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Abstract

Background: Electrical stimulation of the vagus nerve suppresses intestinal inflammation and normalizes gut motility in a
mouse model of postoperative ileus. The exact anatomical interaction between the vagus nerve and the intestinal immune
system remains however a matter of debate. In the present study, we provide additional evidence on the direct and indirect
vagal innervation of the spleen and analyzed the anatomical evidence for neuroimmune modulation of macrophages by
vagal preganglionic and enteric postganglionic nerve fibers within the intestine.

Methods: Dextran conjugates were used to label vagal preganglionic (motor) fibers projecting to the small intestine and
spleen. Moreover, identification of the neurochemical phenotype of the vagal efferent fibers and enteric neurons was
performed by immunofluorescent labeling. F4/80 antibody was used to label resident macrophages.

Results: Our anterograde tracing experiments did not reveal dextran-labeled vagal fibers or terminals in the mesenteric
ganglion or spleen. Vagal efferent fibers were confined within the myenteric plexus region of the small intestine and mainly
endings around nNOS, VIP and ChAT positive enteric neurons. nNOS, VIP and ChAT positive fibers were found in close
proximity of intestinal resident macrophages carrying a7 nicotinic receptors. Of note, VIP receptors were found on resident
macrophages located in close proximity of VIP positive nerve fibers.

Conclusion: In the present study, we show that the vagus nerve does not directly interact with resident macrophages in the
gut or spleen. Instead, the vagus nerve preferentially interacts with nNOS, VIP and ChAT enteric neurons located within the
gut muscularis with nerve endings in close proximity of the resident macrophages.
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Introduction

In the last decade it has become clear that the vagus nerve

fulfills an important role in modulating the immune system [1,2].

Vagus nerve activation indeed has anti-inflammatory properties in

a wide variety of disorders including systemic and local

inflammation [3–8]. The first experiments leading to the

introduction of this concept were performed in a rat model of

sepsis [1], illustrating increased survival after vagus nerve

stimulation. This effect is now believed to result from vagal

activation of sympathetic neurons located in the mesenteric

ganglion [9] rather than a direct effect of the vagus nerve in the

spleen. These adrenergic nerve fibers release noradrenalin

activating splenic T cells. These T cells subsequently release

acetylcholine (Ach) that inhibits the release of pro-inflammatory

cytokines from splenic macrophages through interaction with a7

(alpha7) nicotinic receptors [10,11].

Also in the gastrointestinal tract, vagus nerve stimulation

dampens the inflammatory response in several immune-mediated

disorders, including postoperative ileus (POI). In the latter,

intestinal manipulation initiates an inflammatory cascade through

the activation of muscularis resident macrophages that results in

delayed gastrointestinal motility. Electrical stimulation of the vagus

nerve (VNS) and systemic administration of selective nicotinic

receptor agonists dampened pro-inflammatory cytokine produc-

tion by macrophages resulting in reduced intestinal inflammation

and shortened POI [12]. Recently, we showed that this subtle

inflammatory response evoked by manipulation of the small

intestine elicits neuronal activation in the nucleus of the tractus
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solitarius (NTS) and the motor nucleus of the vagus nerve [13].

This vagal output targeted mainly the inflamed zone (intestine) but

also other organs such as the spleen.

Although the innervation of the intestinal myenteric plexus by

vagal efferents is well described [14], its interaction with the

immune cells residing in the intestine is poorly characterized.

Similarly, the innervation of the spleen is still a matter of

controversy with some studies providing evidence of cholinergic

innervation whereas others propose that the spleen is only

innervated by sympathetic neurons located in the mesenteric

ganglion [9,13,15–17]. Hence, we aim to provide neuro-anatom-

ical evidence on the interaction between vagal efferents and

resident macrophages in the intestine and to bring more clarity on

the vagal innervation of the spleen in mouse. To this end we

labeled the vagal motor efferent fibers arising from the dorsal

motor nucleus (DMV) by using the dextran amines anterograde

tracer, recently reported to provide high-definition labeling of

vagal motor fibers [18].

Materials and Methods

Ethics Statement
All procedures were conducted in accordance with the

Institutional guidelines and approved by the Animal Ethical

Committee of the AMC/University of Amsterdam (reference

protocol number 100096) and by the Ethical committee of the

Catholic University of Leuven (Permit Number: 112/2011). All

surgery was performed under anaesthesia (Hypnorm/Dormicum)

and all effort was made to minimize suffering.

Animals
Mice (female BALB/c; Harlan Nederland, Horst, The Nether-

lands) were kept in 12 h light/12 h dark cycle (lights on at 8:00

AM to 8:00 PM) under constant conditions of temperature

(2062uC) and humidity (55% humidity) with water and food ad

libitum. Mice underwent surgical procedure at 11–13 weeks of age.

Mice were anesthetized by FFM intraperitoneal injection, a

mixture of fentanylcitrate/fluanisone (Hypnorm; Janssen, Beerse,

Belgium) and midozolam (Dormicum; Roche, Mijdrecht, The

Netherlands) in a ratio 1:1:2 (Hypnorm: Dormicum: H20).

Tracer injection
Mice were anesthetized and mounted on the stereotaxic frame.

Bilateral injections of the biotin or Texas red dextran amines (5%

solution, D-B, D-1956 or D-TRD1863, Invitrogen) were per-

formed at different rostro-caudal levels of the DMV: AP

27.8 mm, 27.9 mm and 28.0 mm. The stereotaxic coordinates

used for lateral ventricle injection were AP 20.5 mm, L 21.0 mm

and V 22.0/21.50/21.0 mm. Injections (4 ms duration) were

performed using a glass micropipette (25 mm). At the end of the

injection procedure, the wound was closed by a suture with

Mersilene, 6–0 silk.

Tissue preparation
Nineteen days after injection of the tracer, anesthetized mice

were sacrificed by transcardiac perfusion with Phosphate buffered

saline (PBS) followed by 4% paraformaldehyde (PFA) (pH 7.4,

4uC). The spleen was removed prior the perfusion with fixative,

quickly snap frozen and stored at 280uC. Then, brain, nodose

and mesenteric ganglia and deep cervical lymph node were

collected, post-fixed for 4 hrs (4uC) and immersed in 30% sucrose/

0.2 M PBS (pH 7.4) overnight at 4uC. For the whole mount

intestinal tissue preparation, samples were cut along the mesentery

border, washed in cold saline and transferred to PFA for 4 hrs and

to 30% sucrose. Prior to the immunohistochemical procedures, the

muscle layers were gently stripped out from the mucosa and sub-

mucosa with fine-tip forceps. For intestinal coronal sections, tissue

were frozen in OCT embedding compound (Neg 50, Thermo

Scientific, Walldrof, Germany) and stored at 280uC.

In some cases, colchicine was used to enhance VIP immuno-

reactivity of cell bodies. Intestinal tissues were washed with PBS

containing gentamicine (1:100 diluted) and incubated in Dulbec-

co’s modified Eagle medium (Gibco, Life Technology) containing

colchicine (0.01 g/100 ml) at 37uC. Following incubation, the

tissue was stretched and fixed with Zamboni fixative.

Immunohistochemical staining
Brainstem, nodose and mesenteric ganglia and deep

cervical lymph node. Coronal sections of 30 mm for brain-

stem, 16 mm for nodose/mesenteric ganglia and deep cervical

lymph nodes were collected. To reveal the biotin dextran amines,

sections were pretreated first with a solution of Methanol (10%)

and hydrogen peroxide H2O2 (0.1%) for 10 min and were

subsequently incubated for 1 hour with avidin-biotin complex

(ABC, Vector Labs PK-4000). The reaction product was visualized

by incubation with 1% diaminobenzidine (DAB), 0.05% nickel

ammonium sulfate and 0.01% H2O2 for 5 min.

To reveal the Texas red dextran amines, section was incubated

overnight with the anti Texas red antibody (1/50; Invitrogen

A6399) followed by an incubation overnight at 4uC with Goat

anti-rabbitPoly AP (1:50; BrightVision Immunologic B.V,

DPVR55AP). The reaction product was visualized by incubation

with Alkaline Phosphatase Substrate Kit III (Vector Laboratories,

Inc. SK-5300) for 20 minutes.

Intestinal whole mount preparation. ABC/DAB staining

and the pan-neuronal marker cuprolinic blue were used to label

dextran-labeled vagal fibers and enteric neurons, respectively.

Briefly, the whole mount preparation was pretreated (30 min) with

a solution Methanol- H2O2 (4:1). The tissue was incubated for

4 hrs at 37uC with a solution of 0.5% cuprolinic blue (17052;

Polyscience, Inc.) followed by incubation in buffer (0.05 M NaAC,

1 M MgCl2, pH 4.9) for 30 s. After thorough rinsing with distilled

water and TBS, sections were incubated with ABC (1 hrs) and

with 1% DAB 0.05% nickel ammonium sulfate and 0.01% H2O2

for 8 min. To visualize resident macrophages, preparations were

exposed to the primary F4/80 antibody (1:500; Biolegend,

biotinylated rat antibody; 1:200; Dako E0468) and were revealed

by ABC/Nova Red (vector Labs, SK-4800).

Immunofluorescent labeling
Coronal section of intestinal tissue. Sections underwent a

treatment with Biotin-Blocking System from DAKO (protocol

provided by the manufacturer). An additional blocking step was

performed by two hours incubation with 1% bovine serum

albumin (BSA, Sigma-Aldrich, St. Louis, MO) at room temper-

ature (RT). Then, sections were treated with streptavidin

conjugated with CY3 (1:400; Jackson ImmunoResearch, diluted

in 1% BSA+0.3% Triton X-100) for 1 hr at RT. A counterstaining

with DAPI to label nuclei was used to delineate the anatomical

structure of the intestine wall.

Intestinal whole mount preparation. The preparations

were subjected to Biotin-blocking system (DAKO) and two hours

incubation with 1% bovine serum albumin (BSA, Sigma-Aldrich,

St. Louis, MO) at room temperature (RT). After blocking, the

preparations were incubated with the primary antibodies (over-

night, 4uC) rabbit anti-PGP 9.5 (1:600,Chemicon), goat anti-

ChAT (1:5000, Chemicon) and rat anti-F4/80 (1:200, Biolegend),

rabbit anti-VIP (1:2000, kindly provided by Prof. Dries Kalsbeek

Vagal Interaction with Intestinal Macrophages

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e87785



from the Netherlands Institute for Neuroscience, Amsterdam),

rabbit anti-nNOS (1:500, Santa Cruz), anti-PGP 9.5 (1:500,

Chemicon) and goat anti-VPAC1 (1:500, Santa Cruz) diluted in

PBS containing 1% BSA and 0.3% Triton X-100. Specificity of

the primary antibodies used was confirmed by preincubation with

the respective blocking peptide.

The next day, the tissues were incubated for 1 hour at room

temperature with the following secondary antibodies at a concen-

tration of 1:1000; goat anti-rabbit CY3 conjugated (Jackson

ImmunoResearch), donkey anti-goat FITC conjugated (Jackson

ImmunoResearch), donkey anti-rat CY5 conjugated (Jackson Im-

munoResearch), donkey anti-rabbit Alexa 555 (Molecular probe) or

goat anti-rabbit alexa 555 (Molecular probe) and streptavidin

conjugated with CY3 or CY5 (Jackson ImmunoResearch). The

specificity of the secondary antibodies used or fluorescent streptovidin

was confirmed by the lack of staining in the absence of preincubation

with the primary antibody.

In case of nNOS/VIP, immunolabeling was performed

sequentially including a step with citrate buffer prior to VIP

labeling to avoid cross reactivity. In brief, the preparations were

rinsed in citrate buffer (pH = 6) followed by 3 heating sessions

(microwave 6 min at 600 W) and incubated in refresh citrate

buffer for 20 min.

For a7 nicotinic receptor labeling [19] and macrophage staining

(F4/80), jejunum tissue was incubated with FITC-labelled a-

bungarotoxin (Invitrogen) at 0.1 mg/ml in RPMI 1640 medium

(Lonza) at 4uC for 15 min. After thorough washes with PBS and

post fixation with 4% of cold Paraformaldehyde (10 min), the

mucosa and submucosa were gently removed from the muscle

layers. The latter were subsequently processed for intestinal

resident macrophages (F4/80) labeling.

Coronal section of spleen tissue. Eight mm sections were

labeled with Tyrosine hydroxylase (1:100, T8700, Sigma) and

anti-B220 (1:200; Clone 6B2 kindly provided by Dr Martijn Nolte,

Sanquine, Amsterdam) antibodies. Before primary antibody

incubation, sections were post-fixed with cold acetone (2 min)

and followed by pretreatment with Na Azide (0.1%) and H2O2

(0.3%) for 15 min. A 30 min blocking step with BSA 1% was

performed prior the incubation with the primary antibodies (1 hr).

Anti-rat AF488 (1/400) and anti-rabbit AF546 (1/400) were

incubated for 1 and 2 hrs, respectively at room temperature.

Figure 1. Injection sites of the neuronal tracer and deep cervical lymph nodes. Panel A shows the site of dextran amine injection at the
level of the DMV, 19 days after injection. The tracer was revealed by DAB staining. B. Epifluorescent picture shows the distribution of Texas-red
dextran amines after lateral ventricle injection. In the panels C & D, arrow heads show the presence of dextran amines (revealed by phosphatase
alkaline staining to amplify the Texas red signal of the tracer) in the deep cervical lymph node. Of note, the presence of the tracer was found in all LV
injected mice (D) and occasionally in DMV-injected mice (C). 3 V: third ventricle. LV: lateral ventricle. DMV: dorsal motor nucleus of the vagus. Scale
bar represents 0.1 mm.
doi:10.1371/journal.pone.0087785.g001
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Image acquisition
Preparations were examined by use of an Olympus BX4

epifluorescence microscope (Olympus America, Center Valley,

PA). Immunohistochemical labelled tissues were visualized using a

Zeiss LSM510 Meta confocal microscope (Cell Imaging Core, KU

Leuven). The following lasers and emission filters were used to

visualize the labeled structures and collect images: multiline Ar

laser at 488 nm (used for the excitation of FITC); emission filter

535615 nm; 543 nm HeNe laser (used for Cy3); emission filter

5756630 nm; and 633 nm HeNe laser (used for Cy5); emission

filter 6506700 nm. The confocal images were collected using the

optimal pinhole size for the 63X oil objective or for the 20X air

objective and confocal stacks were taken with z-axis step of 0.5 mm

(63X objective) or 1 mm (20X objective).

Results

Tracer application
Injection of the tracer in the DMV (Fig. 1A) was achieved in 4

out 9 mice for the biotin-dextran and in 2 out 6 mice for the Texas

red-dextran. Two extra mice were injected in the lateral ventricle

(LV) to evaluate possible unspecific staining in the peripheral tissue

(Fig. 1B). Leakage of the tracer to the cerebrospinal fluid is drained

by the deep cervical lymph node (DCLN) and then released in the

bloodstream [20]. In line we observed some trace of the dextran

amine in the deep cervical lymph node in lateral ventricle injected

mice and to a limited extent in some of the DMV injected mice,

nineteen days after injection (Fig. 1 C&D).

Vagal innervation of the spleen
The spleen has been proposed to play a central role in the anti-

inflammatory effect of the VNS in sepsis [9,21,22]. Although

previous studies showed neuronal synapses between the vagal

Figure 2. Distribution of dextran-labeled vagal fibers in the
mesenteric ganglion and spleen coronal section. No biotin
dextran-labeled fibers or terminals were found on coronal section of
mesenteric ganglion (A) or spleen (B). Of note, similar observations were
obtained with Texas red dextran amine tracer. The brown spots on the
spleen section were found in injected and non-injected mice, indicating
of a strong endogenous biotin expression. WP: white pulp, RP: red pulp,
T: trabeculae.
doi:10.1371/journal.pone.0087785.g002 Figure 3. Sympathetic fibers and no vagal innervation of the

spleen. A. Tyrosine hydroxylase (TH) staining was used to reveal the
sympathetic innervation of the spleen. The central arteriole showed
high TH positive fibers (blue) that are in close proximity of the T cells
(green). B. Texas red amine signal (red) was found occasionally in the B
cells area (green). This dextran amine signal was found in mice that
exhibit also dextran amine in deep cervical lymph node, indicating that
the spleen signal is the result of tracer leakage into the cerebrospinal
fluid. The scale bar represents 20 mm.
doi:10.1371/journal.pone.0087785.g003
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efferent fibers and sympathetic cells bodies of the mesenteric

ganglia [15,23], our anterograde tracing experiments did not

reveal any dextran positive vagal fibers or terminals in the

mesenteric ganglion (Fig. 2A). Similarly, no labeled vagal efferent

fibers or terminals were found in the spleen using Biotin-Dextran

or Texas-Red conjugated Dextran (Fig. 2B). Only TH positive

fibers were found throughout the spleen tissue along the blood

vessel ending in the white pulp in close proximity to T cells

(Fig. 3A). Occasionally, Texas red dextran was found in the

follicular dendritic cells in the B cell area (Fig. 3B) in both DMV

and LV injected mice. This non-specific staining was most likely

caused by the release of the tracer into the circulation as confirmed

by the presence of the dextran in the deep cervical lymph node in

both types of injection (Fig. 1 C&D).

Vagal motor efferent fiber distribution in the intestine
Only DMV-injected mice exhibited dense dextran-labeled vagal

fibers in the gut muscularis of the small intestine (Fig. 4). No

dextran-labeled fibers were observed in LV injected mice. As

previously reported by others [18], we did not find labeled cells

bodies in the nodose ganglia 19 days post-injection, confirming the

Figure 4. Vagus nerve efferent fibers and terminals reach myenteric plexus region in the intestine. A.1 Vagal motor efferent fibers (red;
arrow head) were labeled using fluorescence conjugated streptavidin on 5 mm thin coronal section of small bowel. Labeled vagus fibers were found
between circular and longitudinal muscle layers at the level of the myenteric plexus. A.2. High power magnification field showing localization of vagal
motor efferent fibers (red, arrow head) between nuclei (blue) of circular (CM) and longitudinal (LM) smooth muscle. A.3. The presence of intrinsic
biotin was found in cells of the submucosal crypts. B. Labeled-fibers of the vagal nerve were revealed with ABC/DAB staining protocol while
cuprolinic blue was used as pan-neuronal marker to visualize enteric neurons (blue). Labeled vagal efferent fibers and terminals with a basket-like
shape terminals were found within myenteric ganglia (arrow head). C. Confocal image showing the presence of the dextran amine in the inter-
ganglionic fibers (arrow). D. Epifluorescence image corresponding to vagal efferent fibers (green) densely found at the level of myenteric ganglion
(PGP 9.5, red). The scale bar represents 50 mm.
doi:10.1371/journal.pone.0087785.g004
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specificity of the labeled fibers to motor neurons arising from the

DMV. Dextran amines injection in the DMV of mice provided a

similar vagal distribution pattern in the gastrointestinal tract as

previously reported in rats using the tracer DiI [14] and with a

similar sensitivity and specificity as reported by Walter et al. [18].

The distribution of the pre-ganglionic vagal efferent fibers

(Fig. 4) was exclusively confined within the myenteric plexus

located between the circular and longitudinal muscle layers of the

intestine. No labeled fibers or terminal were observed within the

submucosal plexus or lamina propria (Figs. 4A.1 & A.2). We did

however notice a bright signal in the cells of the submucosal crypts

(Fig. 4A.3). Based on the location (inside submucosal crypts) and

the shape (round cells), the bright signal is most likely indicative of

the presence of endogenous biotin expression in those cell types. In

whole mount preparations, biotin dextran amine with nickel

enhancement provided a clear distribution of the efferent vagal

fibers/terminals connecting to enteric ganglia within the myenteric

plexus region. The permanent staining with ABC and cuprolinic

blue revealed the morphology of the terminals that synapse with

neurons located in the myenteric ganglia (Fig. 4B). Labeling with a

secondary fluorescent antibody combined with PGP 9.5 confirmed

that vagal fibers and terminals in the small intestine were confined

to the myenteric ganglia located at the level of the MYP (Figs. 4C

& D).

Chemical coding of vagal efferent fibers in the small
intestine

Immunoreactivity for various neurotransmitters and peptides

confirmed that the vagal pre-ganglionic fibers were mainly positive

for choline acetyltransferase (ChAT) (Fig. 5A). Dextran-labeled

axons/terminals were negative for neuronal Nitric Oxide Synthase

(nNOS), Tyrosine Hydroxylase (TH), Substance P (SP), Vasoac-

tive Intestinal Peptide (VIP) and Calcitonin Gene-Related Peptide

(CGRP) (Fig. 5B–F).

In rare occasions, we found that efferent vagus nerve terminals

in the small intestine show VIP and CGRP immunoreactivity (at

occasional points) at the level of the myenteric plexus region (Fig. 5

E&F, arrow head). However with the methodology used here, it is

Figure 5. Vagus nerve efferent is fully cholinergic in nature. Epifluorescence images collected for the identification of the neurotransmitters
(red) and dextran-labeled vagus efferent fibers and terminals (Green). Choline acetylfransferase (ChAT, A), neuronal nitric oxide synthase (nNOS, B),
Tyrosine hydroxylase (TH, C), substance P (SP, D), vasoactive intestinal peptide (VIP, E) and Calcitonin gene related peptide (CGRP, F). Arrow heads
point discrete co-localization between Vagus nerve and VIP or CGRP positive structures. Vagus nerve efferent fibers and terminals are only positive for
ChAT and located in close proximity to ChAT and nNOS enteric neuronal bodies. Scale bars represent 20 mm.
doi:10.1371/journal.pone.0087785.g005
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impossible to discriminate between VIP and CGRP stored in vagal

nerve terminals or overlap of enteric nerve fibers with vagal

efferents (Figs. 5 E&F).

Contact between enteric neurons and macrophages
Intestinal handling is known to activate the resident macro-

phage network (F4/80+CD11b+) that resides in the gut muscularis.

VNS applied before surgery implies that ACh released from the

vagus nerve suppresses the activation of these resident macro-

phages (F4/80+CD11b+). Using immunohistochemistry and im-

munofluorescence techniques we observed a regular distribution of

the resident macrophages (F4/80+CD11b+) located between the

longitudinal and circular muscle layers of the small intestinal

(Fig. 6) with some of the macrophages located closely to the

myenteric ganglia (Figs. 6A&D). The cholinergic dextran amine

labeled terminals did not make contact with resident macrophages.

We observed only ‘basket-like’ endings around the cell bodies of

the myenteric neurons (Fig. 6A). Figure 6B.2 and C show the

location of intestinal resident macrophages in relation to PGP 9.5

positive enteric neurons while figure 6.D shows a higher

magnification of two intestinal resident macrophages in the

proximity of one ChAT positive enteric ganglion. Based on the

distribution of the pre-ganglionic vagal fibers, we propose that the

dampening effect of VNS on macrophage activity is mediated

through vagal interaction with postganglionic neurons (enteric

neurons).

Chemical coding of the myenteric neurons targeted by
the vagus nerve

The vagal efferent terminals were found mainly close to nNOS

and ChAT positive myenteric neurons (Fig. 7A & B). nNOS

immunoreactive cells bodies showed an extensive co-localization

with VIP (Fig. 7C) while only a few ChAT positive neurons

exhibited VIP immunoreactivity (Fig. 7D).

Double labeling procedures were performed to identify the

neurochemical phenotype of the enteric fibers running close to the

macrophages at point far from the myenteric ganglia. So VIP,

ChAT and nNOS immunoreactive fibers were all found in close

proximity to F4/80 positive macrophages (Fig. 8A–C).

Although two commercial antibodies for a7 nAChR have been

successfully used to label immune cells in the rat gut or murine

airway epithelium [24,25], we failed to observe specific labeling in

whole mount preparations of the small intestine. The antibodies

used provided the same signal in non primary controls specimens

and also in tissue from a7 nAChR-/- mice (data not shown). In

contrast, the fluorescent conjugate of the nicotinic receptor

antagonist bungarotoxin specifically stained the resident macro-

phages present in the gut muscularis (Fig. 8D). No specific staining

was detected on muscle layers collected from a7 nAChR-/- mice

(data not shown). Interestingly, these resident macrophages also

showed immunoreactivity for the VIP receptor VPAC1 (Fig. 8E),

suggesting that VIP could participate in the anti-inflammatory

effect of vagus nerve stimulation.

Discussion

In the present study, we show that the vagus nerve does not

directly interact with resident macrophages in the intestine or

spleen. In the intestine, vagal efferent fibers interact with nNOS

and ChAT positive myenteric neurons, with nerve endings in close

proximity to resident macrophages carrying a7 nAChR. Of note,

nNOS and some ChAT positive neurons co-expressed VIP, while

VIP positive nerve fibers were identified in the vicinity of VPAC1

positive macrophages, suggesting that VIP could also be involved

in the immuno-modulatory effect of VNS. In contrast, no evidence

indicating vagal innervation, either direct or via the mesenteric

ganglion was obtained for the spleen. Based on these data, we

conclude that vagal modulation of the intestinal resident

macrophages is indirect, most likely through cholinergic and

nitrergic/VIPergic enteric neurons.

Electrical stimulation of the vagus nerve, before and after

intestinal manipulation, prevents the inflammatory response

triggered by intestinal handling and consequently reducing

postoperative ileus [12]. This effect results from the inhibition of

the resident macrophages through acetylcholine-mediated activa-

tion of nicotinic receptors. To what extent the vagus nerve directly

interacts with these resident macrophages however has not been

studied. Using anterograde tracing, we aimed to detect the efferent

nerve fibers innervating the intestine and spleen in a mouse model.

Dextran amine was the most suitable tracer due to its low toxicity

Figure 6. Intestinal resident macrophages are located in
proximity to enteric neurons. A. Staining of F4/80 positive intestinal
resident macrophages (brown) surrounding a myenteric ganglion
(blue). Efferent vagus nerve fibers are shown in black. B.1 Regular
distribution of resident macrophages (F4/80) in the muscularis of the
murine small bowel. B.2 & C. Confocal image showing the distribution
of the resident macrophage (F4/80, blue) close to enteric neurons
(PGP9.5, red) in the muscle layers of the small intestine. D.
Epifluorescence image showing the presence of resident macrophages
(F4/80, blue) in close proximity to ChAT positive enteric ganglion (red).
Scale bar represents 25 mm, except for B.1 it represents 0.1 mm.
doi:10.1371/journal.pone.0087785.g006
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(water solubility) allowing multiple injections with minimal impact

on the general condition of the mice. The duration of the transport

of the tracer from the source (cell body) to the terminals relies on

the type of neuron and its activity. In our case, the time period of

19 days was required for the motor axonal fibers to efficiently

transport the tracer to the terminals. Following this time period,

dextran amine selectively labeled the motor neurons axons.

Indeed, no dextran-labeled cells bodies were found in the nodose

Figure 7. Vagus nerve efferent fibers and terminals are close to cholinergic and nitrergic enteric neurons. A. Epifluorescence image
shows dextran-labeled vagal efferents (green) that co-localize with ChaT (yellow), and are in close contact with ChaT positive enteric neurons (red). B.
Epifluorescence image shows labeled vagal efferent fibers (green) making contact with nNOS positive neurons (red). Of note, cholinergic neurons,
and to lesser extent nitrergic neurons, are the main population targeted by the vagal efferent fibers. C. Confocal image of VIP (red) and nNOS (green)
myenteric neurons. Most of the cells bodies exhibit co-localization of these two neurotransmitters (arrow head). D. Confocal image of VIP (red) and
ChaT (green) myenteric neurons. Occasionally myenteric neurons showed immunoreactivity for both neurotransmitters (arrow head). C1 and C2 show
the distribution for the nNOS and VIP positive cells bodies, respectively. D1 and D2 show the distribution for ChaT and VIP positive cells bodies. Scale
bar represents 20 mm.
doi:10.1371/journal.pone.0087785.g007

Vagal Interaction with Intestinal Macrophages

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e87785



ganglia while no labeled fibers were found in the gastro-intestinal

tract when the injections were outside the DMV (data not shown).

Using this technique, dextran-labeled vagal efferent fibers were

densely found in the small intestine at the level of the myenteric

plexus located between the longitudinal and circular smooth

muscle layers, but not in the submucosal compartment. In the

myenteric plexus region, the vagal efferents endings were

predominantly found around ChAT immunoreactive cells bodies,

but could not be detected in the vicinity of resident macrophages.

Instead, resident macrophages were found in close proximity to

cholinergic fibers, i.e. mainly inter-ganglionic nerve fibers.

Especially as we found no cholinergic vagal efferents in the

vicinity of the macrophages, our data strongly suggest that mainly

cholinergic enteric neurons rather than vagal nerve fibers directly

interact with the resident macrophages. In addition to cholinergic

neurons, we also observed close contacts between vagal efferents

and nNOS positive enteric neurons. Similar to cholinergic nerve

fibers, nNOS positive nerve fibers were found in close proximity to

resident macrophages, suggesting a potential role modulating

macrophage function. Taken together, our data indicate that the

vagus nerve does not directly interact with the resident macro-

phages, but most likely modulates these immune cells through

cholinergic and to a lesser extent nitrergic enteric neurons.

Vagus nerve stimulation potently suppresses the inflammatory

response in sepsis and improves survival. This effect has been

proposed to be mediated by vagal activation of sympathetic

neurons in the coeliac ganglion innervating the spleen [9,21].

Although dextran amine is a sensitive anterograde tracer to label

complex brain circuits [26,27], we were unable to detect this

anterograde tracer in the mesenteric ganglion or in the spleen,

Figure 8. Neuronal fibers and intestinal resident macrophages: neurotransmitter and receptor expression. Epifluorescence images
show F4/80 positive intestinal resident macrophages (blue) located in close proximity to inter-ganglionic enteric fibers positive for ChAT (A), nNOS (B)
and VIP (C). D. Intestinal resident macrophages (F4/80, red, D.1) expressing a7 nicotinic receptor (green, arrow heads, D.2). E. Resident macrophages
of the gut muscularis (F4/80, red) express VPAC1 receptors (green). Asterisk corresponds to intestinal resident macrophages located at the level of the
myenteric plexus region. The other macrophage is located at the level of the submucosal plexus. Scale bar represents 10 mm from A–C and 20 mm
from D–E.
doi:10.1371/journal.pone.0087785.g008

Vagal Interaction with Intestinal Macrophages

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e87785



indicating that no vagal fibers arising from the DMV are

projecting to the spleen. The lack of anterograde tracer in the

spleen coincides with data recently published [28]. Using

transgenic GFP-ChAT mice to visualize pre and postganglionic

cholinegic neurons, only a sparse ChaT positive innervation was

shown in the spleen consisting of neuronal fibers of spinal origin

(sympathetic) around arterioles and in lymphocyte-containing

areas of the white pulp. The absence of labeled fibers in the celiac-

superior mesenteric ganglia found in our current study did not

correlate with previous studies using DiI anterograde tracer

[15,16]. The labeling period (19 days) for dextran amines may not

be sufficient to reveal the moderate density of the vagal fibers in

the ganglia previously reported [18] even though it successfully

labeled the vagal efferent fiber throughout the entire gastrointes-

tinal tract.

In the intestine, the neurons contacted by the vagus nerve are

predominantly cholinergic. In the spleen, acetylcholine released by

T cells is proposed to suppress splenic macrophages [10,28], most

likely though the activation of the a7 nicotinic acetylcholine (a7

nAChR) receptors [1]. In the intestine, we collected evidence that

this receptor is located on resident macrophages and mediates the

anti-inflammatory effect of vagus nerve stimulation in a model of

postoperative ileus ([29] in press). In the present study, we confirm

these data by immunohistochemistry. The use of the two

commercially available antibodies for a7 nAChR provides a

similar staining pattern of a7 nAChR on muscle layers as

previously reported [30,31]. However, these antibodies exhibit

similar results in a7 knock out mice, indicating that these

antibodies lack specificity for a7 nAChR. In contrast, using

bungarotoxin staining, we indeed revealed the presence of a7

nAChR (only) on resident macrophages. Interestingly, we also

demonstrated close interaction between vagal efferents and

nitrergic neurons co-expressing VIP. These NO/VIP positive

neuronal fibers were found in close proximity to resident

macrophages that express VPAC1 receptors suggesting that not

only ACh, but also VIP and NO may modulate the function of

resident intestinal macrophages [32,33].

In summary, no evidence supporting vagal or cholinergic

innervation of the spleen could be provided. However, we

collected neuro-anatomical evidence that the vagal modulation

of intestinal resident macrophages is indirect and mainly involves

cholinergic enteric neurons. Based on these data, we speculate that

the cholinergic anti-inflammatory input to the intestine is

mediated and thereby amplified by the enteric nervous system.
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