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ABSTRACT: Integrins are cell surface proteins responsible for cell
motility. Inspired by the rich disulfide exchange chemistry of
integrins, we show here the inhibition of cell migration by cascade
exchangers (CAXs), which also enable and inhibit cell penetration
by thiol-mediated uptake. Fast-moving CAXs such as reversible
Michael acceptor dimers, dithiabismepanes, and bioinspired
epidithiodiketopiperazines are best, much better than Ellman’s
reagent. The implication that integrins participate in thiol-mediated
uptake is confirmed by reduced uptake in integrin-knockdown cells.
Although thiol-mediated uptake is increasingly emerging as a
unifying pathway to bring matter into cells, its molecular basis is
essentially unknown. These results identify the integrin superfamily
as experimentally validated general cellular partners in the dynamic
covalent exchange cascades that are likely to account for thiol-
mediated uptake. The patterns identified testify to the complexity of the dynamic covalent networks involved. This work also
provides chemistry tools to explore cell motility and expands the drug discovery potential of CAXs from antiviral toward
antithrombotic and antitumor perspectives.
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Integrins are cell surface proteins in charge of cell adhesion,
cell motility, and bidirectional signaling.1,2 Because of their

involvement in wound healing, thrombosis,3 and cancer cell
migration4 as well as viral entry5−10 and drug delivery,11 they
are of great interest as drug targets.2 In vertebrates, the integrin
superfamily consists of 24 heterodimers, all composed of α and
β subunits (Figure 1A). They interact with different
components of the extracellular matrix. During cell adhesion
and migration, integrins change from a bent to a linear
conformation. This change is controlled by one of the most
beautiful disulfide tracks in biology, composed of 20 disulfides
in the β subunit (Figure 1B).12−15 Several of these disulfides
are allosteric in nature and in a hook or staple conforma-
tion,3,16 and literature describing dithiol/disulfide redox
regulation of integrin function is increasingly emerging.4,17−20

Admiring their disulfide tracks, we thought that integrins
would be perfect exchange partners in thiol-mediated uptake
(TMU). TMU21−25 refers to the cell-penetrating activity
provided by thiol/disulfide cascade exchanger (CAX) motifs.
CAXs undergo dynamic covalent exchanges with membrane-
bound protein thiols (or disulfides), where each exchange
produces a new (or offers another) covalently tethered
exchanger, that can continue exchanging until they are
delivered into the cytosol.21 TMU has been realized with
many classes of CAX for the cytosolic delivery of small
molecules,21,26 antibodies22 and other proteins,27−30 genome

editing machinery31 and other oligonucleotides,32−37 poly-
mers,38 liposomes,39 and nanoparticles22,40,41 into various
cellular targets including deep tissue,30,33 living animals,31,42

plant cells,35 and bacteria.26 Proteomics data,43 heatmap
patterns,44,45 and literature on oligonucleotide phosphoro-
thioate37,46 and viral uptake8,47−50 all support that multipartner
exchange networks are involved in how TMU brings matter
into cells.21 However, the dynamic covalent exchange cascades
of TMU are complex and its fleeting intermediates are elusive,
which is likely the reason why TMU is not better known and
understood.21

Importantly, CAX-induced TMU can be inhibited by
treating cells with surface-thiol-reactive agents.51,52 Given
that thiol-rich integrins are natively poised for reversible thiol
modifications,3,4,16−20 we hypothesized that CAXs which
enable or inhibit TMU could also inhibit the cell motility for
which integrin dynamics are crucial, which in turn would
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demonstrate the involvement of integrins as one of the so far
essentially unknown cellular exchange partners in TMU.
To test the effects of TMU inhibitors on cellular integrin

functions, compounds 1−16 were bought or synthesized
following reported procedures (Figures 2 and S2).44,45,51−55

Cell motility assays4 were adapted to automated high-content
high-throughput (AHCHT) imaging methods.45,51 Before cell
seeding, 96-well plates were coated with one of three proteins
that interact with different integrins: Collagen I (C), which
activates mainly β1-containing integrins; fibronectin (F), which
activates mainly β1- and β3-containing integrins; and
vitronectin (V), which activates mainly β3- and β5-containing
integrins.1−4 HeLa Kyoto (HK), MCF-7, and MDA-MB-231
cells were then seeded on the protein-coated wells to test their
migration behavior when treated with TMU inhibitors. Among
many possibilities, highly aggressive MDA-MB-231 and
noninvasive MCF-7 breast cancer cells were selected as
established standards to explore motility4 and HK cells as a
link to uptake45 and to probe the power of AHCHT assays to
detect small changes accurately.
The confluent cell monolayers were scraped to create

“scratches” with widths of around 1 mm using a homemade
device that removes cells without damaging the coating
(Figure S1), as demonstrated by the different intrinsic
motilities of different cells on different coatings (e.g., Figure
S14). Cells were then incubated with TMU inhibitor
candidates from t = 0, and the cell motility m was determined
from the change of cell-free area A from that at t = 0 (m = A0 −
At) (Figures 3A,B and S8−S28).
A complex segmentation pipeline was developed to generate

unbiased image masks to estimate At (Figures S4−S6). This
AHCHT motility assay was particularly powerful with slower
moving cells that are otherwise not easily distinguishable
(Figures S22−S28). At least at the beginning, the motility
kinetics showed quasi-linear behavior for all inhibitors (Figures
3B and S8−S28). The time dependence of the dose−response
curves suggested that the results would be most reproducibly
assessed after 2 h (Figures 3C,D). At least at low serum
concentrations (0−2.5% FBS; Figures S7 and S29−38), single-
cell mobility experiments confirmed that the observed area

changes originate from motility and not from cell growth. For
instance, the movement of single MDA-MB-231 cells on
collagen I decelerated from 1.00 ± 0.05 μm min−1 (Figure 3E)
to 0.40 ± 0.01 μm min−1 with 3 μM inhibitor 9 (Figure 3F).
This decrease matched the formal wound healing times to
close a 1 mm scratch (17 h against 40 h). Because it was
important to avoid misinterpretation of cell death as motility
inhibition,56 CAXs and controls 1−12 were recon-
firmed45,51−53 as nontoxic under the experimental conditions
(Figure S3).

Cell migration inhibition by 1−16 was assessed for the three
cell lines on all three surfaces (Figures S8−S28 and Tables
S1−S8). Heatmaps comparing values of IC50 or MIC
(calculated as IC15; see eq S2) were constructed (Figures 3G
and S40). The difference between IC50 and MIC tracked to the
switching half-window CR,

57,58 a metric that can report on
cooperativity (large CR indicates negative cooperativity), or on
whether several active sites58 are involved in an exchange
cascade (Figure S41). Fractional heatmaps (Figure 3H,I) and
two-component correlations (Figure 3J) were extracted to test
for patterns (e.g., inhibitors with similar targets).

Most candidates inhibited the migration of all tested cells on
most surfaces, even in the presence of serum (Figures 3G and
S8−S37). The selectivity patterns varied between CAXs
(heatmap rows), cell types, and surfaces (heatmap columns)

Figure 1. (A) Schematic structure of integrins in inactive (left) and
active form (right), highlighting thiol-mediated activation of motility
and our hypothesis of TMU by CAX moving along integrin disulfide
tracks. (B) Integrins modeled from Protein Data Bank data (PDB
entries 3fcs, 2vdo, 2k9j, 2h7d), zoomed onto the disulfide track and
indicating domains (yellow, disulfides; TD, tail domain; EGF,
epithelial growth factor; PSI, plexin−semaphorin−integrin).12−15

Figure 2. Dynamic covalent inhibitor candidates 1−11 and
irreversible 12 ordered by relays (1−7, chalcogens; 8 and 9,
pnictogens; 10−12, tetrels) and activity (increasing left to right,
darkening blue; Figure 3G), above established integrin (13, 14) and
PDI inhibitors (15, 16). Full structure of TMU reporter 17: Figure
S2.
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(Figure 3G−I). Most CAXs were much more active than the
known Ellman reagent 1.4 The inhibition enhancement (IE =
IC50(1)/IC50(test)) reached ≥70 for chlorodithiabismepane
953 halting the aggressive MDA-MB-231 cells on fibronectin or
32 for the bioinspired epidithiodiketopiperazine (ETP)51,55 3
inhibiting MCF-7 cells on the same surface. The typically most
efficient CAXs for TMU, such as 9, 10, and 3, gave inhibition
that could be up to 10 times more potent than established non-
covalent integrin inhibitors such as cyclic RGD 13,6,59,60 α5β1-
selective anti-SARS-CoV-2 14,2,61,62 and protein disulfide
isomerase (PDI) inhibitors 15 and 16 (Figure 3G,H).63−65

Fractional heatmaps weighted against ETP 3 highlighted, for
instance, its selectivity for MCF-7 cells on all surfaces and the
high activity of pnictogen- and tetrel-centered CAXs 8−12
against the aggressive MDA-MB-231 cells (Figure 3H). For
every cell type on every surface, at least one CAX
outperformed the benchmark covalent PDI inhibitor 15, and
the nature of those CAXs varied (exception: HK on F; Figure
3I). Focused two-component correlations are an alternative
tool to recognize selectivity, as exemplified here with MDA on
F against MCF-7 on V (Figure 3J).

The appearance of unique patterns with distinct hotspots
supported that CAX inhibitors operate selectively, beyond
global reactivity, with specific mechanisms and therefore have a
certain drug discovery potential. The most antimigratory CAXs
such as 3, 9, and 10 contain highly reactive, fast-exchanging
chalcogen-, pnictogen-, and tetrel-centered relays. Those CAXs
that are typically excellent for TMU but underperformed in the
antimigratory assay were those that (i) produce slow-
exchanging, “sticky” dynamic covalent networks that excel for
cytosolic delivery, like the bioinspired benzopolysulfane
(BPS)54 4, (ii) exchange only in aprotic hydrophobic
environments like cyclic thiosulfonate (CTO)44 6, or (iii)
may prefer to exchange with other protein partners, such as
asparagusic acid (AspA) 2 with the transferrin receptor.43

These trends were consistent with the hypothesis that the
inhibition of cell motility by the most efficient CAXs operates
with fast exchange cascades along thiol or disulfide arrays on
cell surfaces.

Good inhibitors of cell motility were overall good inhibitors
of thiol-mediated uptake (Figure 4A,B). Comparison with
literature IC50 for the inhibition of TMU of 17 (ETP 3 with an

Figure 3. (A) Original transmitted light images for MDA-MB-231 cells on collagen I-coated surfaces without (top) and with inhibitors 2 (150 μM)
and 10 (5 μM) 1 and 24 h after scratching, overlaid with automatically generated image masks for cells (yellow) and cell-free area originating from
scratch (area = A, blue) or interstitial space (cyan). Scale bar: 1 mm. (B) Motility m of MDA-MB-231 cells on collagen with 2 (blue squares, 150
μM), 7 (green downward triangles, 50 μM), or 10 (purple upward triangles, 50 μM) or without inhibitor (black circles, =m0). (C, D) Relative
motility m/m0 on collagen for (C) HK cells with 3 and (D) MCF-7 cells with 6 as a function of concentration and time. (E, F) Wind-rose plots
with tracks of single MDA-MB-231 cells on collagen I in the (E) absence and (F) presence of 9 (3 μM). (G) Heatmap for the inhibition of the
motility of MDA-MB-231, MCF-7, and HK cells on collagen I [C], fibronectin [F], and vitronectin [V] by inhibitor candidates 2−12 and controls
(1, 13−16), measured 2 h after addition at varied concentrations to determine IC50 (top) and MIC (=IC15, bottom), both in μM. “−”: inactive.
(H) Fractional heatmap against 3. (I) Fractional heatmap against 15, arrows indicate the reference inhibitors. (J) Two-component correlation of
MDA-MB-231 cells on fibronectin against MCF-7 on vitronectin (green circles, chalcogens; blue diamonds, pnictogens; orange triangles, tetrels;
error bars, SEM; upward and rightward arrows indicate the actual values to be much higher).
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attached fluorophore)55 into HK cells with the motility of
MCF-7 and MDA-MB-231 cells on fibronectin gave distinct
patterns with weakly linear correlations (dashed lines) that
included either all or only chalcogen-centered CAXs. However,
these and other low-confidence patterns are not further
discussed here, to avoid overinterpretations.
To close the functional feedback loop, β1 integrins were

knocked down in HK cells, as confirmed by immunofluor-
escence quantification (Figure 4C vs E). Cellular uptake of
fluorescent ETP 17 into the cytosol and mostly the nucleus,55

determined under routine conditions,55 decreased significantly
in the absence of β1 integrins (Figure 4D,F). As far as we
know, this difference provides the first direct experimental
support that integrins act as dynamic covalent exchange
partners in thiol-mediated uptake. The complementary motility
inhibition could not be measured because the motility of
knockdown cells was as poor as expected, reappearing only
when integrins were starting to be re-expressed (not shown).
In summary, we report that a focused collection of CAXs

inhibits the motility of various cells on various surfaces. Their
antimigratory activities exceed that of Ellman’s reagent by far
and correlates globally with their abilities to penetrate cells and
deliver substrates into the cytosol. Knockdown experiments

support the conclusion that the same proteins are involved in
TMU as in the antimigratory effect.

This conclusion is important. Despite the rich collection of
candidates,21 only one TMU partner had previously been
robustly identified, i.e., the transferrin receptor, without being
general (for AspA,43 not ETP55). Now we find that the integrin
superfamily is the first general exchange partner that has
experimental support to participate in TMU. These results
thus (a) introduce dynamic covalent cascade exchange
chemistry to the control of cell motility, (b) expand the
CAX drug discovery space from antiviral toward antithrom-
botic and antitumor potential, (c) confirm integrins as
exchange partners in the dynamic TMU networks that deliver
matter into cells, from drugs to pathogens, and thus (d) inspire
new design strategies (e.g., multivalent CAXs30 to benefit from
integrin clustering66). These lessons are likely to enable
significant and varied future advances.

■ METHODS

Automated Cell Motility Inhibition Assay

On a 96-well Black ibiTreat sterile microplate coated with
collagen I, fibronectin, or vitronectin (see the Supporting
Information), HeLa Kyoto, MCF-7 (6 × 104 cells/well), or
MDA-MB-231 cells (9 × 104 cells/well) were seeded in
DMEM + 10% FBS and kept overnight at 37 °C under 5%
CO2 atmosphere. The cell monolayers were scraped with a
homemade device (Figure S1) and washed twice with PBS.
Then the medium was changed to DMEM (with FBS 0−
7.5%), and the inhibitor candidates were added with an
electronic multichannel pipet. With an automated confocal
microscope, transmitted light (TL) images were recorded at
the center of the wells, and time series of 14−26 h were
recorded. The onset of toxicity at high inhibitor concentrations
was identified by dead rounded-up cells that detached and
accumulated in the center of the scratch (Figure S3A), and
measurements were limited to concentrations below this
threshold (Figure S3B).

Automated analysis processed the original time-lapse TL
images (Figure S4A) to generate a relevant mask of the cell
layer. The first set of masks determined the cell edge (Figure
S4C). This was done by top-hat modification of the TL image
that highlights the cell boundaries (Figure S4B). To the
segmented image, a size filter was applied to exclude any object
below 50 μm2 (Figure S4D). Following a similar procedure on
a pixel-intensity-inverted image (Figure S5A,B), the cell body
was segmented (Figure S5C). Finally, the two cell masks, that
is, the cell edge (Figure S4D) and cell body (Figure S5C),
were combined to create the cell layer (Figure S6A). This cell
layer was then slightly grown to give a homogeneous layer
(Figure S6B). Since the growth led to the appearance of some
unwanted background objects, a size filter was added to
remove all objects below 30 000 μm2 to give the final cell layer
(Figure S6C). To determine the scratch area, the cell layer
(Figure S6C) was subtracted from the whole image mask
(including all pixels of the image, Figure S6D) to give the
desired area (Figure S6E).

In the final image (Figure S6F), the area of the scratch (A)
was deduced from the blue area, the cell layer was labeled in
yellow, and the space between cells not caused by the scratch
(interstitial space) was labeled in cyan. The motility m was
calculated by subtracting the area of the blue layer at a specific
time (At) from the area at t = 0 (A0), i.e., m = A0 − At, and

Figure 4. (A) IC50 of 2−12 for MCF-7 cell motility on fibronectin
compared to their IC50 for TMU of 17 into HK cells. (B) Similar IC50
comparison for MDA-MB-231 cell motility on fibronectin (symbols as
in Figure 3J). Uptake data from refs 44, 45, 51−53. (C−F)
Fluorescence microscopy images of (C, D) wild-type and (E, F)
INT β1 siRNA knockdown HK cells incubated with (C, E)
immunofluorescence integrin probe (red) and (D, F) 17 (green)
(yellow, blue: Hoechst 33342, nuclei; scale bars, 30 μm).
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normalized against m0 under the same conditions without
inhibitor. Duplicates were performed for each condition and
averaged. The relative motility m/m0 was plotted as a function
of the inhibitor concentration and fitted to the Hill equation to
retrieve IC15 (MIC), IC50, and n.
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