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We report here the 6.0-Mb draft genome assembly of Pseudoalteromonas luteoviolacea strain HI1 using Roche 454 and PacBio
single-molecule real-time hybrid-sequencing analysis. This strain is of biological importance since it has the capacity to induce
the settlement and metamorphosis of the serpulid polychaete Hydroides elegans and the coral Pocillopora damicornis.
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Pseudoalteromonas luteoviolacea strain HI1 was isolated from
biofilm in a seawater table at the Kewalo Marine Laboratory

(Honolulu, HI, USA) (1) and identified from 16S rDNA sequenc-
ing. Currently, there are 2 draft genomes published for P. luteovi-
olacea in NCBI: P. luteoviolacea 2ta16 and P. luteoviolacea ATCC
29581 (2). However, P. luteoviolacea ATCC 29581 appears to have
been misclassified based on a 16S rRNA phylogenetic analysis and
is recommended to be reclassified as a distinct species more closely
related to Pseudoalteromonas ulvae (2).

Pseudoalteromonas spp. have been found to produce a variety
of compounds that possess a range of effects that include antibac-
terial (3–5), antifouling (6), and algicidal (7) activities. P. luteovi-
olacea HI1, particularly, has been studied for its effects on the
settlement and metamorphosis of the biofouling serpulid polychaete
Hydroides elegans (1, 8, 9) and the coral Pocillopora damicornis
(10). Studies have identified the region of this bacterial genome
associated with settlement of H. elegans (8). Most recently, a func-
tional component within this set of genes that is associated with
the settlement and metamorphosis of H. elegans has been reported
to be a large complex of phage tail-like elements (9).

Genomic DNA was submitted to New Mexico State University
for Roche 454 sequencing, which resulted in 198,444 reads with an
average mean read length of 418.56 bp, totaling 83,056,281 nucle-
otides. Assembly of the Roche 454 reads with Sequencher gener-
ated 172 contigs. The Roche 454 contigs were then supplemented
by aligning the contigs with the PacBio single-molecule real-time
(SMRT) long reads. For PacBio SMRT sequencing, genomic DNA
was submitted to the National Center for Genome Resources. A
single library on 1 SMRT cell was prepared, resulting in 82,296 raw
reads with a mean read length of 5,344 bp, totaling 439,749,929
nucleotides. Generated reads were then introduced into the Hier-
archical Genome Assembly Process (HGAP), assembled with the
Celera Assembler, and polished with Quiver. To create the hybrid
assembly, the Roche 454 and HGAP assemblies were combined
using Minimus (11) and rescaffolded using PacBio’s hybrid as-
sembler program, resulting in 10 scaffolds containing 4 gaps
within 2 scaffolds. The 6.0-Mb genome had a total GC content of

42% with 172 RNAs (44 rRNAs and 128 tRNAs). Annotation was
performed with the Prokaryotic Genome Annotation Pipeline
(PGAP), Rapid Annotations using Subsystem Technology
(RAST) server (12, 13), and manually curated with GenePrimp
(14). RAST predicted 5,326 coding sequences, 14 of which were
identified as phage/prophage components. One of these phage
components has been identified as the phage tail-fiber protein,
which has been reported to be involved in host-cell receptor bind-
ing (15). RAST also identified type I, II, IV, VI, and VIII secretion-
system components. Secondary metabolites were identified using
antiSMASH (16), and 3 CRISPR regions were recognized using
the CRISPERfinder program (http://crispr.u-psud.fr/Server). The
draft genome of P. luteoviolacea HI1 will assist in uncovering sec-
ondary metabolites, enzymes, and other compounds that may be
of biological and biotechnological importance and which may be
useful in elucidating the mechanisms involved in the settlement
and metamorphosis of H. elegans and other marine invertebrates.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number JWIC00000000. The version described
in this paper is version JWIC01000000.
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