standard for diagnosis of ASD. For example, the ICD-9 code may have been used for billing
purposes, but the ASD diagnosis was ruled out during clinical evaluation. From this initial
ICD-9 screened cohort (BCH: 14,758, CCHMC: 4,229), 302 patients (150, 152, respectively)
were randomly selected for gold standard chart review (see Fig 1, Random Sampling). The clin-
ical notes of each patient were manually reviewed by clinicians to create a gold standard set of
ASD diagnoses. The clinicians employed in double-annotated chart review are experienced in
the clinical practice of ASD diagnosis (at BCH, one developmental-behavioral pediatrician (JB)
and one psychologist (LWW); at CCHMC, one psychologist (NB), one nurse practitioner (JR)
and one developmental-behavioral pediatrician (PMC)). There are four labels in the gold stan-
dard ASD diagnoses: “yes” indicates an ASD case; “no” label is a non-case; “maybe” is an
uncertain case, some evidence for case; “unknown” is an indeterminate status, with insufficient
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Fig 1. ASD Algorithm Project Overview. ASD—Autism Spectrum Disorder; ICD-9 —International Classification of Diseases 9" edition; DSM IV—Diagnostic
and Statistical Manual of Mental Diseases 4" edition; ML—machine learning

doi:10.1371/journal.pone.0159621.g001

information to make a decision relative to case status. After adjudication, ASD cases made up
44% of the gold standard (60% of CCHMC set, 26% of BCH set), 10% were “no” (16%
CCHMC, 5% BCH), 36% were “maybe” (18% CCHMC, 55% BCH), and 10% were “unknown”
(6% CCHMC, 13% BCH). After an initial training set of 20 patients at BCH and 40 patients at
CCHMC, inter annotator agreement (IAA) was calculated using a pair-wise F-measure. IAA
averaged among the three clinicians at CCHMC was 0.969 for ASD cases, 0.896 for “no”, 0.883
for “maybe”, and 0.75 for unknown. IAA at BCH was similar, 0.927 for “yes”, 0.625 for “no”,
0.86 for “maybe”, and 0.75 for “unknown”.

Inputs to EHR algorithms. Just as clinicians find the clinical notes critical for establishing
the presence of ASD in their chart review, the clinical note was also an important source of our
automated cohort selection algorithm. Specifically, the clinical notes from the initial cohort
patients were transformed into a vector of concept unique identifiers (CUIs; e.g., C2675043 is
the code for “Limited social interactions”) from the Unified Medical Language System (UMLS)
[22] using the Apache cTAKES[23-24] natural language processing system. The default
cTAKES dictionary (UMLS SNOMED-CT and RxNORM pruned by semantic types for Dis-
eases/Disorders, Signs/Symptoms, Anatomical Sites, Medications and Procedures) was
enriched with the terms from the Barbaresi list (S1 Table)[25]. If a term from the Barbaresi list
was not represented in the UMLS, we created a project-specific code, for example there is no
UMLS code for “stereotypical utterances” and we created CHIP1000204 (of note, all ASD
codes not represented in the UMLS are preceded by CHIP (Children’s Hospital Informatics
Program). cTAKES implements a full stack of NLP modules including part-of-speech tagger,
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parsers, relation discovery modules, as well as attribute identification modules (such as nega-
tion, uncertainty, subject). All clinical notes were processed through cTAKES and converted
into concept vectors. For example, the sentence “patient diagnosed with ASD and inflamma-
tory bowel disease” is represented by two CUIs: C1510586 (for ASD) and C0021390 (for
inflammatory bowel disease) which in turn become the vector representation for this sentence.
cTAKES employs a dictionary lookup algorithm with a sliding window to allow for term varia-
tions. The purpose of mapping the notes to CUIs was to ensure the portability of the algorithm
across sites and take into account documentation differences for common symptoms. The
average patient vector length was 344 CUIs (CCHMC, median 302) and 627 CUIs (BCH,
median 484). These vectors formed the input to our two different automated cohort-selection
algorithms.

Rule-based cohort selection. For the rule-based algorithm (Fig 1, Rule-based Cohort
Selection), a glossary of ASD symptoms[25] was mapped to UMLS CUIs by two physicians
using UMLS Terminology Services.[26] The glossary contains a comprehensive list of descrip-
tors corresponding to Diagnostic and Statistical Manual of Mental Diseases 4™ edition
(DSM-1V) diagnostic criteria for ASD. Under the guidance of a clinician we manually mapped
CUIS to terms from the glossary (see S1 Table). Fig 2 represents the complete rule-based algo-
rithm. Steps 1 and 2 represent the initial cohort selection described in the Patients section. Step
3 (a, b, ¢) denote the three criteria counting steps, based on the DSM-IV symptom criteria for

ICD-9 Rule Based Method with Criteria Term Lookup

1

o 2.
All Available —Yes ICD9 Codes ICD9 Codes No—> 3K
EHR Data Inclusion Exclusio

EXCLUDE

Yes Data Dictionary Term Mapping DSM-IV
3a. 3b. 3c.
pd P
Social |Commun-| Behavior, Autistic Social Behavior, | agperger's Social.., | PDD-NOS
Interaction| ication | Interests, | Diagnosis || [Interaction| 'MerestS, | piagnesis ||Gommunicatio) Diagnosis
Activities / \_Mention Activities A\ Mention ehavior..”\ Mention

AtLeast Atleast1 Atleast1 At Least At Least 1

2 Unique W 2 Unique /*\
| 'H_,Q No ' >\ (‘ No
Yes No Yes No
¥ v
6 Unique 3 Unique > 1 element
Elements No Elements L No— (From 1 or more——No-+—> %
(DSM-1V) (no lang. delay, categories)
avg. cognitive function T EXCLUDE
I T
Yes Yes Yes

Autistic

Fig 2. ASD Rule-based Algorithm. ASD—Autism Spectrum Disorder; EHR—Electronic Health Records; ICD-9 —International Classification of
Diseases 9™ edition; DSM IV-Diagnostic and Statistical Manual of Mental Diseases 4™ edition; PDD-NOS—pervasive developmental disorder not
otherwise specified; sections 3a., 3b., 3c. refer to DSM IV ASD classification for Autism, Asperger’s and PDD-NOS, respectively

doi:10.1371/journal.pone.0159621.9002
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Autism, Asperger’s Syndrome, and PDD-NOS. The algorithm counted mentions of symptoms,
represented by CUIs in the patient vector. Specifically, if the patient had at least 6 unique
symptoms (at least two from Social Interaction, at least one from Communication and at least
one from Behavior, Interests, and Activities), then the patient was determined to be a positive
case for ASD. The three parts of step 3 are sequential. If a patient did not meet the criteria for
Autistic Disorder (3a), the symptoms were assessed for the Asperger’s Syndrome criteria (3b).
If the patient did not meet the threshold defined by Asperger’s Syndrome, the symptoms were
compared to the criteria for PDD-NOS. If the patient did not meet the criteria for any of the
diagnoses in 3a-c, that patient was considered a non-case. In this way, the rule-based algorithm
implements the DSM-IV criteria. While the output of the rule-based algorithm includes sub-
classes of ASD, for the purposes of evaluation and comparison with the machine learning algo-
rithm all sub-classes of ASD are considered positive for ASD case. The text-based pseudocode
for the rule-based algorithm is described in S1 File. The rule-based algorithm was validated at
another eMERGE pediatric site, The Children’s Hospital of Philadelphia (CHOP). In addition,
a fourth eMERGE site, Vanderbilt University Medical Center (VUMC), provided data and
analysis for comorbidity clustering, described below.

Machine-learning cohort selection. We used the gold standard data set to derive an auto-
mated algorithm using machine learning to compare the rule-based approach (Fig 1, ML-
based Cohort Selection). For developing the machine learning cohort selection algorithm, each
site’s data were split up into groups to select 60% for training, 20% for development and 20%
for testing/evaluation (see Table 1 for the distribution). We implemented the training-develop-
ment-testing validation instead of k-fold cross-validation for two reasons: 1) the validation
scheme could be easily adopted by different sites in the eMERGE network [27,28] and 2) the
simplified setup enabled combining data from BCH and/or CCHMC in different training-test-
ing experiments. Classifications were made using a two-stage Support Vector Machines (SVM)
[29] system (Fig 3). The first stage differentiated patients that were either “yes” or “maybe”
from patients that had “no” or “unknown” ASDs. The second stage was used to further differ-
entiate the “yes” and “maybe” patients. The output of the first stage and the output of the sec-
ond stage was then evaluated against the gold standard labels (Table 2, parts A and B,
respectively). The SVM models were trained on the training set, tuned on the development set
and evaluated on the test set. SVM is an effective classification method, but it does not directly
do feature pruning (regularization) although the features are ranked. Irrelevant features in the
feature vectors would inevitably cause inaccuracy in similarity measurement (i.e. kernels)
between samples, would decrease the generalizability of the models and increase the overall
computational time. Hence, similar to other work [29-32] we combined SVM with feature
selection to enhance the performance. First, feature selection was performed to reduce the
dimensionality of the patient vectors. Specifically, we calculated the chi square value of each
feature in each vector set to rank the features by significance. The best number of features was
selected based on the model performance on the development set as described in the Results
section.

Table 1. Distribution of patients

Training Development Test Total

BCH 95 27 28 150
CCHMC 87 34 31 152
Combined 182 61 59 302

BCH-Boston Children’s Hospital; CCHMC—Cincinnati Children’s Hospital and Medical Center.

doi:10.1371/journal.pone.0159621.1001
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Stage 2

SVM Prediction

Training
Yes, Maybe,
No, Unknown Y&s,vh:aybe
o,Unkno
g SVM Prediction
Training Yes, Maybe
Yes vs Maybe
Yes Maybe No, Unknown

Fig 3. SVM-based Machine Learning Prediction System. SVM-Support Vector Machines.
doi:10.1371/journal.pone.0159621.g003

Within the eMERGE project, the metric of greatest interest for phenotyping is Precision/
PPV on the “yes” category.[33-35] This is motivated by the expectation that the automatically
discovered cohort will be of high purity to be useful for genotyping studies. Some of the cases
can be lost because of the impact on sensitivity, but patients labeled as cases are expected to be
of high fidelity. Statistical power for analysis purposes is gained by combining the cases from
all sites. Accordingly, parameters were tuned in development to maximize PPV.

Cohort quality validation. The performance of the two algorithms was evaluated in preci-
sion (PPV), recall (or sensitivity) and F-measure (the harmonic mean of precision and recall,
(2*precision*recall) / (precision+recall)).

Comorbidities Clustering

There is evidence that the clinical manifestations of common neurodevelopmental disorders
such as ASD do not always correspond to diagnostic definitions.[36] A data-driven method for
exploring this hypothesis is to consider the comorbidity pattern for patients who are diagnosed
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Table 2. Best Machine Learning Results on Test Set.

A: One Stage-Yes, Maybe vs. No, Unknown
Training Set Precision/PPV Recall/Sensitivity F1-Measure Area under ROC Curve
1st stage: Combined 0.726 0.852 0.784 0.533
1st stage: CCHMC 0.66 0.813 0.728 0.545
1st stage: Combined 0.864 0.836 0.785 0.583

B: Two Stage, Yes vs. No, Maybe, Unknown
Training Set Precision/PPV Recall/Sensitivity F1-Measure Area under ROC Curve
2" stage: Combined 0.780 0.783 0.780 0.762
2" stage: Combined 0.799 0.769 0.780 0.733
2" stage: Combined 0.786 0.769 0.761 0.770

BCH-Boston Children’s Hospital; CCHMC—Cincinnati Children’s Hospital and Medical Center; PPV—positive predictive value; ROC—Receivers Operator

Characteristic.

doi:10.1371/journal.pone.0159621.t002

with ASD. This approach allows us to mine existing EHR data for insights to refine disease cat-
egorization. For example, a previous study showed that patients with ASD were significantly
more likely to be diagnosed with certain comorbidities including Epilepsy, Schizophrenia,
Inflammatory Bowel Disease, and Cranial Abnormalities, when compared to the general popu-
lation [7,37]. Another study used an automated clustering algorithm to demonstrate the exis-
tence of clusters within ASD patients when patients are characterized by their set of
comorbidities. The objective of clustering is to uncover patterns in data that are not apparent
with traditional analysis due to the size and complexity of the dataset. The clusters found in [7]
were characterized by other psychiatric disorders, seizures, and gastrointestinal disorders, in
other words, many of the same comorbidities previously found to be of greater prevalence in
patients with ASD.

We perform a study similar to the one performed in [7] but with several improvements: 1)
Patients are selected using the algorithm presented in this paper, providing a cleaner sample of
ASD patients 2) we extend the analysis to multiple institutions, thus using a significantly larger
dataset, 3) We compare the results of several different clustering and visualization algorithms.
This serves not only as a validation of the original study, but to facilitate the application of clus-
tering to studies which require greater statistical power and larger sample sizes, such as targeted
genetic association studies.

We clustered comorbidities based on the disease codes of the automatically mined ASD
patient cohort (Fig 1, Comorbidities Clustering). We included a dataset from a third institu-
tion, VUMC, to evaluate the generalizability of our results. We first identified patients from
BCH, CCHMC and VUMC using the best performing algorithm (rule-based) on the three
patient sets from among 14,758 BCH patients, 4,229 CCHMC patients and 6,482 VUMC
patients. The rule-based algorithm identified 87.7% of BCH patients (12,949), 70.7% of
CCHMC patients (2,988), and 72.8% of VU patients (4,721) as ASD cases. We pre-processed
the data by converting the patients’ ICD-9 codes into Phenotype Wide Association Study (Phe-
WAS) categories[38] and excluded PheWAS categories present in less than 0.5% of patients.
We then performed clustering on the patients represented by the resulting PheWAS code vec-
tors using the k-means algorithm.[39] In k-means clustering, we varied the number of clusters
between 2 and 20 in order to find the clustering with the highest silhouette coefficient. We
compared these results to two additional clustering algorithms (DBSCAN and Agglomerative
Clustering).[40-41] Both algorithms were either found to have inferior cluster separation or to
yield clusters with little discernable meaning. Clusters were characterized by the relative
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Table 3. Rule Based Results

Evaluation Set
BCH
CCHMC
Combined
CHOP
(independent validation on 50 patients)

prevalence of PheWAS codes in each cluster as well as the percentage of all patients with each
code in the cluster.

Results
Automated Cohort Selection Algorithms

The rule-based results were evaluated by including the gold-standard “yes” and “maybe” labels
as positive for case (Table 3, see Fig 1, Performance Evaluation). The evaluation set for the
rule-based results consisted of the entire 302 patients described above. None of these patients
were used in developing the rule-based algorithm which was an implementation of the
DSM-1V diagnosing criteria. The output of the rule-based algorithm included four possibilities
(see Fig 2), grouped together by predicted case (ASD, Asperger’s, PDD-NOS) or predicted
non-case (exclude). Because there was a high correlation between gold standard “maybe” label
and system-predicted PDD-NOS (case), the evaluation of the rule-based results includes the
“maybe” patients as a true case.

The machine learning based results are presented in Table 2 (see Fig 1, Performance Evalua-
tion). Using the best performing machine learning model tuned on the development sets, the
results of evaluation of Stage 1 and Stage 2 (see Fig 3) are presented in Table 2. In alignment
with the rule based algorithm, in Stage 1 we considered “yes” and “maybe” gold standard labels
as case and “no” and “unknown” to be non-case. Part A of Table 2 is the performance the Stage
1. The second stage further classified “yes” and “maybe” labels from the positive prediction of
Stage 1. Table 2, Part B presents the combined performance of both Stage 1 and Stage 2, where
the gold standard label “yes” was case and the rest was non-case.

To tune the performance of the machine learning algorithm, we used a grid search method
to examine different feature sets and cost parameters. We selected the best features and param-
eters on the development set, based upon the PPV performance. The grid search for the devel-
opment set is depicted in Fig 4. The cost axis is showing in log scale (values used were from
27"%t0 2'°). After examining the prediction performance on the development set, we set an
upper empirical bound on the number of features, given that the results plateaued at 250. Per-
formance in Fig 4 is shown in area under the receiver operator curve (AUC). This measure is
also shown in Tables 2 and 3 for comparison.

The results presented are on the test set using those selected features and cost parameters.
The number of best performing features and feature sets varied between sites. In Stage 1
(Table 2A) the combined feature set achieved the best performing score on the development
set when used as training data for BCH and the Combined data set. In both cases, 40 features
were sufficient to achieve a test PPV of 0.726 and 0.864, respectively. For the CCHMC data set,
the best performance was reached on the development set with 210 features from CCHMC

Precision/PPV Recall/Sensitivity F1-Measure Area under ROC Curve
0.885 0.891 (14) 0.888 0.642
0.840 0.622 (48) 0.715 0.599
0.866 0.758 (62) 0.808 0.579
0.849 0.737 (10) 0.788 0.659

BCH-Boston Children’s Hospital; CCHMC—Cincinnati Children’s Hospital and Medical Center; CHOP—Children’s Hospital of Philadelphia; PPV—positive
predictive value; ROC—Receivers Operator Characteristic.

doi:10.1371/journal. pone.0159621.003
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100

Cost of SVM 10 o %
Number of Features

Fig 4. SVM Grid Search on development set, using features and cost parameters.

doi:10.1371/journal.pone.0159621.g004

data as training. The model suffered from some overtraining on the development set and only
achieved a test set PPV of 0.66 (development PPV was 0.894). In Stage 2 (Table 2B), where the
goal was to separate the “yes” case from the “maybe” instances, all three data sets performed
best when using the combined data set as training. CCHMC and Combined data sets per-
formed best on the development set with 200 features; BCH used the top 70 features. All three
development sets had AUC values at or above 0.95, while the test AUC dropped to the 0.73 to
0.77 range.

Baseline comparison, shown in Table 4, was done against an algorithm which uses only rele-
vant ICD-9 codes to retrieve patients as described in the Methods section (Fig 1, ICD-9 Code
Inclusion/Exclusion). Recall/sensitivity cannot be computed for the baseline because no
patients were evaluated if they did not match the ICD-9 criteria (e.g. no patients without ASD
ICD-9 codes exist in cohort).

The best performing algorithm (the rule-based algorithm) was validated by another
eMERGE site-CHOP. They implemented the algorithm and performed an independent chart
review of 50 patients, with a PPV of 84.9% and Sensitivity of 73.7% (Table 3).

Comorbidities Clustering

Clusters are characterized by the prevalence of PheWAS codes in each cluster. However, in
order to compare cluster results with previous studies and to better visualize the results, we
grouped PheWAS codes according to comorbidity groups for Seizures, Psychiatric, Auditory,
Developmental, GI Disorders, and Cardiac Disorders. The clustering was performed on the
patients from each site: BCH, CCHMC, and VUMC, identified through the best performing
algorithm (the rule-based, see Fig 1, Comorbidities Clustering). By comparing multiple sites,

Table 4. Baseline Results (ICD-9 codes) on Test Set.

Test Set Precision/PPV
BCH 0.273
CCHMC 0.645
Combined 0.460

BCH-Boston Children’s Hospital; CCHMC—Cincinnati Children’s Hospital and Medical Center; PPV—positive
predictive value.

doi:10.1371/journal.pone.0159621.t004
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Fig 5. Comparison of relative prevalence of primary co-morbidity categories for clusters of NLP rule-
based patients for BCH, and CCHMC and VUMC. BCH-Boston Children’s Hospital; CCHMC—Cincinnati
Children’s Hospital and Medical Center; VUMC—Vanderbilt University Medical Center.

doi:10.1371/journal.pone.0159621.g005

we evaluated the possibility that clusters are a result of statistical variation, idiosyncrasies in
coding practices at a particular institution, or other site-based effects.

We found that each institution exhibits a similar clustering pattern (Fig 5). In each set we
identified three or four small clusters (5-20% of the overall set), and one large cluster. Each of
the smaller clusters is dominated by one of several comorbidity categories: 1) psychiatric prob-
lems including anxiety disorder, hyperkinetic syndrome, obsessive compulsive disorder, and
depression; 2) developmental disorders including dyslexia, lack of coordination, and various
disorders of the ear, skin and other bodily systems; 3) epilepsy and recurrent seizure. The larger
cluster, comprising 60-80% of the set, was not characterized by a high prevalence of any
comorbidity or category of comorbidities.

Since the patients were represented in high dimensionality (100-200 PheWAS codes), we
used a dimensionality reduction algorithm to visualize the separation of the clusters.
Dimensionality reduction provides a representation of the dataset in a reduced number of
dimensions while maintaining a measurement of the separation between each data point. This
provides a method to visualize the nature of the clustering pattern uncovered by the clustering
algorithms. We used the t-distributed Stochastic Neighbor Embedding[42] to visualize the
PheWAS code vectors in two dimensions. The results are shown in Fig 6. The visualization was
independent of any of the automated unsupervised clustering algorithms and gives both
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Fig 6. Dimensionality reduction using the t-SNE algorithm on PheWAS codes. Colors label clusters
from the k-means algorithm. The clusters are labeled according to the comorbidity category with the highest
relative prevalence for that cluster—duplicate labels appear when there is more than one cluster dominated
by the same category. (t-distributed Stochastic Neighbor Embedding—t-SNE, Phenotype Wide Association
Study—PheWAS, BCH-Boston Children’s Hospital; CCHMC—Cincinnati’s Children’s Hospital and Medical
Center; VUMC-Vanderbilt University Medical Center, Deve.—Developmental Disorders, Seiz.—Seizure
Disorders, Psych.—Psychological Disorders).

doi:10.1371/journal.pone.0159621.g006

validation and additional visualization insight in to the nature of the clusters uncovered by the
clustering analysis (Fig 5). Patients with significant codes in the categories for psychiatric disor-
ders, developmental disorders, and seizures are grouped together and distinct from the bulk of
the patients, whereas most patients fall into a large cluster that cannot be further subcatego-
rized using comorbidities.

Discussion

Running analytical algorithms on large cohorts enabled detection of useful clinically distinct
comorbidity subgroups of ASD. The cohort assembled from the three sites is the largest ASD
cohort so far (20K+ patients). A limitation of the study is that the cohort does not represent a
gold standard, since it was not feasible to perform chart review on all 20K+ patients. The results
for the EHR-based ASD algorithm for the diagnosis component vary between institutions. The
focus of the methods evaluation was PPV because an eMERGE goal is for genomic discovery of
variants associated with phenotypes. A strong PPV, then, is preferred. The rule-based algo-
rithm performed better on the BCH data (BCH, 0.885 PPV; CCHMC, 0.840 PPV), while the
machine learning algorithm performed similarly at both sites (BCH, 0.780 PPV; CCHMC,
0.799 PPV). The disparate amount of data available as well as different ASD diagnostic models
and documentation practices might explain the difference. The rule-based algorithm is sensi-
tive to a signal of any amount (mentions of symptoms relevant to DSM-IV criteria). The BCH
data has a longer term of data (since 2004), while the CCHMC data set represents patient
encounters from January 2010—June 2013. Symptoms for case prediction are more likely to be
present in the larger volume of BCH patient data. The baseline results for BCH are worse than
for CCHMC (PPV = 0.273 and 0.625, respectively). A high number of gold standard ‘maybe’
patients were predicted at both sites to be PDD-NOS case by the rule-based algorithm case
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definition which is built on the DSM-IV criteria. Including these ‘maybes’ as positive cases in
evaluation maintains the fidelity of the DSM-IV criteria as automatically applied to the EHR
records of patients. The baseline results illustrate the importance of not relying only on ICD-9
codes for accurate phenotyping. Further, the similarity of the PPV between the rule-based and
machine learning algorithms highlights the advantage that machine learning can provide over
a potentially resource intensive knowledge-based algorithm. One limitation of the current data
set is that the AUC values on the test set for either CCHMC or BCH did not exceed 0.55 in
Stage 1 experiments, possibly indicating that the development set for one site is not large
enough to provide a representative sample to examine a model. The similarity of the result
from the machine-learning based algorithm, given that the best performing results came from
a combined training set, indicates a potential for multi-site aggregation of data to improve pre-
dictive power.

Although Apache cTAKES is a state-of-the-art system, it is not a perfect system (as none of
the NLP systems are perfect at this point of time). Error analyses points to inaccuracies due to
(1) language variations, (2) world knowledge, (3) meta knowledge. The first category is repre-
sented by the many ways ASD behavior can be described. Although we use the Barbaresi list
(S1 Table) which has been the gold standard for the ASD domain, we are likely not capturing
the linguistic richness of expressing the many facets of ASD behavior. The second source of
errors stems from world knowledge, for example the mention that the patient goes to a certain
school is unequivocal evidence to the physician that the patient is highly likely to be autistic.
This kind of world knowledge is not encoded in cTAKES and in general is a challenge for NLP
systems. The last source of errors is in the importance of meta knowledge such as the depart-
ment originating the ASD diagnosis. The department for an ASD diagnosis is not uniform
among different institutions; some institutions have primary departments for such disorders,
leading to a more confident assurance of diagnosis. We avoided encoding very specific heuris-
tics such as physician names or departments which would greatly reduce the generalizability
and portability of the algorithm.

Using conditional analyses, clustering, and dimensionality reduction, we explored and
characterized the comorbidity structure of ASD patients at three institutions. The usefulness
of this task is demonstrated in classifying subgroups of ASD patients based on their com-
mon comorbidities. We investigated the effect of the rule-based algorithm on comorbidity
clustering. Our results provided replication and refinements of previous work done on
comorbidity clustering, showing that there are clear subgroups in ASD patients represented
by their clinical comorbidities. Most notably, we found that there were three conditionally
independent clusters: one characterized by seizures; one characterized by psychiatric disor-
ders; and one characterized by developmental delays. Other major comorbidities which
were elevated in the ASD population were not found to be independent and did not result in
separate clusters. The results replicate and refine ASD comorbidity studies reported previ-
ously on smaller cohorts, and extend these studies to multiple institutions. The two methods
presented in this paper provide automated techniques to extract and refine ASD cohorts and
provide complementary approaches to harness the EHR in order to increase the power of
genomic studies of ASD. Future research is needed to identify successful treatment sets for
each ASD subgroup, or comorbidity cluster. Applying the algorithm to cohorts which do
not have ICD-9 code diagnoses of ASD could yield further insights into diagnosis and treat-
ment. Further work would be useful in applying the clustering techniques in this paper to
other complex disorders for assessment of morbidity, subtyping or treatment similar to pre-
vious work.[43-45]
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Conclusion

Cohort selection is a significant issue for large scale EHR analyses and reuse of such data may
provide insights into causes, risks, and treatments for diseases such as ASD. This study pro-
vides a validated EHR-based natural language processing ASD prediction algorithm applied to
a large multi-institutional cohort. We demonstrated feasibility of mining the EHR across multi-
ple institutions with the same algorithm to generate a large cohort of ASD patients. Using that
large cohort to study ASD comorbidities our research confirmed previous studies with smaller
sample sizes that found several distinct co-morbidity clusters in ASD. Our algorithm allows for
the automated creation of a high-fidelity cohort which opens avenues for other large scale EHR
studies and may further the ability to research specific treatment courses based on comorbidity
cluster as well as genetic and molecular characterizations. Comparing results from BCH and
CCHMC indicates the benefit of a comprehensive longitudinal EHR and not relying on ICD-9
codes for phenotyping. Further research is recommended to identify successful treatment
courses for each ASD subgroup or comorbidity cluster.

Supporting Information

S1 File. Rule-Based Algorithm Pseudocode.
(DOC)

S1 Table. CUI Symptom Mapping.
(DOC)
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