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Purpose: This study investigated temporal dynamics in degree centrality (DC) of the brain 
functional connectome in first-episode schizophrenia with different short-term treatment 
responses.
Methods: A total of 127 first-episode patients (FEPs) with schizophrenia and 133 healthy 
controls (HCs) were recruited in this study. All subjects underwent resting-state functional 
magnetic resonance imaging. FEPs were scanned at baseline (pretreatment) and at follow-up 
(posttreatment), while HCs were scanned only at baseline. The patients were exposed to 
naturalistic antipsychotic treatment for 12 weeks, and classified as schizophrenia responders 
(SRs) or nonresponders (NRs). Voxel-wise dynamic DC analyses were conducted among the 
SRs (n=75), NRs (n=52), and HCs (n=133) to assess temporal variability in functional 
connectivity across the entire neuronal network.
Results: The SRs and NRs showed dissimilar dynamic DC at baseline, with differences 
mainly involving the temporal lobe. Different DC alteration was observed in the left fusiform 
gyrus, right fusiform gyrus, left middle cingulate cortex, and left superior parietal gyrus in 
the SRs and NRs pre- and posttreatment. SRs group and NRs presented opposite changing 
patterns of dynamic DC in particular regions of the brain.
Conclusion: These findings indicate that dynamic DC abnormalities exist in unmedicated 
patients with schizophrenia. The NRs differed from the SRs in dynamic DC not only at 
baseline but in the characteristics of changes before and after treatment as well. Our study 
may contribute to understanding pathophysiology in schizophrenia with different treatment 
responses.
Keywords: schizophrenia, degree centrality, dynamics, resting-state functional magnetic 
resonance imaging, treatment response

Introduction
Schizophrenia refers to a neurodevelopmental psychiatric disorder characterized by 
psychotic symptoms, cognitive deficits, and behavioral disorders and has a lifetime 
prevalence of near 1%.1 The global burden of schizophrenia remains large and 
continues to increase, and patients suffering from this disease will not be able to 
achieve their goals in most areas of life.2,3 Most patients with schizophrenia 
respond to typical or atypical antipsychotics. However, about 35% have active 
and persistent psychotic symptoms with lack of response or no response to different 
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medications, even after a sufficient course of treatment. 
Patients of this type are more likely to experience severe 
psychotic symptoms with poorer outcomes.4,5

Early treatment response is thought to be one of the 
strongest predictors of subsequent functional outcome in 
psychosis.6 Nowadays, functional magnetic resonance 
imaging (fMRI) has shown promise in helping us under-
stand the neuronal aspects of therapeutic response in psy-
chiatric patients. Researchers have found that higher 
connectivity between the hippocampus and some brain 
regions, including the dorsal anterior cingulate, caudate, 
and auditory cortex, and lower connectivity between the 
hippocampal region and the lingual gyrus can predict 
treatment response after 6 weeks of antipsychotic 
medication.7 Sarpal et al reported that individual differ-
ences in striatal functional connectivity predicted response 
to antipsychotic treatment in acutely psychotic patients.8 

Another study demonstrated that functional connectivity of 
the ventral tegmental area/midbrain was correlated with 
treatment response.9 Most recently, researchers have 
turned to exploring the relationship between clinical out-
comes and brain function at the network level, and links 
between clinical response and the functional organization 
of brain networks have been gradually established.10–13 

Quantifying the relationship between changes in brain 
function and different treatment responses and understand-
ing whether these changes can be used as predictive bio-
markers for therapeutic response could help us understand 
the mechanisms of schizophrenia and develop therapeutic 
strategies.

According to the “disconnection hypothesis,” the 
symptoms of schizophrenia are not due to the pathology 
of a single brain area, but to the abnormal interaction of 
multiple brain regions.14,15 In recent years, graph theory 
has been applied to analyses of neuroimaging data to 
advance our understanding of the pathogenesis of schizo-
phrenia from brain-organization principles on a global net-
work level.16 Degree centrality (DC) is a commonly used 
analytic measurement to reveal the core-hub architecture 
of brain networks. It is an index of the total weight of 
connections for a given node, describing the node’s role 
and status in the network.17 When the brain is regarded as 
a whole network, each gray-matter voxel is a node of the 
network. A DC value for each voxel can be calculated, and 
using these calculations we can form a whole-brain DC 
map. High voxel-wise DC in a region reflects its role as 
a central hub in the integration of the global network, 
while decreased voxel-wise DC might suggest a reduced 

degree of its global connectivity. Voxel-wise DC has been 
widely used to investigate alterations of nodal importance 
in the brain functional connectome in schizophrenia.18–21 

However, there have been few studies to focus on the 
association of DC abnormalities and antipsychotic- 
treatment effects among patients with schizophrenia.

We have learned that the brain network is a highly 
dynamic nervous system with rapidly changing neural 
activity and always seeking to maintain a dynamic 
balance.22–24 Correlations among blood oxygenation 
level–dependent (BOLD) signals in different regions 
vary over time, so static metrics may ignore the underlying 
temporal aspect of brain activity. Studying the dynamic 
features of intrinsic brain activity in patients with schizo-
phrenia over time may help us discover the basic proper-
ties of the brain network, thus revealing the neural 
mechanisms of the disease more deeply and providing 
new biomarkers. To capture temporal information, this 
study used an approach combining the sliding-window 
technique with voxel-wise DC to measure time-varying 
features of the DC map.

Methods
Participants
A total of 127 drug-naïve, FEPs with schizophrenia aged 
18–40 years were enrolled in this study and underwent 
resting-state fMRI. All the patients were recruited from the 
outpatient and inpatient departments of Shanghai Mental 
Health Center. They were diagnosed with schizophrenia or 
schizophreniform disorder using the Diagnostic and 
Statistical Manual of Mental Disorders, fourth edition 
criteria and met the inclusion criteria of27 18–40 years of 
age, at the first acute episode with duration of illness <3 
years, free of antipsychotics, and total score on the 
Positive and Negative Syndrome Scale (PANSS) ≥60.28 

Patients with schizophreniform disorder at study enroll-
ment were subsequently given a corrected diagnosis of 
schizophrenia after 6 months of illness duration. 
Exclusion criteria were history of head trauma or injury, 
history of substance or alcohol abuse or dependence, 
pregnant or breastfeeding, in unstable conditions, such as 
aggressive or stupor, any other psychiatric diagnosis, his-
tory of electroconvulsive therapy, and with contraindica-
tions to MRI.

In sum, 133 age-, sex-, and ethnicity-matched 
HCswere recruited from the local community through 
advertisement. They were administered the Mini 
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International Neuropsychiatric Interview Plus version 
5.0.29 In addition to the exclusion criteria, participants 
with any psychiatric or neurological disease or a family 
history of psychosis were excluded. No gross abnorm-
alities were observed in T1- orT2-weighted MRI results 
in any participants. The study was approved by the 
Institutional Review Board of Shanghai Mental Health 
Center and performed in accordance with the ethical 
standards laid down in the 1964 Declaration of 
Helsinki and its later amendments. Written informed 
consent was obtained from each participant.

Clinical Setting
After scanning at the outset, FEPs received various antipsy-
chotic medications in a naturalistic treatment. The type and 
dose of medication administered was up to their clinicians. 
Psychotic symptoms were assessed using the PANSS by 
trained clinical psychiatrists, achieving intraclass correlation 
coefficients of 0.8. Participants were followed up for 12 
weeks (81.29±12.11 days) and subgrouped as schizophrenia 
responders (SRs) or nonresponders (NRs) based on whether 
they reached the criteria of a 50% reduction of the baseline 
score evaluated with the PANSS, ie, SRs consisted of FEPs 
with PANSS reduction ≥50%, and NRs a reduction 
<50%.30,31 Reduction in total PANSS score was 
calculated:32,33

ΔPANSS ¼
PANSSt1 � PANSSt2

PANSSt1 � 30
� 100% 

All the patients completed the follow-up visit and were 
scanned both at baseline and after treatment, while 
HCs were scanned only at baseline.

Imaging-Data Acquisition and Processing
MRI scans were performed as soon as possible after the 
patient’s first visit to the clinic to ensure that they were 
free of medication at baseline. All MRI data were obtained 
using a Siemens Verio 3.0 T MRI scanner at Shanghai 
Mental Health Center. Before scanning, all participants 
were instructed to keep their eyes closed, stay awake, 
and let their thoughts come and go.34 Structure images 
were acquired with a fast spin echo (SE) sequence with 
the following parameters: repetition time (TR) =2300 ms, 
echo time (TE) =2.98 ms, matrix 240×256, flip angle 9°, 
field of view =256 mm, voxel size =1×1×1 mm3, slice 
thickness =1 mm, gap =0 mm, and 196 slices. The BOLD 
fMRI images were obtained using a gradient-echo echo- 
planar imaging (EPI) sequence with parameters of TR 

2000 ms, TE 35 ms, matrix 64×64, flip angle 90°, field 
of view 256 mm, voxel size 1×1×1 mm3, slice thickness 
4 mm, gap 0 mm, and 33 slices. Image preprocessing 
procedures were similar to our previous studies, briefly:35 

removing the first ten volumes, time-slicing and head- 
motion correction, normalization to the EPI template in 
Montreal Neurologic Institute space, regressing out 24 
head-motion parameters, cerebrospinal fluid, and white- 
matter signals, as well as the linear trend, and band-pass 
filtering (0.01–0.10 Hz). Data preprocessing was carried 
out using SPM12 (www.fil.ion.ucl.ac.uk/spm) and DPABI 
(http://rfmri.org/dpabi).

Degree Centrality
The calculation of DC was performed using the DPABI.). 
DC is a robust and widely used data-driven method to 
characterize intrinsic brain connectivity at a global level. 
Based on the concept of graphic theory, DC measures 
global-level functional integration at brain resting–state 
activity by quantification of functional connectivity 
strength of any voxel with all other voxels within the 
whole brain. Therefore, high DC values in a region may 
reflect increased centrality (hub role) in global information 
interactions and vice versa. For each subject, an adjacent 
matrix was generated by computing Pearson correlation 
coefficients between the time series of each voxel with 
every other voxel within a gray-matter mask. To eliminate 
weak correlations possibly introduced by data noise, cor-
relations <0.25 were set to zero.17,36,37 The DC of each 
voxel was calculated as the sum of the connections 
between a given voxel and all other voxels, and thus 
yielded a voxel-wise DC map. DC was the only graph 
measure assessed in this study.

Temporal Variability in Dynamic Degree 
Centrality
To characterize the temporal variability of voxel-wise 
dynamic DC (dDC) was calculated according to the slid-
ing-window strategy. For each subject, the fMRI time 
series was segmented into sliding windows with a length 
of 60 seconds and a sliding step of 30 seconds. The DC 
map was computed for each window. The standard devia-
tion of DC maps across all sliding windows was calculated 
to assess dDC variability. To reduce individual variations 
and improve normality of data distribution, the dDC map 
was normalized by dividing the mean value across all 
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voxels. Finally, the dDC maps were spatially smoothed 
with 6 mm Gaussian kernel.

Statistical Analysis
For comparisons of demographic characteristics between 
the schizophrenia group and HCs, t-tests were used for 
continuous variables and χ2 tests for categorical variables. 
P<0.05 was considered statistically significant. To com-
pare changes in dDC, two-sample t-tests were performed 
for comparison of the schizophrenia group (all patients) 
and HCs. Differences among SRs, NRs, and HCs at base-
line were compared using one-way ANOVA and post hoc 
tests. To compare changes in dDC variability between 
SRs and NRs, mixed-model repeated-measure ANOVA 
(RMANOVA) and post hoc paired t-tests were performed. 
RMANOVA was used to investigate the interaction effect 
between groups (SRs vs NRs) and time (baseline vs fol-
low-up) and post hoc paired t-tests to examine longitudinal 
changes between baseline and follow-up in each patient 
group. Sex, age, education, scan results, and head motion 
were used as covariate controls to eliminate interference 
when conducting the statistical analysis. Multiple- 
comparison correction for voxel-wise dDC analysis was 
performed using Gaussian random-field theory (voxel 
P<0.005, cluster-corrected P<0.05).

Relationship Between Dynamic DC and 
Symptom Remission
Changes in dDC variablity were computed as the difference 
(∆dDC = dDCbaseline –dDCfollow-up) between baseline and 
follow-up for each subject. Pearson correlation analysis was 
used to evaluate the relationship between dDC changes and 
symptom remission (reductive ratios in total PANSS scores) 
voxel-wise in the combined sample of all schizophrenia 
patients. In addition, we assessed correlations between base-
line dDC variability and baseline symptoms (positive, nega-
tive, general and total PANSS scores) voxel-wise. Sex, age, 
education, scan results, and head motion were used as cov-
ariate controls. Multiple-comparison correction was per-
formed based on Gaussian random-field theory (voxel 
P<0.005, cluster-corrected P<0.05).

Results
Demographics
Participants’ demographic and clinical features are shown 
in Table 1. Groups were matched for age and sex, but NRs 
showed less education than SRs. No significant differences 

were found for age, sex, average antipsychotic dose, dura-
tion of untreated psychosis (DUP), or total PANSS 
scores between the two patient groups, but general 
PANSS scores were significantly different between SRs 
and NRs (P=0.020, Table 1).

Antipsychotic Treatment
All patients received atypical antipsychotics, with 94 
(74%) receiving monotherapy of olanzapine (n=32), ris-
peridone (n=18), aripiprazole (n=17), amisulpride (n=16), 
paliperidone (n=8), quetiapine (n=2), or ziprasidone (n=1) 
and 33 (26%) combined medication (antipsychotic combi-
nation) aripiprazole and olanzapine (n=9), aripiprazole and 
risperidone (n=5), amisulpride and olanzapine (n=4), ris-
peridone and olanzapine (n=4), risperidone and quetiapine 
(n=3), aripiprazole and paliperidone (n=2), quetiapine and 
paliperidone (n=2), aripiprazole and quetiapine (n=1), 
ziprasidone and olanzapine (n=1), ziprasidone and aripi-
prazole (n=1), or amisulpride and paliperidone (n=1). 
Usually, the dosage increased during the first 2 weeks of 
treatment and then remained constant until the follow-up 
scan. When patients had not improved after 4–6 weeks of 
treatment, combination therapy or changing to another 
antipsychotic medication would be considered.

Group Differences in Dynamic DC at 
Baseline
All Patients vs Healthy Controls
When all FEPs were compared with HCs, significant 
reductions in dDC were observed in the left superior 
parietal gyrus (SPC.L) and the left calcarine fissure, and 
increases in dDC were found in the left putamen (Table 2 
and Figure 1).

Responders vs Nonresponders vs Controls
One-way ANOVA showed differences among the three 
groups in brain regions, including the left inferior temporal 
gyrus (ITG.L) and left middle temporal gyrus (MTG.L) at 
baseline (Table 3 and Figure 2). Subsequent ROI-wise post 
hoc comparisons indicated that both NRs and HCs 
had increased dDC in the ITG.L and MTG.L compared 
to SRs and that there was no significant difference in dDC 
values between NRs and HCs in these two regions 
(Figure 2).

Longitudinal Data Analysis
RMANOVA showed that the interaction of group and time 
mainly affected the left and right fusiform gyri, left 
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Table 1 Demographic and clinical data of participants

Schizophrenia Healthy controls P

Subjects, n 127 133

Age (years) 24.61(7.0) 23.7(5.9) 0.254a

Sex (male/female) 63/64 66/67 0.998b

Education (years) 12.9(2.9) 13.5(2.8) 0.110a

Handness (left/right) 0/127 0/133 1b

TIV (mm3) 1,480.5(148.8) 1,476.9(133.0) 0.838a

DUP (months) 12.7(14.2) — —

Cpz (mg/day) 402.8(188.9) — —

Baseline PANSS
Positive score 24.0(5.1) — —
Negative score 19.1(6.7) – —

General score 42.4(6.9) — —

Total score 85.8(12.9) — —

12-week PANSS
Positive score 12.6(4.1) — —
Negative score 14.4(4.8) — —

General score 28.8(5.7) — —

Total score 55.8(12.5) — —
Reduction (%) 53.0(21.1) — —

Responders Nonresponders P

Subjects, n 75 52

Age (years) 25.3(6.6) 23.6(7.4) 0.176a

Sex (male/female) 35/40 28/24 0.426b

Education (years) 13.4(2.9) 12.3(2.7) 0.033a

Handness (left/right) 0/75 0/52- 1b

TIV (mm3) 1,478.1(147.6) 1,483.9(152.0) 0.832a

DUP (months) 12.5(14.2) 14.5(14.0) 0.230a

Cpz (mg/day) 406.2(197.9) 397.9(176.9) 0.810a

Baseline PANSS
Positive score 24.6(5.0) 23.2(5.3) 0.125a

Negative score 18.4(6.6) 20.2(6.7) 0.146a

General score 43.6(7.2) 40.8(6.0) 0.020a

Total score 86.9(14.1) 84.1(10.9) 0.221a

12-week PANSS
Positive score 11.0(3.0) 14.9(4.3) <0.001a

Negative score 12.0(3.6) 17.8(4.3) <0.001a

General score 26.0(4.6) 32.8(4.9) <0.001a

Total score 49.0(9.2) 65.7(9.6) <0.001a

Reduction (%) 66.7(12.8) 33.3(13.7) <0.001a

Notes: aTwo-sample t-tests b͐χ2 tests. 
Abbreviations: TIV, total intracranial volume; Cpz, chlorpromazine equivalents; PANSS, Positive and Negative Syndrome Scale.

Neuropsychiatric Disease and Treatment 2021:17                                                                              https://doi.org/10.2147/NDT.S305117                                                                                                                                                                                                                       

DovePress                                                                                                                       
1509

Dovepress                                                                                                                                                            Wang et al

https://www.dovepress.com
https://www.dovepress.com


midcingulate cortex, and left superior parietal gyrus (Table 
4 and Figure 3). Subsequent post hoc paired t-tests were 
conducted to further show dDC changes in these brain 
regions between SRs and NRs before and after treatment. 
Decreased dDC values for the left and right fusiform gyri 
were found in SRs after antipsychotic treatment, but there 
was no significant difference in dDC in these two brain 
regions pre- and post-treatment in NRs. After treatment, 
the dDC of the left midcingulate cortex and left superior 
parietal gyrus rose in SRs, while NRs showed decreased 
dDC in these brain regions compared to pretreatment 
(Figure 3).

Correlation with Clinical Characteristics 
at Baseline
Correlation analyses were performed to investigate the 
relationship of dDC with psychopathology in all FEPs. 
dDC of the right cerebellum posterior lobe was signifi-
cantly correlated with total PANSS scores (r=0.38, 
P<0.0001). dDC of the right medial frontal cortex was 
negatively correlated with totalPANSS scores (r=–0.34, 
P<0.001) and general psychopathology (r=–0.35, 

P<0.0001). dDC of the right postcentral gyrus was nega-
tively correlated with positive symptoms (r=–0.32, 
P<0.001; Figure 4, Table 5).

Correlation with Treatment Response
Altered dDC of the right middle cingulate cortex (r=0.35, 
P<0.0001) and left superior parietal cortex (r=0.37, 
P<0.0001) were significantly correlated with reduction in 
total PANSS scores (Figure 5, Table 6).

Discussion
This study examined temporal dynamics in DC in a whole- 
brain functional connectome pattern at voxel level in 
FEPs classified as SRs and NRs. We found that FEPs 
with different treatment responses showed dissimilar 
dDC at baseline. After antipsychotic treatment, different 
alterations in dDC were observed in the parietal lobe, 
occipitotemporal gyrus, and cingulate cortex in the SRs 
and NRs group. The changing pattern of dDC in NRs was 
quite different from that in SRsp. In fact, SRs and NRs 
presented opposite changing patterns of dDC in particular 
regions of the brain.

Previous resting-state fMRI studies have shown that 
compared with HCs, patients with schizophrenia exhibit sig-
nificantly increased static DC in the medial prefrontal cortex 
and significantly decreased DC in the parietal–occipital and 
temporal–occipital junction.38,39 Static DC abnormalities 
within the default-mode network in schizophrenia patients 
have also have been reported.21 dDC demonstrates distinct 
patterns of transient brain activity compared to sustained 
brain activity with static brain activity. Therefore, the 

Figure 1 Differences in dynamic DC between FEPs (all patients) and HCs on two-sample t-test analysis at baseline.

Table 2 Two-sample t-test comparison on whole-brain dynamic 
DC maps between FEPs and HCs at baseline

Region x y Z t Cluster

Left calcarine fissure –6 –90 6 –3.89 192

Left putamen –21 3 9 3.11 113

Left superior parietal gyrus –15 –75 54 –3.69 246
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dynamic approach could uncover brain activity or connectiv-
ity that differs from the static approach. In the present study, 
the two-sample t-test analysis showed that differences in 
dDC between FEPs and HCs were in the left superior parietal 
gyrus, left calcarine fissure, and the left putamen. By far, the 
dopamine hypothesis of schizophrenia remains the most 
influential neurobiological theory. In vivo molecular imaging 
studies have show increased dopamine-release and -synthesis 
capacity in selected regions (such as the striatum) in schizo-
phrenia patients.40,41 High DC in the striatum may be asso-
ciated with hypersensitization and increased stimulus-related 

activity of dopaminergic receptors. ANOVA in the cross- 
sectional study revealed differences among the three groups 
in the temporal lobe (left inferior temporal gyrus and left 
middle temporal gyrus). Contrary to our initial expectations, 
we did not find statistical differences between NRs and HCs 
in these two regions. Using graph analysis, McNabb et al 
reported no difference in functional network connectivity 
between TRS-C (treatment-resistant schizophrenia treated 
with clozapine) SRs and HCs, and TRS-C NRs had weaker 
functional network connectivity than HCs within the cere-
brofrontal, cingulofronttemporal, and fronto-parietal 
networks.42 In this study, we observed only initial treatment 
response, and further follow-up would be needed to see if the 
patients met the criteria of treatment resistance. The results 
may be related to sample selection or time of treatment.

On longitudinal analysis, we found decreased dDC of 
the bilateral fusiform gyrus in SRs, but no significant 
change in NRs. dDC changes of the left middle cingulate 

Table 3 One-way ANOVA comparison on whole-brain dynamic 
DC maps among SRs, NRs and HCs at baseline

Region x y Z F Cluster

Left inferior temporal gyrus –42 0 –42 10.57 109

Left middle temporal gyrus –57 –42 6 9.62 45

Figure 2 Differences in dynamic DC among the three groups on one-way ANOVA analysis at baseline (upper) and post hoc comparisons of dynamic DC in ITG.L and MTG. 
L among the three groups (lower). *P<0.05.
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cortex and left superior parietal gyrus in SRs were oppo-
site to those of NRs. dDC of these two brain regions 
increased after treatment in SRs and decreased in NRs, 
showing a different pattern of change in the left middle 
cingulate cortex and left superior parietal gyrus. 
Correlation analysis showed that the altered dDC of the 
right middle cingulate cortex and left superior parietal 
cortex was significantly related to treatment response.

The fusiform gyrus, part of the temporal and occipi-
tal lobes and connecting the striatum to the inferior 
temporal lobe, plays a key role in visuocognitive func-
tions, such as face perception, object recognition, and 
reading.43 Zhang et al found that the fusiform gyrus 
could be further subdivided into three distinct parts 
with different functions: the medial portion serves as 
a transition region that combines multiple stimuli, the 
lateral portion is responsible for categorical recognition, 
and the anterior portion is involved in semantic 
understanding.44 The midcingulate cortex is hypothe-
sized to be involved in cognitive control and intentional 
motor control and selection.45 Larabi et al found that 
with regard to cognitive insight, patients with poorer 
self-reflective abilities had lower activation of brain 
systems managing control and execution of emotion 
regulation (left middle cingulate gyrus) during 

Figure 3 Interaction effects of group and time of dynamic DC in SRs and NRs pre- and posttreatment on RMANOVA analysis (upper) and post hoc comparisons of 
changes in dynamic DC values before and after treatment in SR and NR (lower). *P<0.05.

Table 4 Interaction effects of repeated-measure ANOVA

Region x y Z F Cluster

Left fusiform gyrus –24 –45 –9 14.07 41
Right fusiform gyrus 27 –48 –9 13.79 48

Left middle cingulate cortex –2 3 45 23.73 125

Left superior parietal gyrus –21 –54 72 16.77 39
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suppression.46 The left superior parietal gyrus is part of 
the frontoparietal control network, providing a causal 
link between brain and behavior (eg, attention, working 
memory, and cognitive control). Superior parietal lobule 
lesions are associated with deficits in the manipulation 
and rearrangement of information within working mem-
ory for both auditory–verbal and visuospatial stimuli.47 

High DC of a region may reflect its role as a central hub 
of the integration of global resting-state functional 
connectivity (including local and distant connections): 
as DC decreases, centrality becomes lower.48 Therefore, 
the results of longitudinal comparison suggest that the 
functional activity of face perception/object recognition– 
related regions decreases with the relief of such symp-
toms as hallucinations and delusions while activity of 
the cognitive control network increases, indicating that 
although symptoms and insight improved in SRs, more 

brain-resource allocation needed to be mobilized to 
make up for their original functions. In contrast, func-
tional activity of visuocognitive-related regions did not 
change much in NRs posttreatment, while activities of 
the cognitive control network continued to decline, 
which may lead to impaired clinical insight and poorer 
outcomes. These findings suggest that brain function 
network–activity change varies with different treatment 
responses.

Several limitations should be considered when dis-
cussing the results of this study. First, although we 
examined the short-term effects of antipsychotics on 
the brain functional network, our work does not address 
long-term changes in brain function. Secondly, though 
changes over time were assumed to be negligible in 
HCs, some alterations, such as normal neurodevelop-
ment, may have occurred. Future work in this area 

Figure 4 Correlation of dynamic DC variability with clinical characteristics in all FEPs at baseline. (A) Dynamic DC of right cerebellum posterior lobe significantly correlated 
with totalPANSS score (r=0.38, P<0.0001). (B) Dynamic DC of right medial frontal cortex negatively correlated with total PANSS score (r=–0.34, P<0.001). (C) Dynamic DC 
of right postcentral gyrus negatively correlated with positive symptoms (r=–0.32, P<0.001) (D) Dynamic DC of right medial frontal cortex negatively correlated with PANSS 
general psychopathology (r=–0.35, P<0.0001).
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should keep this in mind. Thirdly, the parameters of 
dDC, such as window length and step size, are still 
controversial. To our limited knowledge, window length 
in previous studies has rangeed 30–100 seconds and step 
size ranges from 1 TR to 100% (ie, nonoverlapping) of 
window length.49–52 In this study, we chose a step size 
of 50% of the window length, mainly due to the cost of 
computation of dDC. Therefore, the sliding-window 
option is still an uncertain factor in the current study. 
Future work needs to determine the optimal parameters 
of the sliding window. Finally, this is an observational 
study in which the type and dose of medication received 
by patients were determined by clinicians, and whether 
different drugs have specific effects on brain networks 
needs to be further clarified in future studies. Overall, 

this study employed data-driven analysis, and the results 
here are dependent on the samples that participated. 
Replication in larger samples and longer-term studies 
are required.

Conclusion
We used a graph theory–based metric and data-driven 
method that facilitated the discovery of more objective 
results than a priori assumptions, which would be limited 
to specific brain regions or networks. dDC can reflect the 
importance of nodes or brain regions in complex brain 
networks. Our work may provide new insight into the 
benefits of exploring neuroimaging mechanisms as a way 
to study different treatment responses in schizophrenia.

Table 5 Correlation of DC variability with clinical characteristics in all patients at baseline

Region x y Z R P Cluster

PANSS -base-T Right cerebellum posterior lobe 18 –75 –39 0.38 <0.0001 123
Right medial frontal cortex 9 57 18 –0.34 <0.001 223

PANSS-base-P Right postcentral gyrus 51 –27 51 –0.32 <0.001 190

PANSS-base-G Right medial frontal cortex 9 60 18 –0.35 <0.0001 338
PANSS-base-N None

Figure 5 Correlation of changes in dynamic DC variability with clinical treatment response in all FEPs. (A) Altered dynamic DC of right middle cingulate cortex (r=0.35, 
P<0.0001) significantly correlated with reduction in total PANSS scores. (B) Altered dynamic DC of left superior parietal cortex (r=0.37, P<0.0001) significantly correlated 
with reduction in total PANSS scores.

Table 6 Correlation of changes in DC variability with clinical treatment response in all FEPs

Region x y Z r P

PANSS-reduction-T Right middle cingulate cortex 3 0 45 0.35 <0.0001

Left superior parietal cortex –33 –51 66 0.37 <0.0001
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