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Evolving understanding of autoimmune mechanisms and new
therapeutic strategies of autoimmune disorders
Yi Song1, Jian Li 2✉ and Yuzhang Wu1,2✉

Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body’s own components, resulting in tissue
destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have
become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of
the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions
for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to
serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and
target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the
mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune
diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been
evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune
diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic
lupus erythematosus, and sjögren’s syndrome. We discuss the current therapeutics developed in this field, highlight the recent
advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
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INTRODUCTION
Autoimmune disorders such as multiple sclerosis (MS), type 1
diabetes (T1D) and rheumatoid arthritis (RA) occur when
autoreactive immune cells, especially T cells and B cells are
overactivated and recruited to cause self-tissue damage.1,2 By far,
researchers have discovered about 150 types of autoimmune
diseases and adopted a series of treatment measures.3 The
diversity and rapid rise of autoimmune diseases challenge the
health care system and the entire pharmaceutical industry.
Current drugs available for the treatment of autoimmune diseases
are non-specific and have side-effects such as infection, allergy
and malignant disease.4 Instead, antigen-specific immunothera-
pies for autoimmune diseases aim to induce tolerization toward
autoantigens without suppressing the systemic immunity.
New therapies are developed based on a detailed understanding

of the mechanisms of autoimmune diseases.4 In this review, we
describe the epidemiology, clinical diagnosis, pathogenesis, mechan-
isms and therapies of autoimmune diseases. We provide a timeline
to summarize the significant advances in the field of antigen-specific
immunotherapy for the treatment of autoimmune diseases. We
describe the different strategies developed for non-specific biother-
apeutics as well as antigen-specific immunotherapy, and the delivery
methods to induce immune tolerance. We also summarize the Food
and Drug Administration (FDA) approved drugs for autoimmune
diseases and antigen-specific therapies that have entered clinical
trials. The most recent biomaterial-based and mRNA vaccine
strategies for inducing antigen-specific tolerance are highlighted.

BASIC INFORMATION OF AUTOIMMUNE DISEASES
Common epidemiology
Autoimmune diseases have been shown to affect 3–5% of the
population and become one of the most important public health
problems.5,6 Recently, Conrad et al. reported a population-based
cohort study of 19 autoimmune diseases in the UK about 22,009,375
individuals from 2000 to 2019.7 During this period, 978,872 individuals
were newly diagnosed with autoimmune diseases and the average
age of these individuals was 54, however, autoimmune diseases can
occur in almost all age groups (0–95 years). Besides, 63.9% of these
newly diagnosed patients are female, and the age and sex
standardized incidence rates increased. The incidence of celiac disease
and Sjogren’s syndrome increased. Autoimmune diseases affect about
10% of the population in this study and consume considerable social
resources.7 In addition, some autoimmune diseases show seasonal and
regional variations which may provide a guidance direction for
autoimmune disease prevention and therapy.8,9

Immune dysregulation
Autoimmune diseases are characterized by immune disturbances
that cause the aberrant activation of autoreactive immune cells,
resulting in tissue damage. Immune tolerance is established both
centrally and peripherally.10,11 As we all know, T cells undergo
positive and negative selection in the thymus before entering the
periphery to perform immune functions. The negative selection of
autoreactive T cells in the thymus is the major mechanism of
central immune tolerance12 (Fig. 1). Besides, peripheral tolerance-
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Fig. 1 Pattern diagram of the mechanisms of autoimmune diseases. After differentiation of hematopoietic stem cells, progenitor T cell (pro-T
cell) will leave the bone marrow and enter the thymus, and differentiate from double-negative (DN) T cells into double-positive (DP) T cells.
Under death by neglect, negative selection, and positive selection via thymic epithelial cells, single positive T cells with low avidity to
autoantigens-MHC complexes survive and differentiate into CD4 or CD8 and enter the periphery. However, some autoreactive T cells can
avoid these select clearance effects and enter the peripheral. These autoreactive T cells include three types: (1) molecular mimicry, TCR can
recognize the autoantigens and foreign antigens similar to autoantigens such as viruses and some bacteria. (2) dual TCRs, one TCR can
recognize the non-autoantigens and another can recognize the autoantigens. (3) chimeric TCR, different Vα and Vβ combinations can
recognize the autoantigens and non-autoantigens. Viruses, bacteria, and other autoantigens lead to the necrosis of autologous cells and
result in the release of autoantigens. Some bacteria similar to autoantigens can induce the activation of these T cells susceptible to
autoantigens and promote the autoimmune disease. Besides, the stimulation of external antigens can promote the continuous inflammatory
environment and lead to the highly activated immune state of T and B cells. These T cells can secrete various inflammatory cytokines, activate
B cells and recruit many immune cells, and induce inflammatory reaction. Eventually this will lead to the occurrence and development of
autoimmune diseases. (Part of the figure was modified from Servier Medical Art(http://smart.servier.com/), licensed under a Creative Common
Attribution 4.0 Generic License. (https://creativecommons.org/licenses/by/4.0/)
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related mechanisms can further limit the expansion of auto-
reactive cells through clonal deletion, immune anergy or the
induction of regulatory T cells.13,14 Peripheral clonal deletion is
mainly through activation-induced cell death or restimulation-
induced cell death (RICD).15,16 Immune anergy mainly exerts its
mechanism through various costimulatory molecules (like CTLA-4)
and immune regulatory-related cells.17 Besides, follicular DCs and
helper T cells can also affect the immune tolerance condition.18

T cells and B cells have been well investigated for their role in
initiating and sustaining of autoimmune diseases. During auto-
immunity, autoreactive T cells infiltrated into the target tissue.
CD8+ cytotoxic T cells can directly contact and kill the targeted
cells. CD4+ T cells can release large amounts of proinflammatory
factors or provide activation signals to B cells. These proinflam-
matory factors recruit many myeloid inflammatory cells to specific
tissue and executive-related immune response. Mature B cells can
differentiate into plasma cells and secrete a large number of
autoantigen-targeting antibodies (Fig. 1). Autoantibodies activate
the complement system or kill the targeting cells by antibody-
dependent cell-mediated cytotoxicity. Besides, the formation of
antigen-antibody complexes is critical for some autoimmune
diseases such as SLE. In SLE, these complexes deposit in the
kidney and stimulate the inflammatory response in local tissue to
cause tissue damage.19

Genetic factors
The breakdown of immune tolerance is based on genetic
susceptibility. Human leukocyte antigens (HLA) gene fragment is
the most relevant gene to immune system, and variation of some
loci in this region may promote the occurrence of autoimmune
diseases.20 PTPN22 gene outside the major histocompatibility
complex (MHC) region plays an important role in many
autoimmune diseases including RA, Systemic lupus erythematosus
(SLE), etc.21,22 Besides, the variation of gene coding antigens can
also promote the occurrence of autoimmune diseases.23 Although
most autoimmune diseases are polygenetic, some monogenic
variations also have a strong impact on autoimmune diseases
such as complement-related genes, nuclease hydrolysis-related
genes and immune regulation-related genes.24–26 Researchers
also emphasize the epigenetic factors for autoimmune dis-
eases.27–29 Females are more frequently affected by autoimmune
diseases than males. This gender bias is associated with hormones
and X chromosome.30–32

Environmental triggers
Many environmental factors have been associated with the
development of autoimmune diseases. Meanwhile, these factors
also reflect the pathogenesis of autoimmune diseases. Molecular
mimicry hypothesis suggests that molecular mimicry is one of
the environmental factors that leads to the break of tolerance
and elicits autoimmune responses. It occurs when exogenous
antigens similar to autoantigens induce the activation of
autoreactive T cells or B cells in a susceptible individual.33 In
addition, the models of dual TCRs and chimeric TCR also raise
other possibilities34,35 (Fig. 1). Researchers also considered the
exposure of pathogen-associated molecular patterns such as
endotoxin or lipopolysaccharide repeatedly can stimulate the
innate immune responses and enhance the adaptive immune
responses. T and B cells will be in a state of highly activated
immune state in this case.36 Multiple infectious agents have
been suggested to play a role in autoimmune diseases. For
example, Epstein-Barr virus (EBV) can stimulate the innate and
adaptive immune responses simultaneously because the protein
structure of this virus is similar to RNA binding proteins.37–39 EBV
has been associated with many autoimmune diseases such as
MS,40 SLE41, and RA.42 The disturbance of the composition of
microbiota (Fungi, bacteria, viruses, etc.) located in gut, mouth
and skin of the host can affect the host immune system43

(Fig. 1). Besides, these coexisting microorganisms can translo-
cate in blood circulation and locate in the tissue to trigger
immune responses locally.44,45 Some microorganisms may
regulate biological metabolic process to promote immunity.46,47

The nutrition change in some Western countries coincides with
the rise in autoimmune diseases. This may be explained by
interactions among dietary, gut microbiota, metabolites and
immune cells.48 Smoking has also been reported to affect the
progress of autoimmune diseases but the mechanism is still not
clear.49

Molecular signaling pathways related with autoimmune diseases
The activation of immune cells requires the involvement of
several molecular pathways and membrane surface molecules,
which are closely related with autoimmune disease pathogen-
esis50 (Fig. 2). Here we also make a general description of some
signal pathways and related molecules about T and B cell
activation. CD28 system-related molecular pathways including
CD28, CTLA4, and the shared ligands (CD80 and CD86) mainly
are associated with the activation, proliferation and survival of
T cells and this pathway is PI3K dependent. The YMNM sequence
at the tail of CD28 is activated, and then the p85 subunit is
combined with it subsequently. Activated PI3K will recruit
proteins such as PDK1 and PKB/AKT, and then induce the
activation of downstream targets, including mTOR, IκB, GSK3β
and Bad, which can regulate the activity of transcription
factors.51,52 CD28-deficient mice show the impaired germinal
center and fail to generate normal levels of immunoglobu-
lin.53–55 CD28 deficiency can delay disease progression and
reduce disease severity in various autoimmune disease models
including EAE,56 MRL/lpr model of SLE57 and collagen-induced
arthritis model of RA.58 CTLA4 pathway can inhibit the CD28
pathway by binding the same ligands (CD80 and CD86).59–61

Targeting CTLA4 drugs have been applied in clinical trials in
psoriasis and juvenile idiopathic arthritis.62,63 ICOS pathway will
be upregulated after activation of CD4+ T cells and it can also
mediate PI3K-AKT signal pathway for cell activation.64,65 ICOS is
closely related to T follicular helper (Tfh) cells via IL-21 and IL-4
secretion.66 Hence, autoantibodies-related autoimmune dis-
eases mentioned above are greatly influenced by ICOS path-
way.67–69 Other CD28 superfamily members also include PD1
and BTLA which can inhibit immune activation.70,71 PD1 agonists
can effectively reduce the severity of collagen-induced arthri-
tis72,73 and colitis models induced by dextran sodium sulfate or
T cell transfer.74

The binding of CD40 on T cells and CD40L on B cells can
promote B cells interior recruits the TNFR-associated factors
(TRAFs), and reaction molecules include NIK, inhibitor of NF-κB
kinase and TPL2 which lead to the activation of transcription
factors such as NF-κB and AP1 at last.75 CD40-CD40L is a universal
signal for various immune cells to induce widespread downstream
immune function, especially in humoral immunity76 including T
cell-dependent antibody production, formation of germinal
centers and differentiation of memory B cells.77,78 In addition to
antibody induction, CD40 pathway can also result in inflammatory
factors including TNF and matrix metalloproteinases (MMPs) for
joint destruction in RA.79 CD40 is also continuously expressed on
salivary gland ductal epithelial cells and endothelial cells80 to up-
regulate adhesion molecules for inflammatory progression in
Sjögren’s syndrome (SS).81,82 Blocking CD40 pathway can decrease
disease activity and clinical remission in a RA clinical trial.83 The
similar therapeutic effect also appears in SS model treated with
anti-CD40L.84 Besides, the binding of OX40 on T cells and OX40L
on antigen presenting cells (APCs) is another important pathway
for immune activation. The downstream of OX40 will induce many
signal pathways such as PI3K-AKT, NF-κB, and MAPK by recruiting
TRAF2, TRAF5, and other molecules.85,86 TNF receptor family also
includes TNF, BAFF, APRIL, RANK, etc.50 OX40-OX40L mainly
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promotes the differentiation of helper T cell subsets, cell
proliferation and activation, and the secretion of immune-related
cytokines.85 Polymorphisms of the OX40L corresponding gene
(TNFSF4) have been especially correlated with SLE,87–89 and have a
general correlation with SS,90 system sclerosis91,92 and sleep
disorder narcolepsy.93 The inhibition of OX40 showed the
potential for atopic dermatitis treatment in a phase 2a clinical
trial.94 Each signaling pathway interacts with each other to form a
complex and multidimensional signaling network to maintain
immune homeostasis. Researchers tried to treat autoimmune
diseases by targeting these pathways to inhibit the expansion of
inflammatory effects.

T CELLS AND AUTOIMMUNE DISORDERS
T cells are the main cell type responsible for maintaining tolerance
and play a key role in many autoimmune diseases. In this section,
we describe autoimmune diseases that are characterized by
inappropriate activation of autoreactive T cells and break of T cell
tolerance. We review the clinical-related information and patho-
genesis of T cell-mediated diseases including MS and T1D.

Multiple sclerosis
Epidemiology, genetic factors, and environmental triggers. MS is an
inflammatory demyelinating disease that affects the central
nervous system (CNS) and is the most common cause of non-

Fig. 2 Related molecular pathways and membrane surface markers. OX40-OX40L, TRAF2/TRAF5/TRAF6 will induce the form of IKKα/β/γ which
further leads to NF-κB entering the nucleus. Besides, OX40-OX40L can promote PI3K/Akt pathway and cause STAT5 to enter the nucleus. CD40-
CD40L will recruit various downstream molecules. TRAF1, TRAF2, TRAF3, and TRAF5 bind competitively the one CD40 tail site and TRAF6 can
bind to another individually. They can promote the Ras/ERK pathway and the non-classical NF-κB pathway, NIK pathway. Besides, it can
promote the TAK1 and MKKs/p38 pathways. CD40-CD40L can start the JAK3/STATs pathway. CD28-B7-1/B7-2 also provides the activation
signal. After the tyrosine phosphorylation of the YMNM fragment, the subunit p85 of PI3K binds to YMNM. PI3K will recruit PDK1 and PKB/Akt,
and PKB can phosphorylate downstream targets such as mTOR, IκB, GSK3β and Bad after PKB is phosphorylated by PDK1 which leads to an
increase of the transcriptional activity of NF-κB and NFAT. Besides, CD28 signal will recruit GRB2/GADs and increase NF-κB, NFAT, and AP1 by
Vav catalysis. CTLA-4 also binds B7-1/B7-2, but it transmits the suppression signal to downstream. The specific process is through the
inhibition of ZAP70 and PI3K/Akt pathway by recruitment of SHP2 and inhibition of PI3K/Akt pathway by PP2A. The combination with PD-1
and PD-L1 leads to the activation of the tyrosine phosphorylation of the ITIM and ITSM at the tail of PD1. SHP-1 or SHP-2 can bind the ITSM
and promote the expression of PTEN which can further inhibit the activation of PI3K/Akt pathways and ZAP70. The SHP2 can also promote the
BATF to enter the nucleus. It leads to the inhibition of T cell proliferation and inflammatory progression. This inhibitory process may be
somewhat similar to the CTLA-4 pathway
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traumatic disability in young people.95–98 There are about 2.8
million people living with MS and a new patient appears every
5 min all over the world.99 The incidence rate for females is twice
that of males, but the ratio can even reach 4:1 in some
countries.97,99 MS is a complex autoimmune disease with
substantial heterogeneity among patients. Researchers have
discovered that the HLA-DR15 haplotype may be the major
consideration for MS risk genetically.100 Besides, another large
genetic research established a reference map about susceptibility
genes of MS based on big data processing, which includes 200
autosomal susceptibility variants outside the MHC region, 32
variants in the MHC region and 1 variant in chromosome X.101 The
MS risk-related gene map can help us to continue to deeply
investigate the mechanisms of MS. For environmental factors,
researchers have shown that the commensal microbiota in the
human intestine may affect the occurrence of MS, based on their
role in maintaining immune cell homeostasis. Disturbance in the
composition of microbiota may trigger MS.102,103 Some research-
ers also point that EBV infection is essential for MS, and there is
evidence to support that the MS prevalence of people with EBV
infection is 32 times more likely than that of other virus
infections.104 The mechanism of EBV infection to cause MS is still
not clear, current studies suggest the role of molecular mimicry
mentioned above in causing the break of immune tolerance and
the development of autoimmune disorders.105 People in higher
latitudes are more likely to have MS and researchers inferred that
stronger ultraviolet light in high latitudes will affect the level of
Vitamin D which can further affect the onset and prevalence of
MS.106,107 Obesity and smoking have also been reported to have a
certain correlation with MS.108,109

Clinical manifestation and diagnosis. The majority of MS patients
will experience a relapse remission phase called Relapsing-Remitting
MS (Rel-Rem MS, RRMS) characterized by acute relapses followed by
partial recovery. Over time, about 80% of patients with RRMS will
develop to the secondary process called secondary-progressive MS
(SPMS) at which time the patient’s condition will deteriorate
suddenly.97 Primary-progressive MS (PPMS) accounts for around
15% of MS patients which is characterized by a progressive disease
course without a relapsing-remitting phase onset. The clinical
manifestations of MS include cognitive impairment, motor impair-
ment, fatigue, visual disorders and sensory disorders.110,111

For MS diagnosis, the combination of clinical, imaging and
laboratory evidence is used. The diagnosis of MS via the detection
of CNS lesions by T2-weighted scans or the contrast agent
gadolinium from magnetic resonance imaging (MRI) and some
other diagnostic methods are in continuous development such as
positron emission tomography (PET) imaging technology.112–114 In
addition, the detection analysis of cells and IgG antibodies, protein
concentration, pleocytosis, and some immune cells in cerebrosp-
inal fluid (CSF) and CSF oligoclonal bands are equally important to
provide evidence for clinical diagnosis of MS.115,116 However, there
are still no clear blood biochemical indicators available that can
reflect the development of MS accurately. In addition, temporal
and spatial development of clinical manifestations can provide the
diagnostic basis for MS.116

Immune dysregulation in MS. The cause of MS remains elusive.
The development of MS may start from the dysregulation of
peripheral immune tolerance or CNS intrinsic events. The
autoreactive T cells activated at peripheral traffic to the CNS
through the blood-brain barrier (BBB) via some adhesion
molecules (VCAM-1 and ICAM-1) to attack the myelin sheath
formed by oligodendrocytes in CNS, meanwhile trigger more
immune-activated cells infiltration to CNS, up-regulate the
inflammatory signaling pathways and induce more inflammatory
cytokines. Myelin-reactive T cells can migrate into the bone
marrow in a CXCR4-dependent manner to skew hematopoietic

stem cells (HSCs) toward myeloid lineage and augment CNS
inflammatory injury and demyelination.117 Researchers suggested
that the activation of memory B cells can drive the autoprolifera-
tion of Th1 brain-homing cells via HLA-DR.118 This work provides
an explanation for the efficacy of anti-CD20 therapy for MS.
Epitope spreading causes the change of autoantigens during the
disease progression and gives rise to pathogenic T cell clones that
evade regulation by Treg cells and trigger more damage.95,97 This
is also the key and difficult point of treatment (Fig. 3a).
The cells involved in MS include T cells, B cells, APCs, myeloid

cells and some glial cells. Th1 and Th17 play main roles in
attacking the myelin sheath specifically by secreting
inflammatory-related cytokines and CD8+ T cells contribute to
disease pathogenesis via a FasL-dependent mechanism that
promotes lesion formation.119–121 B cells secrete antibodies or
inflammatory cytokines to attack the myelin sheath. Besides, other
inflammatory cells also secrete proinflammatory factors such as
IFN-γ, TNF-α, IL-17, IL-23, etc. Foxp3+CD4+ T cells, IL-10+ T cells
(TR1),122,123 and some regulatory B cells (Bregs) can secrete IL-10,
TGF-β, IL-35, and other anti-inflammatory factors.124,125 Astrocytes
are the initiators to create the inflammatory environment by
generating MMPs, ROS, TNF-α, and RNS. In this pathological
environment, CNS will be severely damaged and eventually lead
to disease-related features97,126–128 (Fig. 3a).

Type I diabetes
Epidemiology, genetic factors, and environmental triggers. Type I
diabetes (T1D) is a common autoimmune disease closely related
with pathological T cell activation which is characterized by T cell
infiltration into pancreatic islets and triggers immune responses
against β-cell antigen.129,130 Approximately 8.4 million patients
suffer from this disease worldwide, and the total incidence rate is
increasing by 2–3% annually.131,132 According to the Markov
model approach, researchers predicted that the affected popula-
tions will reach about 13.5–17.4 million in 2040.131 Availability and
affordability of medicines for diabetes are poor in lower-middle-
income countries.133 Although T1D can be diagnosed in any age
group, the common population are children and adolescents. The
peak manifestation period of T1D is between the ages of 5 and 7,
as well as the pre-puberty period.134,135 Unlike typical auto-
immune diseases, T1D is not biased towards females in terms of
gender and the incidence rate of males will be slightly higher.136

T1D is a typical polygenic hereditary disease and susceptibility
of T1D is strongly associated with genes that encode classical HLA.
HLA DRB1*0301-DQA1*0501-DQ*B10201 (DR3) and HLA
DRB1*0401-DQA1*0301-DQB1*0301 (DR4-DQ8) have been shown
to increase disease susceptibility by 50%. In addition, DRB1*1501-
DQA1*0102-DQB1-0602 (DR15-DQ6) appears to be protec-
tive.137–139 MHC-I-related genes also have an impact on the
development of diseases and the mechanism of the effect is
independent of MHC-II. More than 60 genes outside the HLA loci
region such as CTLA4, PTPN22, KIR, VNTR, IL2RA, INS, etc. also
contribute to T1D.137,139 Environmental triggers, daily dietary
habits, and related enterovirus infection are associated with the
development of T1D.140 Susceptibility factors such as obesity,
vitamin D levels, virus infection, and human microbiota are similar
to other autoimmune diseases.

Clinical manifestation and diagnosis. Fatigue, weakness, and
lethargy will run through the entire disease process for T1D
patients. If not treated in a timely manner, it will trigger a series of
microvascular complications such as blindness, kidney failure,
amputation, terminal sensory impairment, myocardial infarction
and cerebral infarction.141

For patients with classical symptoms, diagnosis is based on the
fasting blood glucose above 7mmol/L, and 2-h plasma glucose
value (2-h PG) above 11.1 mmol/L during the oral glucose
tolerance test. Besides, it may be diagnosed by A1C concentration
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above 48mmol/mol.142 Acute onset of T1D should be diagnosed
by plasma glucose rather than A1C assay. C-peptide concentration
as the marker of endogenous insulin level can serve as a
diagnostic reference. However, it’s not enough to distinguish type
I and type II diabetes only via the above detection methods.129

Biomarkers such as insulin autoantibodies and glutamic acid
decarboxylase autoantibodies should be detected.143,144 T1D is
defined by the presence of one or more such biomarkers.

Immune dysregulation in T1D. The analysis of biomarkers
indicating the process from disease susceptibility to active
immunity, and finally to the loss of autoimmune regulation,
leads to the comprehensive understanding of T1D disease
pathogenesis.143 The onset of T1D is considered to be the
presentation of β-cells-related peptides via APCs to naïve T cells
in pancreatic lymph nodes. These naïve T cells contacted with
APCs escaped to the periphery because of the abnormal genetic

Fig. 3 Pattern diagram of some typical autoimmune diseases. a Mechanism diagram of MS. Autoreactive T cells enter the CNS through the
adhesion molecules on the BBB and trigger local inflammation of the CNS which causes the demyelination reaction and neuronal cell death.
b Mechanism diagram of T1D. DCs induce the generation of autoreactive T cells which promote the local inflammation of the pancreas and
cause the death of pancreatic β cells which lead to impaired glucose metabolism. c Mechanism diagram of RA. After the activation of induced
autoreactive T cells by DCs, various immune cells in the joint cavity begin to execute abnormal programs and fibroblasts will proliferate. The
autoreactive antibodies released by B cells can form immune complexes which further expand local inflammation. It ultimately causes the
death of osteocytes and osteoarticular injuries. dMechanism diagram of SLE. It most often involves the kidney, and the pathological change is
similar to RA. Immune complexes and complement will deposit in the glomerulus and promote the inflammatory reaction which causes
kidney damage finally. e Mechanism diagram of SS. The mechanism of abnormal activation of immune cells is similar to the aforementioned
diseases. But it mainly occurs in salivary and lacrimal glands which leads to the epithelial cell death and loss of the function. (Part of the figure
was modified from Servier Medical Art(http://smart.servier.com/), licensed under a Creative Common Attribution 4.0 Generic License. (https://
creativecommons.org/licenses/by/4.0/)
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variation mentioned above when they undergo both positive
and negative selection in thymus.145 The activated T cells will
further differentiate into functional effector and memory T cells.
Part of CD4+ T cells will assist B cell differentiation to plasma
cells to produce multiple anti-β-cells antibodies and others will
continue to secrete inflammatory cytokines.145 Various myeloid
inflammatory immune cells can enter pancreatic islets via
gradient changes of chemotactic factors and attraction of
numerous inflammatory cytokines for inflammatory environ-
ment expansion.146 More CD8+ T cells can release killing factors
such as perforin and granular enzymes when they contact with
β-cells directly.147 These immune cells will lose the immune
regulation function gradually with the T1D develop-
ment.129,130,148 The entire pancreatic islet shows immune
infiltration and overall pancreatic manifestations are reduced
volume, morphological atrophy and loss of secretion function149

(Fig. 3b).

AUTOANTIBODIES AND AUTOIMMUNE DISORDERS
Autoimmune diseases mainly mediated by antibodies tend to be
more like systemic syndrome caused by immune system disorders.
From the initial immune imbalance of a single organ or tissue,
almost all kinds of organs in the body will be affected because of
the occurrence of epitope diffusion. Here we review the clinical-
related information and pathogenesis of autoantibodies-related
diseases including RA, SLE and SS.

Rheumatoid arthritis
Epidemiology, genetic factors, and environmental triggers. RA is a
common systemic autoimmune disease and chronic inflammatory
arthritis characterized by symmetric and polyarticular pain. RA
mainly accumulates synovium and surrounding soft tissue at the
synovium.150–152 The incidence of RA varies widely across the
world which is reflected in the higher incidence in Europe and
North America, and lower incidence in Southeast Asia region.153

The age-standardized prevalence and incidence increased by 7.4%
and 8.2%, respectively.154 All ages are at RA risk, but the risk
increases significantly after the age of 40.155 The male-to-female
sex ratio also increases with age from 1:2 in the young to 1:4 in the
old, which may be caused by the decline of estrogen levels after
menopause in women.153,156

HLA-DR locus is the most important genetic risk factor for RA.
Researchers found the key 5 amino acid sequences (70–74) of the
HLA-DRβ chain called a shared epitope.157,158 Other genetics
regions such as PTPN22, PADI4 and TNFRSF11A in non-MHC
regions also contribute to the RA occurrence even if the
contribution is not particularly significant.159–161 Besides, epige-
netic modifications such as DNA methylation will increase RA
susceptibility.162 For environmental factors, smoke seems to be
the most important for RA.163 The reason may be that exposure to
cigarette smoke promotes the pulmonary mucosal and draining
lymph nodes prior to inflammation and then induces immune
disorder inside the organism.164,165 Besides, some infection factors
such as EBVs, retroviruses and bacteria especially in the oral cavity
and the interaction of many microorganisms influence RA
occurrence, but the specific mechanism is still unclear.166–168

Obesity and sodas are also important for RA.169 However, it is
worth noting that alcohol intake seems to provide protection
against RA, and some groups considered this may be related to
the change of the microbial structure composition by alcohol.170

Some trials also demonstrated that long-term supplements of
Vitamin D and omega-3 fatty acids can decline the RA
incidence.171,172

Clinical manifestation and diagnosis. For most patients, the
clinical symptoms show the gradual pain and swelling of joints
early and the chronic inflammation of almost whole-body joints at

later RA stages. The wrists and finger facet joint usually have an
obvious manifestation at an early stage. With the development of
RA, the large joints such as shoulders and knees will show
corresponding symptoms. Affected joints will become bloated,
and even develop into deformity and cause limited movement in
severe cases.150 The affected joints will progress from active
inflammation to irreversible lifelong damage without treatment.
Morning stiffness is the characteristic performance of RA, and it
usually lasts 30 min or longer time with fatigue and weakness
simultaneously. Serious patients may have a high level of
C-reactive proteins (CRP) and erythrocyte sedimentation rate
(ESR), and some patients may have a fever and weight loss.
Furthermore, RA can increase the incidence of cardiovascular
disease, and it is mainly manifested in a functional lesion of the
coronary artery. Some patients also developed pulmonary fibrosis
and inflammation of the respiratory system with RA
expansion.173–175

The American College of Rheumatology (ACR) and the European
Alliance of Associations for Rheumatology (EULAR) revised the
diagnostic criteria in 2010. The new diagnosis was made by the
overall score of the 4 dimensions which include the number
counting of joint involvement, rheumatoid factor (RF) antibody
and anti-cyclic citrullinated peptide antibodies (ACPAs) titers in
serum, CRP and ESR of acute phase reactants and whether the
duration of symptoms lasts for 6 weeks. When the score is more
than 6, RA can be confirmed clinically.176,177

Immune dysregulation in RA. A variety of autoantibodies, mainly
ACPAs and RF antibodies, are the initiators of this disease.178,179

The cell-cell interaction of specific immune cells within the
synovium is the basis for RA occurrence. APCs represented by
DCs present the RA-related antigens such as citrullinated
peptides to T cells with the major phenotypes as CD4+

PD1+CXCR5-, and they are also called peripheral helper T (Tph)
cells that generate IL-21 primarily within the synovium.180

Besides, some CD8+GZMK+ T cells also appear to generate
IFN-γ.181 Tph cells can assist B cells to differentiate into plasm
cells and generate a large number of antibodies along with IL-6
and GM-CSF to attack the tissue in the synovium. In this process,
macrophages, neutrophils and other myeloid cells can provide
the inflammatory environment. Numerous fibroblasts also
emerge under the action of TNF-α, IL-12, IL-13, IL-17 and TGF-
β, and amplify inflammatory effects.182–184 Monocytes will
further differentiate into osteoclasts to release related proteases
for bone erosion and cartilage loss. Researchers found a distinct
population of CX3CR1+ tissue-resident macrophages that exert
immune regulatory function by maintaining a tight-junction-
mediated barrier and restricting inflammation.185 These multiple
pathways and mechanisms expand into a systemic autoimmune
response without effective treatment151,186,187 (Fig. 3c).

Systemic lupus erythematosus
Epidemiology, genetic factors, and environmental triggers. SLE is
an autoimmune disease characterized by producing anti-nuclear
autoantibodies and causing the immune complex deposition in
various organs, and it leads to chronic and systemic diffuse
connective tissue disease that mainly affects young women.188–190

The overall global prevalence and the incidence of SLE are about
0.3–0.5% and 0.0022–0.0231%, respectively.188 The annual age-
standardized mortality rate of patients is higher than many other
autoimmune diseases, and about 2.7 deaths per million inhabi-
tants in 2014.191 The mortality rate of women is much higher than
that of men. Black, Asian, and Spanish populations have a higher
risk than the white population for SLE and the clinical manifesta-
tion of diseases is more serious.191–194 It is worth noting that about
90% of patients are women, and most of them are of childbearing
age and presenting diversity in SLE performance can significantly
affect fertility function.195
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HLA-II gene region is the susceptible locus of SLE, and HLA-
DRB1 has the strongest correlation with SLE. Studies have shown
that HLA-DRB1*03:01 is related with the generation of anti-Ro and
anti-La autoantibodies and HLA-DR3 has a strong connection with
anti-dsDNA antibodies. A high-density case-control single nucleo-
tide polymorphism research in the MHC region identified the
independent and interacting sites of HLA-DPB1, HLA-G and
MSH5.196 Besides, mutations in complement pathway-related
genes are a high risk for SLE because of the obstacle to cleaning
the cellular debris. Monogenic influence on SLE to cause high-IFN
levels is also undeniable, and these monogenic groups include
DNASE1/DNASE1L3, PRKCD, TREX1, STING, SAMHD1, etc.196

Epigenetic modification is also an important genetic reason.197

Like many other autoimmune diseases, smoking and EBV infection
can induce the pathogenesis and moderate drinking provides a
protective mechanism.198,199 The difference is that mercury and
silica exposure are important environmental factors for SLE
because of their function as an adjuvant to induce the
transcription of proinflammatory cytokines and T-cell
responses.200,201

Clinical manifestation and diagnosis. The clinical features of SLE
are heterogeneous and various organs are affected. The patients
usually have constitutional symptoms and fevers, and many
patients also exhibit skin and mucosal symptoms such as butterfly
erythema, mucosal ulcer (usually appearance in oral and nasal
cavities) and alopecia. Butterfly erythema is a typical symptom
appearing as red patches located on the bridge of the nose or
both sides of the cheekbones.190,192 Many patients have joint and
bone pain complications similar to RA, which are also symmetrical
and have morning stiffness. Some patients also have chest,
pericardium, and peritoneal fluid once the serosal inflammation
progresses to a certain extent. Lupus nephritis is a major visceral
manifestation of RA, the patients will experience hematuria,
proteinuria, and possible systemic edema at last.202 Besides, SLE
can affect the cardiovascular system to cause pericarditis,
endocarditis and coronary artery lesions, the respiratory system
to cause pulmonary arterial hypertension and pulmonary fibrosis,
and the digestive system to cause pancreatitis and a series of
intestinal diseases.190,203,204 Therefore, early identification and
intervention are necessary to prevent serious and irreversible
pathological damage.
EULAR and ACR developed new classification criteria in 2019

that include positive antinuclear antibodies (ANA) followed by 7
clinical (constitutional, hematological, neuropsychiatric, mucocu-
taneous, serosal, musculoskeletal, renal) and 3 immunological
(anti-phospholipid antibodies, complement proteins and SLE-
specific antibodies inspection) items.205 Anti-nuclear antibodies at
a titer of ≥1:80* on HEp-2 cells or an equivalent positive ANA test
should be used as the entry criterion.205

Immune dysregulation in SLE. The pathogenesis of SLE is
complex, with non-immune cells, innate immune responses and
adaptive immune responses participating in the disease process.
Endogenous nucleic acid combined with autoantibodies in the
form of immune complexes (ICs) has the potential to drive the
production of IFN-α in plasmacytoid dendritic cells which is pivotal
in the pathogenesis of SLE.206 Besides, Janus kinase (JAK)-signal
transducer activator of transcription (STAT) pathway and Bruton’s
tyrosine kinase (BTK) pathway have been shown to play important
roles in the pathogenesis of SLE.207,208 The inflammatory
environment promotes adaptive immune response, and APCs
dominated by DC can present autoantigens to T cells. These
activated T cells further expand inflammatory response by
releasing more inflammatory cytokines (TNF, B lymphocyte
stimulator, etc.) and simultaneously assist in the activation of B
cells.209 B cells undergo differentiation to plasma cells to produce
massive autoantibodies and form complexes with numerous

nucleic acids and related proteins. ICs can deposit and promote an
intense inflammatory response to damage the corresponding
organs and tissues, and ultimately lead to the development of
SLE206 (Fig. 3d).

Sjögren’s syndrome
Epidemiology, genetic factors, and environmental triggers. Sjög-
ren’s syndrome (SS) is a systemic and chronic autoimmune disease
characterized by inflammatory reaction of exocrine organs
including but not limited to lacrimal and salivary glands that lead
to the drying of the mouth, eyes, respiratory tract, and vagina
eventually.210–212 The prevalence and incidence of SS is about
0.01–0.72% and 0.003–0.011% in the population, respectively.210

The gender difference and clinical features are obvious for SS, the
ratio of female to male patients is about 10:1 and female patients
have more serious clinical manifestations.213 A study for the
epidemiology of SS in a French multiracial population discovered
that the non-European race has a higher SS prevalence and
disease profile than the European race, and another study
discovered a higher prevalence for white females.214,215 Although
SS can occur at all ages, children are rarely diagnosed and the
population in 30–50 age are mainly diagnosed.210

HLA gene region is also the key to SS occurrence, and a recent
review has summarized detailed research about the genetics and
epigenetics of SS. Genes significantly associated with SS and
exhibiting pathogenicity include HLA-DQA1, HLA-DQB1, HLA-DRA
(rs115575857), HLA-DRB1 (rs116232857),216 HLA-B (rs2523607)217

and MICA (MICA*008)218 in MHC region, TNF (rs1800629),219

STAT4(rs10168266)220 and IL12A (rs485497)216 in non-MHC region.
In addition, IKZF1 (rs4917129),221 OAS1 (rs10774671)16 and MAPT
(rs7210219)222 may possess SS protective mechanisms. The
epigenetic modification also affects the occurrence and develop-
ment of SS.223 In addition to common environmental factors
which can induce autoimmune diseases, silicone breast implants
also lead to a high risk for SS.224 Virus infection seems to be
particularly important for SS and many studies have demonstrated
that EBV protein EBNA2 can bind with related high-risk sites of
SS.222 Unlike other autoimmune diseases, smoking is not
associated with the development of primary SS.225,226

Clinical manifestation and diagnosis. There is typical heterogene-
ity in the clinical manifestations of primary SS, similar to SLE, and
the patients have various performances because of different organ
involvement. Almost 85% of patients will have glandular
symptoms manifested as ocular dryness (major symptom), ocular
inflammation, oral drying (major symptom), dysphagia, pruritus in
the ear canal, vaginal pruritus or dyspareunia. Approximately 50%
of patients will have cutaneous features such as cutaneous
vasculitis, including purpura and urticarial papules that depend on
the condition of the blood vessel lesion.215 Some patients show
the nonspecific phenomenon such as Raynaud’s phenomenon of
skeletal muscle pain and fatigue.227 Almost half of primary SS
patients can develop into systemic performance and invasion of
the kidney, lung, liver, and other organs.228

SS can be diagnosed via a series of exocrine gland tests and
laboratory examinations. Patients will have assessment tests such
as unstimulated salivary flow rates, stimulated salivary flow rates,
and salivary scintigraphy for evaluating the main salivary glands.
Schirmer’s test I, Schirmer’s test II, and Corneal staining can be
used to evaluate the lacrimal gland function.210 Autoantibodies
detection is very sensitive and can be detected even 20 years
before SS occurrence.229 Antinuclear antibodies (ANAs) are the
most common for the majority of patients. Anti-RNA-related
protein antibodies (anti-Ro/SSA antibodies) are representative of
different clinical stages, histological changes and immunopatho-
logical changes. In addition, anti-La/SSB antibodies are also
specific antibodies for SS patients.230 For laboratory abnormalities,
the samples from SS patients show normocytic anemia,
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leukopenia, and thrombocytopaenia, and some advanced patients
will show the elevation of visceral damage-related enzymes.
Salivary gland biopsy is the most specific detection method, and
clinical pathologists can make the final diagnosis of SS via
checking the distribution and number of antibodies and
lymphocyte infiltration.231

Immune dysregulation in SS. The pathogenesis of autoimmune
epithelitis is an explanation for the immunopathology of SS. The
TLRs molecular pathway activation of glandular epithelial cells
such as salivary gland epithelial cells leads to the production of
autoantigen that can be presented to immune cells. Furthermore,
activation of TLR signaling leads to the upregulation of immune-
competent molecules such as HLA molecules, FAS receptors and
ligands, chemokines, and cytokines. Immune cells and inflamma-
tory microenvironment create a circle of interaction between
epithelial cells and immune cells that promotes the development
of SS210,223 (Fig. 3e).

NEW THERAPEUTIC STRATEGIES FOR AUTOIMMUNE
DISORDERS
Here we mainly summarize antibody therapy, RNA interference
(RNAi) therapy, and Hematopoietic stem cell transplantation
(HSCT) therapy for autoimmune diseases. We review the outcome
of these approaches and discuss their translational potential.

Antibody therapy
Combination of targeted antibody therapies. It is undeniable that
single antibody treatment may have some effect on autoimmune
diseases, however, combined treatment may target two or more
signaling pathways and achieve synergistic treatment effects.
In a 68-week phase II double-blind study for primary SS

treatment (GSK study 201842, NCT02631538), researchers used
the combination of belimumab and rituximab to achieve more
effective results than single rituximab treatment. Almost all CD20+

B cells in salivary glands are exhausted and the phenomenon also
occurs in peripheral CD19+ B cells simultaneously. The regulative
effect is more intense and lasting for the combination of
belimumab and rituximab than single rituximab treatment. In
addition, there are no new side effects added.232 Another
randomized controlled trial (ISRCTN: 47873003) tried belimumab
after rituximab treatment mode for SLE patients via the score of
the IgG anti-dsDNA antibody level in serum.233 Other groups also
proved the low-dose rituximab and alemtuzumab combination
treatment for autoimmune cytopenias can achieve a 100% overall
remission rate and 58% complete response but there are still 6
patients developing infection (NCT00749112).234 Anti-CD22 mono-
clonal antibody conjugated with calicheamicin (anti-CD22/cal) and
CTLA4-Ig combination therapy can suppress autoimmunity in
NOD mice and prolong the allograft survival time.235 Recently,
researchers in the Hospital for Special Surgery (New York) also
conducted a clinical trial to detect the treatment effect of
belimumab and rituximab combination in diffuse cutaneous
systemic sclerosis (NCT03844061). However, not all combination
therapies can have significant therapeutic effects, Atisha-Fregoso
et al. demonstrated that the combination of belimumab and
rituximab did not alleviate symptoms of general Lupus Nephritis
patients (NCT02260934).236 The rituximab and alemtuzumab
combination therapy trial (NCT03312907) for SLE by GlaxoSmithK-
line started in 2019.237 Regrettably, the result of combination
therapy illustrates that it cannot improve disease conditions and
even cause more serious infections.238

Compared with therapeutic measures of multiple antibody
combinations, therapeutic monoclonal antibodies combined with
some chemotherapeutics or other immunosuppressive biologics
seem to be more widely applied. A study about Certolizumab
pegol and methotrexate (MTX) combination treatment

(NCT01519791) for RA showed a significant therapeutic effect
without extra side effects compared with placebo + MTX.239 In
some earlier studies, researchers also tried to treat relapsing MS
with natalizumab plus IFNβ-1a (NCT00030966) and followed up on
the patient’s recurrence and MRI images. Although the therapy
results are encouraging, there are still unavoidable adverse
reactions such as anxiety, congestion and edema.240 Glatiramer
acetate and natalizumab combination also have significant
therapeutic effects and are well tolerated.241 Ocrelizumab
(200mg) with MTX can reduce the development of RA, but
ocrelizumab (500mg) with MTX will lead to ascending levels of
serious infections (NCT00485589).242 The type I interferon receptor
antibody, anifrolumab, combined with oral glucocorticoids and
mycophenolate mofetil (MMF) achieved some success in complete
renal response (CRR), however, the incidence of herpes zoster in
the combination group was twice that in the placebo group
(NCT02547922).243 Belimumab with MMF or cyclophosphamide-
azathioprine combination trial (NCT01639339) for Lupus Nephritis
also confirmed the effectiveness of combination therapy.244

Rituximab and prednisone combination for warm autoimmune
hemolytic anemia in adults (NCT01181154) showed more effective
and safer than placebo with prednisone.245 Burmester et al. also
specially studied the influence of the combined MTX dose on side
effects and explained the correlation between dose effect and
clinical efficacy (NCT01185301).246 Studies also propose less
certain treatment effects in monoclonal antibodies combined
with other immunosuppressive drugs. Rituximab+MMF+ corti-
costeroids combination (NCT00282347) did not show more
excellent therapy results compared with rituximab treatment
alone.247

In sum, there is still uncertainty in antibody combination
therapy, and no simple superposition of therapeutic effects
through several targeted drugs and antibodies combination.
Meanwhile, the drug side effects may be strengthened by
medicine combination. In addition, a large number of clinical
trials are needed to explore the dose of drugs used in combination
therapy.

Bispecific antibodies therapies. Bispecific antibodies (BsAbs) are a
new class of antibodies that can identify two different antigens or
two different epitopes of the same antigen (Fig. 4a). The successful
generating of more than 100 BsAbs formats benefit from the
significant advances in antibody engineering and antibody
biology.248 Thanks to their strong multitargeting, high binding
potency, bridging cell action, and cascade amplification
effect,249,250 they have been applied to the treatment of complex
tumors and autoimmune diseases.251–256

Bimekizumab which can selectively inhibit IL-17A and IL-17F
simultaneously is the first BsAbs approved by the FDA in 2021. In
two studies for the treatment of plaque psoriasis, adalimumab
(NCT03412747) and secukinumab (NCT03536884) were compared
with bimekizumab, respectively to evaluate the treatment effect of
bimekizumab.257,258 bimekizumab showed non-inferior therapeu-
tic ability to adalimumab in reducing symptoms and signs of
plaque psoriasis but had adverse events including higher
frequency of oral candidiasis and diarrhea.257 Besides, bimekizu-
mab is also applied in moderate-to-severe plaque psoriasis
(NCT03025542, NCT03410992),259,260 hidradenitis suppurativa
(NCT03248531),261 RA (NCT02430909)262 and ankylosing spondy-
litis (NCT02963506, NCT03928704, NCT03928743),263,264 and has
achieved good curative effects, but infections and infestations still
persist.
Tibulizumab (LY3090106) is another novel tetravalent BsAb

which can target and inhibit the B cell activating factor (BAFF) and
IL-17, and it is synthesized by the link of anti-IL-17 single-chain
variable fragment from ixekizumab and the anti-BAFF fragment
from tabalumab265 (Fig. 4a). And in vivo mouse models and
cynomolgus monkey, tibulizumab can effectively inhibit the
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development and survival of B cells for a long time in mouse
models and cynomolgus monkey.265 Relevant clinical trials
(NCT03736772, NCT01925157, NCT02614716) have been initiated,
but no results have been disclosed yet.

Rozibafusp alfa (AMG 570) BsAb composed of the AMG 557
antigen providing anti-ICOSL sequence and the BAFF-binding
peptides from AMG 623 linking with the C-terminus of AMG 557
heavy chain,266 can target and inhibit the BAFF and ICOSL (Fig. 4a).

Fig. 4 Other new therapeutic strategies to autoimmune diseases. a Some examples of bispecific antibodies in clinical trials. b The schematic
diagram of intracellular mechanisms of siRNA. siRNA consists of a guide (antisense) strand and passenger (sense) strand. The former is a
functional segment for siRNA and the latter is responsible for transportation and loading. siRNA can combine with RNA-induced silencing
complex (RISC) consisting of Argonaute 2 (AGO2), trans-activation response RNA binding protein 2 and DICER1. After the degradation of the
passenger strand, the target RNA sequence can be recognized by the guide strand. Eventually, it can induce the silence of the target RNA.
c The schematic diagram of hematopoietic stem cell transplantation (HSCT). Before determining transplantation, transplanted patients should
be identified. Besides, patients are monitored to prevent flares. Generally, G-CSF and cyclophosphamide (2–4 g/m2) plus uromitexan are
applied to the mobilization of HSCs in patients. About 4 or 5 days after mobilization, we collect the peripheral blood stem cells by
leukapheresis and these cells are CD34+ in general. The patients can be discharged and wait for the immune conditioning after 1 or 2 weeks.
The conditioning process may last for about 10 days. Then HSCs can be infused back into the patients. Patients accepting HSCs are left to
observe in the hospital until the neutrophil level returns to normal. After HSCs infusion, the patients’ lymphocytes may decrease extremely
but their immune systems can rebuild
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The treatment effect is more significant than single inhibitor in
mouse NZB/NZW lupus model and arthritis (CIA) model. It can also
inhibit the development of B cells in cynomolgus monkeys.266

Clinical studies (NCT02618967, NCT03156023) have been initiated
to investigate the pharmacokinetics (PK) and pharmacodynamics
(PD) of rozibafusp alfa.267

Anti-CD22/CD20 bispecific hexavalent antibody (bsHexAb), 22*-
(20)-(20) is developed by Rossi et al., which is composed of Ck-
AD2-IgG-epratuzumab (anti-CD22) and two dimeric CH1- DDD2-
Fab-veltuzumab units (anti-CD20)268,269 (Fig. 4a). This BsAb may be
inspired by the previous BsAb therapy for lymphoma.270,271 The
researchers have tried to treat SLE with 22*-(20)-(20), and
demonstrated the enhanced trogocytosis resulting in reductions
of many B cell surface marker levels. In addition, the 22*-(20)-(20)
used alone showed a better treatment effect than the combina-
tion therapy of the two parental antibodies.269

Notably, many BsAbs such as obexelimab (XmAb5871)
targeting CD19 and FcyRIIb to inhibit B cells line,272–274 MT-
6194 targeting both IL-17A and IL-6R to inhibit the development
of inflammatory environment275 (Fig. 4a), JNJ-61178104 target-
ing TNF and IL-17A276 and romilkimab (SAR156597) targeting
both IL-4 and IL-13277 have been generated and tested in clinical
trials. Clinical trials about these BsAbs reflect the broad clinical
application potential (NCT02758392, NCT02725515,
NCT02725476, NCT02921971).278–281

Compared with application in tumor therapy, the research of
BsAbs in autoimmune diseases is still in its infancy, and there are
many challenges. In a clinical trial of lutikizumab (ABT-981)282 (Fig.
4a) for the treatment of arthritis with synovitis (NCT02087904), the
pain and arthritis symptom improvement are not obvious.283,284

Another phase II clinical trial about SAR156597 for idiopathic
pulmonary fibrosis (NCT02345070) has also failed.285 Although the
results of clinical trials might vary, BsAbs still have many advantages
and offer new therapeutic options for autoimmune diseases.286

RNA interference therapy
RNAi was first discovered in Caenorhabditis Elegans by Fire and
Mello in 1998.287 After that, researchers further studied these small
mRNA (sRNA) and found small-interfering RNAs (siRNAs).288

Although there are many sRNA types including siRNAs, microRNA
(miRNA) mimics, short hairpin RNAs (shRNAs) and Dicer substrate
RNAs (DsiRNAs), the research on siRNA is more in-depth and
shows more direct effects in translation.289–291 Hence, in this
review, we emphasize the siRNA application for autoimmune
diseases. siRNA usually is 15–30 bp in overall length. siRNAs can
trigger efficient target gene silence by inhibiting mRNA translation
and promoting mRNA degradation (Fig. 4b). Pharmaceutical
companies have been devoted to developing the siRNA ther-
apeutics and major breakthroughs were being made that paved
the way to successful clinical translation.292,293 In 2018, the FDA
approved the first liposome complex for siRNA binding (Patisiran)
for the treatment of a rare disease called hereditary transthyretin-
mediated amyloidosis (hATTR).294–296 Indeed, the rapid develop-
ment of siRNA is benefit from lipid nanoparticles (LNPs)
technology progress and related nucleic acid modification
methods.297–299 Researchers also use siRNAs for the treatment of
autoimmune diseases and achieved some progress.300,301

Herman et al. delivered siRNA based on the LNP system to two
types of mouse models of RA for hnRNP A2/B1 silence and
downregulate the expression of proinflammatory cytokines in
macrophages.302 The noncovalent binding of siRNA targeting the
p65 subunit of NF-κB (p5RHH-p65) and melittin-derived cationic
amphipathic peptide can also control inflammation and protect
the integrity of cartilages in RA.303 Other groups also tried PEG-
PLL-PLLeu nanoparticle,304 polycaprolactone-polyethylenimine
(PCL-PEI)/polycaprolactone-polyethyleneglycol (PCL-PEG),305

folate conjugated liposome-based hybrid carrier,306 etc., to deliver
siRNA targeting NF-κB for the treatment of autoimmune disorders.

Lee et al. designed a nanocomposite composed of poly-siRNA
targeting TNF-α and thiolated glycol chitosan (tGC) for RA
treatment. The related inflammatory genes were effectively
silenced in the macrophage stimulation culture test and mouse
RA model.307 Besides, Different nanomaterial carriers are used to
deliver the siRNA targeting TNF-α including Lipid-polymer hybrid
nanoparticles (LPNs),308 degradable cationic polymer (PDAPEI),309

sheddable PEGylated solid-lipid nanoparticle,310 folate-PEG-
chitosan DEAE nanoparticle,311 etc.
Poly-siRNA targeting Notch1 combined with tGC also has good

performance in RA.312 In addition, siRNA is designed to target
complement fragment 5 (C5),313 MMP-9,314 BTK,315 IFN regulatory
factor 5 (IRF5)/ B cell-activating factor (BLYSS)316 and other
inflammation-related genes.
Currently, research about siRNA for the treatment of auto-

immune diseases has been mainly focused on RA, it is essential to
investigate its potential treatment effects on other autoimmune
diseases. With the rapid development of targeted drug delivery
technology, siRNA-based therapy will undoubtedly be used to
treat many other diseases.

Hematopoietic stem cell transplantation
As previously discussed, the fundamental mechanism of auto-
immune diseases is the break of autoimmune tolerance because
of the environment and genetic factors. HSCT provides a
treatment option to restore immune tolerance by replacing or
resetting immune responses.317 During the immune reconstitution
process, NK cells and B cells recovering faster than T cells, with
CD4+ T cells recovered slowly compared to CD8+ T cells based on
a study in MS patients after HSCT transplantation.318 The pre-
existing T cells with pathological and autoimmune reactions will
be replaced by newly formed T cells.319 After autologous HSCT
transplantation in MS patients, B cells shifted from a predomi-
nantly transitional to naïve phenotype, and memory B cells
recovered slowly with reduced repertoire diversity.320 Altogether,
these processes can quench the pre-existing autoimmune
responses and reestablish immune tolerance. However, complete
deletion of all autoimmune pathogenic cells is impossible, and
immune cells with regulatory capacity control the homeostasis of
the repopulated immune system.318 Tregs play an important role
in balancing the body’s immune axis.321–323 Besides, other cells
represented by tolerogenic DCs (tolDCs) with tolerance character-
istics have beneficial roles.324,325 TolDCs have enormous potential
for the treatment of autoimmune diseases due to their ability to
induce immune tolerance.326–328 These tolDCs express low co-
stimulatory molecules and high levels of immunosuppressive
membrane surface molecules including programmed cell death
ligand (PD-L1)329 and inhibitory Ig-like transcripts (ILTs),330 which
leads to the T cell clonal anergy and expansion of regulatory
T cells eventually.327 In the antigen-specific treatment of
autoimmune diseases, researchers regard induced tolDCs as a
standard of treatment success and we will discuss them in more
detail later.
The study of bone marrow transplantation for improving RA in

rat models seems to be groundbreaking to HSCT therapy.331

Afterwards, related technologies developed rapidly and research-
ers have applied HSCT to various autoimmune diseases. From the
European Society for Blood and Marrow Transplantation (EBMT)
autoimmune diseases working party database, we can acquire the
earliest therapy information started in 1994.332 In 1996, Tamm
et al. reported the first treatment with HSCT for autoimmune
disease.333 In 1997, Fassa et al. reported the first results of the
treatment with HSCT for MS and preliminarily verified its
feasibility.334

Autologous HSC may be derived from peripheral blood or bone
marrow and the process is as follows335,336 (1) Mobilization of
stem cells by treatment with cyclophosphamide and granulocyte
colony-stimulating factor (G-CSF). Stem cells can be collected
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4–5 days after the treatment. (2) Conditioning. 1 or 2 weeks after
cell collection, the patients will accept the immunoablative
conditioning including anti-thymocyte globulin and cyclopho-
sphamide. The different ways will be implemented in different
individual patients. (3) Infusion of autologous CD34+ stem cells
and hospitalized for observation. Patients will continue to be
hospitalized to prevent the sudden occurrence of adverse events
after infusion for 1–3 weeks until the recovery of neutrophil
numbers (Fig. 4c).
We mainly describe the therapeutic effect and development of

HSCT in MS. In 2006, a retrospective survey of 183 MS patients
from EBMT reported 5.3% transplant-related mortality (TRM) and
63% of MS patients improved the disease development or
stabilized the mental state during the median follow-up of
41.7 months.337 Afterwards, a group reported that the HSCT can
be effective for aggressive MS failing to respond to conventional
treatment according to the Italian multi-center experience.338 In
2015, Burt et al. reported a significant improvement in the quality
of MS patient life scores and the significant reduction of MRI T2
lesion area.339 Compared with standard immunotherapy, HSCT
therapy promotes the continuous improvement of active second-
ary progression.340 Compared with alemtuzumab for RRMS, HSCT

also seems to have more treatment feedback but it also leads to
more adverse events in the first 100 days after transplantation in
an observational study (NCT03477500).341 Similar results also
appear in the comparison of HSCT with Fingolimod and
natalizumab.342 A long-term clinical outcome and an observa-
tional cohort study in Sweden also affirmed the role of HSCT for
most MS patients with certain efficacy and safety.343,344 However,
a recent matched observational study did not support the use of
autologous HSCT to control disability in progressive MS with
advanced disability and low relapse activity.345

HSCT might also become a treatment option for other
autoimmune diseases. It has been reported that children with
refractory juvenile idiopathic arthritis (JIA) gradually recovered
after reduced toxicity conditioning HSCT therapy. In this report, all
the patients alleviated disease progression and improved their
quality of life, 11 children of them even achieved complete drug-
free remission.346 A clinical trial (NCT00742300) reported the
disappearance of pathogenic dsDNA and resetting of the adaptive
immune system, the regeneration of Foxp3+ Tregs from thymus in
refractory SLE patients accepting HSCT after depletion of pre-
immune system.347 Recently, researchers also found that HSCT
favorably changed the antibody reservoir in systemic sclerosis

Fig. 5 Timeline of the significant advances in the field of antigen-specific therapy for autoimmune diseases. In 1960, researchers discovered
that encephalitogenic protein can suppress EAE progression. Then researchers tried to use modified autoantigens or MHC conjugated
autoantigens to treat animal models of autoimmune diseases. In 1998, researchers have tried to use the DNA coding autoantigens to treat
EAE. Afterward, the application of nanomaterials gradually emerged in autoantigens transportation, and antigen-specific therapy has
experienced a rapid development over the past 20 years. Some researchers also tried to apply the combination of immunosuppressive factors,
autoantigens, and nanoparticles for treatment. In 2021, mRNA-LNP technology has been applied for the first time in autoimmune
disease models
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patients.348 The C-peptide levels also increased significantly and
most of the patients achieved insulin independence under good
control of blood sugar level after HSCT,349 but a report
demonstrated 52% of patients experienced adverse effects
despite a complete immune system recovery.350 This study
suggested an urgent need for safer HSCT options.
It is undeniable that there are many adverse effects of HSCT in

autoimmune disease treatment. Researchers must consider the
possible infertility, early menopause and heart damage in MS and
systemic sclerosis patients.335,351,352 The use of immunosuppres-
sants will also increase the risk of various infections and
malignancies.335,353 Incomplete rearrangement of immune cells
after HSCT will lay a hidden danger for the recurrence of
autoimmune disease. A report showed nearly 10% of secondary
autoimmune disease after HSCT.354 Besides, improved risk
estimates and supportive care are particularly important for
patients who received allogeneic HSCT.355–357 Nevertheless, the
HSCT is still a reasonable option for the treatment of autoimmune
diseases based on its capability to reset or rebalance the immune
system to restore immune tolerance.

EMERGING THERAPEUTIC STRATEGIES BASED ON ANTIGEN-
SPECIFIC IMMUNOTHERAPY
Due to the fact that antigen-specific immunotherapy can target
the disease-causing immune cells without suppressing the whole
immune system, there has been an urgent need to develop new
immunotherapies that induce long-term antigen-specific immune
tolerance for the treatment of autoimmune diseases.358 Although
significant advances have been made in this field, successful
clinical application is still limited. Here we will discuss the current
strategies developed in this field, and highlight the recent
advances in the use of nanomaterials and mRNA vaccine
techniques to induce antigen-specific immune tolerance. Besides,
we also provide a timeline to summarize the significant advances
in the field of antigen-specific immunotherapy for the treatment
of autoimmune diseases based on MS and T1D (Fig. 5).

Autoantigen-based therapies
Whole antigen or modified peptides. It has long been known that
the damage of CNS can be prevented in animals by the
administration of a mixture of encephalitogenic substances before
the experimental autoimmune encephalomyelitis (EAE) model
establishment. In 1960, SHAW et al. found that the combination of
Freund’s adjuvants and encephalitogenic proteins extracted from
the homologous brain can suppress the EAE progression, mean-
while, the suppressing effect is closely related to protein injection
dose.359 They attributed this phenomenon to the specific
desensitization, deflection, antibody neutralization reaction, or
disability of antibody-forming mechanisms359 (Fig. 6). Early studies
have shown that the combination of Freund incomplete adjuvant
and myelin basic protein (MBP) inhibit EAE.360 However, the
administration of MBP whole antigen has been shown to be
ineffective treatments or major exacerbations have emerged both
in clinical trials and in animal models.361,362 For T1D, insulin
administration has been shown to prevent NOD mice from
developing the disease.363 Multiple clinical trials using insulin
immunotherapy have been conducted to prevent or treat T1D, but
the results are still uncertain.364–367

The mechanism of antigen-specific immunotherapy is through
induction of immune tolerance by injection of autoantigens with
high and repeat dose that leads to T cell anergy or results in RICD
and generation of Tregs.16,368 The RICD process is closely related
to TCR recognizing antigens and FAS-FASL inducing apoptosis and
it is an antigen-specific immune regulatory induction process.16

Investigators found that stronger immune suppression can be
induced by high-dose, oligomerized, linear, and soluble epitope
peptides.369–371 The change of protein structure and modification

of certain amino acids in the peptide can induce immune
suppression for the treatment of autoimmune diseases more
efficiently.372 Early researchers have demonstrated that MBP
coupled with diazotized arsanilic and sulfanilic acid (Ars-Sulf-
MBP) as well as modification of arginine, lysine, and tryptophan
residues of MBP selectively can suppress EAE development.373,374

MBP modified by bromide was shown to be effective for EAE
treatment.375 Furthermore, researchers mixed MBP and hapten for
EAE suppression.376 Recently, our group designed novel fusion
proteins to treat EAE and revealed related mechanisms about how
cognate antigens suppress CNS inflammation and EAE
progression.377

The route of administration is particularly important to achieve
better immune tolerance effects. Oral administration and inhala-
tion of MBP were reported in 1988 and 1993 respectively.378,379 It
is worth mentioning that drugs can enter the CNS directly through
the olfactory nervous and trigeminal nerves, and indirectly

Fig. 6 Approaches to deliver autoantigen for the treatment of
autoimmune diseases. (1) Whole antigens, peptides, and APL are
administered through subcutaneous injection, intravenous injec-
tion, intramuscular injection, oral and inhalation. (2) Autoantigens
are transported by microbes such as Lactococcus lactis. (3) Micro-
needles loading antigens target DC cells in the skin. (4) Autoanti-
gens are delivered by hyperbranched polymers. (5) Nanoparticles for
delivering autoantigen or pMHC; (6) Combination of autoantigen,
Nanoparticles, and immunosuppressive drugs. (7) Gel vaccine with
immunosuppressive drugs. (8) Autoantigen transported by extra-
cellular vesicles. (9) Engineered cells modified by autoantigen
specificity. (10) Autoantigen-specific tolerogenic cells adoptive
transfer. (11) Gene therapies based on DNA-plasmid coding
autoantigens. (12) Gene therapies based on mRNA coding auto-
antigens. Abbreviations: i.m.= intramuscular injection; i.v. intrave-
nous injection, s.c. subcutaneous injection. (Part of the figure was
modified from Servier Medical Art(http://smart.servier.com/),
licensed under a Creative Common Attribution 4.0 Generic License.
(https://creativecommons.org/licenses/by/4.0/)
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through the nasal mucosa by intranasal or inhalational adminis-
tered for better CNS drug delivery.380,381

Altered peptide ligands (APL). Altered peptide ligands (APL) are
natural peptide analogs with at least one amino acid substitution
at TCR positions (Fig. 6). Different substitutions in particular
residues may induce different T cells responses,382,383 even
though APL possess similar binding between MHC and TCR to
natural peptide. Some APL cannot induce a complete signal for T
cell proliferation, hence the immune anergy can be induced in this
way384,385 (Fig. 7). Early researchers have attempted to utilize
single amino acid substitution in peptide segments of MBP for the
prevention and treatment of EAE.386–388 Corresponding APL can
also be synthesized by molecular mimicry techniques of microbes
to prevent EAE.389 Besides, some groups designed the MHC
anchor-substituted variant of PLP139-151 (145D, HSLGKWDGHPDKF)
that the seventh amino acid was replaced by aspartic acid and
demonstrated the 145D will not induce the acute hypersensitivity
reaction.390

In recent years, APL is still being used for the treatment of
autoimmune diseases. The novel 3aza-MBP APL which contains aza
substitutions increased protease resistance property and effectively
suppressed EAE disease progression.391 Besides, some investigators
also demonstrated that MBP87-99 (Ala91, Ala96) APL cyclo can
promote the bond to HLA-DR4 and induce antigen-specific
immune regulation392 and others validated cyclic MOG35-55 can
reduce the pathological process of EAE.393

APL of p55-70 of Imogen38 (Imogen38p55-70 APL) can inhibit
the proliferation of β-cell reactive T-cell clone but fail to induce
classical β-cell reactive T cells anergy. In addition, the APL
cannot down-regulate TCR/CD3 complexes.394 Treatment of
NOD mice with IGRP206-214 APLs is inefficient for T1D. Thus, it is
necessary to test the dose of APL as well as the affinity
between APL, MHC and TCR.395 In some clinical trials, APL
possesses a certain potential for induction of immunosuppres-
sion.396–398 However, a small portion of the patients show
hypersensitivity reactions which lead to disease progression in
certain early clinical trials using APL for MS treatment.399,400 It
was considered that the APL therapy is more appropriate for
Th1-mediated autoimmune diseases because APL can promote
the shift away from Th1 cytokines to Th2 cytokines and this can
be an explanation for hypersensitivity reactions.400 Besides,
these APLs all are used in RRMS, APLs for other types of MS
have not been reported yet.

MHC-autoantigen peptides. Naïve T cell activation relies on
3 signals: (1) interaction between TCR and peptide/MHC (signal

1); (2) co-stimulatory molecules (signal 2); (3) cytokines and
chemokines (signal 3).401–405 Rather than autoantigen being
uptake and presented by APCs, soluble peptide/MHC (pMHC)
can directly interact with T cells without co-stimulatory signals.
Anergy T cells will thus be induced if only the existence of the first
signal while the co-stimulator is missing, and it can facilitate
further immune suppression or inhibit the avidity maturation of
pathogenic T cells.406,407

Accordingly, pMHC complexes are applied in autoimmune
disease treatment and Sharma et al. reported the first strategy of
I-As protein-MBP91-103/ PLP139-151 for EAE therapy in 1991.408

Studies using MHC II linking acetylcholine receptor α chain
(AChRα100-116 or AChRα144-163) effectively inhibited experimental
autoimmune myasthenia gravis (EAMG)409,410 and DR2-MOG35-55

can suppress EAE development.411 The stable complexes com-
posed of two-domain MHC II and MBP69-89 can inhibit and detect
encephalitogenic T cells.412 Subsequently, investigators validated
that the I-As/PLP139-151 peptide (RTL401) can induce cytokine
switch, promote the Th2-related cytokines expression in CNS, and
inhibit the encephalitogenic potential of specific pathogenic
T cells.413 Peptides-MHC II dimer was also designed for T1D and
achieved the expected effect.414,415 Recently, Urbonaviciute et al.
reported that MHC II- galactosylated collagen type II (COL2) can
target the antigen-specific TCR via positively charged tags to
expand VISTA-positive nonconventional Tregs for RA.416

Biomaterials-based new strategies for autoantigen delivery
The induction of immune tolerance is affected by several factors
including antigen dosage, antigen administration route, and
delivery system.417 Biomaterials facilitate new strategies to induce
immune tolerance by providing accurate delivery of autoantigens
to the target organs and controlled release of therapeutics.418–420

Microparticles delivery systems. Nanoparticles have been used for
drug delivery and disease treatment, and some nanoparticles have
expanded into extensive clinical applications.421,422 The size,
surface charge, shape, hydrophobicity, and constituent materials
co-determine the drug loading efficacy and organs/cell targeting
ability.423,424 Some nanoparticles themselves have inflammatory
inhibitory effects.425–427 Nanoparticles have been extensively
investigated in autoimmunity disease treatment.428–430

Investigators developed a dual peptide nanoparticle platform
which delivers antigen peptides for primary signal and other
peptides (LABL, binding with ICAM-1) for inhibitory of co-
stimulatory signal. The NPsLABL+MOG is designed for EAE treatment
by this platform, which is more effective than NPsMOG for the
reduction of myelin sheath inflammatory infiltration and induction
of immunosuppression.431 Polystyrene or biodegradable poly(lac-
tide-co-glycolide) (PLG) microparticles bearing PLP139-151 can be
taken up by macrophages expressing the MARCO receptor and
this process is mediated by Tregs, T cell anergy and the activation
of abortive T cell. These microparticles carrying PLP139-151 can
suppress the autoimmune progress and prevent epitope spread-
ing via apoptotic clearance pathways to inactive pathogenic
T cells.432 Based on this principle, low-cost, safe and good
biodegradable PLG coupled with PLP139-151 has also verified that it
can reduce a series of inflammatory cells and inhibit the epitope
spreading in the relapsing-remitting EAE model.433 In another
further study, PLG NPs-PLP139-151 significantly downregulates the
positive co-stimulatory molecules and remains high in negative
co-stimulatory molecules.434,435 Selective targeting of liver sinu-
soidal endothelial cells (LSEC) using NPs delivering autoantigen
peptides can induce antigen-specific Tregs and protect mice from
autoimmune diseases.436 Phospholipid phosphatidyl serine-
liposomes (PS-lipo) loading Insulin A and B peptides can also
induce tolerance APCs and prevent T1D.437 Wilson et al. modified
the autoantigens by synthetic glycosylation (N-acetylgalactosa-
mine or N-acetylglucosamine) which can target the liver and

Fig. 7 Altered Peptide Ligands (APL) for tolerance induction in TCR-
peptides-MHCII. Several amino acid substitutions in key TCR
identification positions can cause the signal transmission process
obstacles which can affect the immune activation and induce
immune tolerance. The yellow circles represent natural amino acids;
the red circles represent altered amino acids
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induce tolerance more easily. Besides, these modified autoanti-
gens can expand the specific Tregs in T1D, MS, and other
autoimmune diseases mice models.438–440

Some investigators packaged autoantigen into gold nanopar-
ticles (AuNPs) owing to their features of ease of synthesis, ease of
shaping, ease of functionalization and facilitating internaliza-
tion.441–443 In addition, AuNPs are validated to have an anti-
inflammatory effect by inhibition of leukocyte migration and
cytokines secretion which attracts us to use it to treat
autoimmune diseases.444 Wegmann et al. designed multiple Ag
peptides (MAPs) containing eight PLP139-151 peptides around
dendrimeric branched lysine core for the treatment of relapsing
EAE.445 Functional amphiphilic hyperbranched (HB) polymers can
precisely control molecular weight and chemical composition to
achieve good biocompatibility, expected drug metabolism and
accurate targeting for drug delivery.446–448 Our group has shown
that functional amphiphilic HB polymers can efficiently deliver
autoantigen and induce immune tolerance by inducing auto-
reactive T cell deletion449 (Fig. 6).
Researchers also attempted to improve treatment strategies

based on pMHC for antigen-specific therapy by nanoparticles in
recent years.450,451 It has been reported that systemic delivery of
nanoparticles coated with pMHC II (pMHC II-NPs) can up-regulate
IL-10 and TR1-related markers in TR1 poised, antigen-experienced

CD4+ T cells (Fig. 6). The group showed that pMHC II-NPs triggered
the expansion of TR1 like cells to promote the formation of
immune regulatory networks and can restore motor function in
EAE mice.452 Regulatory B cells are also a potential immune
regulatory cells population124,125 and play a pivotal role in the
antigen-specific regulatory network induced by pMHC II-NPs452

(Fig. 8).
By analyzing transcriptional markers, Solé et al. pointed out that

the production of FOXP3-IL-10+ Treg1 cells originates from the Tfh
cells via BLIMP1-dependent manner and furthermore confirmed
the important role of the pMHC therapy method for autoimmune
diseases.453 Vacchio et al. reported transcription factor Thpok was
necessary for driving Bcl6 and Maf expression to promote
differentiation from CD4+T cells to Tfh cells.454

Targeting IL-2 to induce Tregs for the treatment of autoimmune
diseases attracted more attention in recent years.455,456 Investiga-
tors tried to apply this method to pMHC and then designed
tolerogenic microparticles (tol-MPs) loaded with rapamycin
(RAPA), biased fusion IL-2 protein and peptide-MHC II tetramers
for EAE treatment.457 The designed tol-MPs supported Treg
expansion and promoted sustained disease reversal of EAE
mice.457 Umeshappa et al. showed that broad liver autoimmune
disease suppression can be induced by TR1 cell formation via
pMHC II-NPs displaying autoantigen epitopes in an organ rather

Fig. 8 The framework of the establishment of antigen-specific immune regulatory networks by pMHC II-NPs. pMHC II-NPs can be recognized
by pathogenic T cells when enter the lymph node through high endothelial venule (HEV) in the T cell zone. Owing to the absence of
costimulatory molecules and the action of IL-10, the pathogenic IFN+CD4+ Th1 will differentiate into memory TR1. The TR1 cells can be
amplified and migrate to the specified location before interacting with DCs and cognate B cells. B cells can differentiate into regulatory B cells
(Bregs). DCs may dampen the ability of activating pathogenic T cells assisted by relevant anti-inflammatory factors. Meanwhile, the Bregs and
TR1 can further regulate the antigen-specific regulatory networks and blunt the autoantigenic and pathogenic cells. The suppression induced
by pMHC II-NPs is disease-specific and self-limiting
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than disease-specific manner.458 For the single-chain pMHC
complex (scKd.IGRP) designed by another group, the peptides
are covalently attached with β2-microglobulin (β2m) which is
linked with MHC I H-2Kd. The group suggested that pMHC I can
induce the apoptosis of CTLs.459

Tsai et al. utilized NPs to deliver T1D-related peptides-MHC
complexes for monospecific resistance of the T1D development,
and demonstrated that pMHC can expand the memory-like and
autoregulatory CD8+ T cells.460 NPs coated with pMHC can blunt
T1D progression and restore normoglycemia in diabetic
animals.460

Transdermal microneedle patches. The skin has abundant APCs
and other immune cells (Dermal DCs, Langerhans cells,
macrophages, dermal γδ T cells, etc.) which makes it an
attractive target for antigen-specific immunotherapy461–463

(Fig. 9). Hence, microneedle (MN) administration can effectively
promote APCs in the skin to engulf these autoantigens and
induce immune regulatory response.464–466 Researchers
reported a dry-coated MN binding with the topical steroid
which can promote longer-retention in the skin. This delivery
way can transport autoantigen to the skin for T1D treatment and
it promotes the antigen presentation for tolerogenic APCs more
strongly than ID injection.467

Dul M at el. have employed the MN delivery system,
MicronJet600, to target the Langerhans cells in the skin for
delivering peptides coupled with gold nanoparticles468 (Fig. 6).
The addition of gold nanoparticles is validated to expand the
distribution of poorly-soluble peptides in lymphoid organs.469 MN-
gold nanoparticles conjugated with proinsulin peptide (C19-A3
GNP) were designed for T1D treatment.470 Another group
designed a MN delivery system which includes peptides, diluents,
and surfactants, and reported that 86% of therapeutic payload can

be delivered to local skin tissue just in 150 s.471 A similar study was
also reported for RA treatment.472

Overall, MN can cause fewer lesions as well as no skin layer
distension compared with traditional needles, and furthermore, it
can target the APCs in the skin to present the autoantigen peptide
efficiently for a longer time with safety and painlessness.473–476

Some transdermal patch is currently applied in clinical trials for MS
and has shown safety and well toleration.477

Soluble antigen arrays. Soluble antigen arrays (SAgAs) are new
antigen-specific immunotherapies strategies that contain small
hyaluronic acid (HA) chains backbone. The peptides can be
conjugated onto HA by hydrolysable linkers (hSAgAs) or stable
click chemistry linkers (cSAgAs) and delivered to the body via the
multivalent, soluble and linear form.478 Investigators combined a
hybrid insulin peptide and a mimotope as SAgAs and showed
efficacy for T1D prevention.478 The group also reported that SAgAs
can direct the response of epitope-specific T cells.479

SAgAs are also validated to induce the desensitization of
pathogenic B cell populations and the restoration of the healthy
phenotype of autopathogenic APCs in the EAE model.480,481

Furthermore, the cSAgAs had a better performance in the antigen
presentation process.478–481

Biomaterials co-delivering autoantigen, immunoregulatory mole-
cules and drugs. Biomaterials loaded with the combination of
autoantigen peptides, a series of immune suppression cytokines,
and immunosuppressive drugs can inhibit the progression of
autoimmune diseases (Fig. 6).
Poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA)

have good biocompatibility, immunosuppressive drug loading
capacity and appropriate size for application in tolerogenic
vaccination. Some researchers demonstrated that PLGA itself can

Fig. 9 The sketch of antigen peptides delivery by microneedle patch. The microneedle delivery system can deliver antigen peptides to the
dermis where there are multiple types of APCs including Langerhans cells, macrophages, and DCs. The abundance of APCs located in the
dermis layers makes it an attractive location to deliver antigen peptides for induction of immune tolerance. (Part of the figure was modified
from Servier Medical Art(http://smart.servier.com/), licensed under a Creative Common Attribution 4.0 Generic License. (https://
creativecommons.org/licenses/by/4.0/)
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down-regulate the expression of MHCII, CD80 and CD86, and resist
DC maturity after lipopolysaccharide (LPS) stimulation which is
related with that PLGA can derive lactic acid to inhibit the
phosphorylation of TAK1 and then suppress NF-κB activation.
Significantly, the immune suppression effect depends on the
molecular weight of PLGA, and the higher the molecular weight,
the longer the time to immune tolerance induction.427 Meanwhile,
PLGA can promote the continuous release of antigens and
immune regulatory cytokines,482 which is beneficial for Treg
induction.483 Biomaterials based on the PLA system also are
potential tools for immune modulation.484 Biomaterials combined
with immune suppression cytokines and immunosuppressive
drugs can further reduce immunogenicity and induce the tolDCs
in vivo.327,482 Besides, PLGA/PLA-NPs have held approval for many
applications in clinical diagnosis and treatment by the
FDA.482,485–487 Cappellano et al. designed an inverse vaccine
containing PLGA NP loaded with MOG35-55 and IL-10 for EAE
treatment.488 Nanoparticles containing PLGA, CD22L, autoantigen
glucose-6-phosphate-isomerase (GPI) and RAPA were shown to
induce B cell tolerance (measured by the low anti-GPI antibodies
and decreased antibody-secreting plasma cells) as well as T cell
tolerance (measured by the expansion of Tregs).489 In another
report, PLGA-NPs-PLP139-151 coupled with RAPA inhibited the
activation of antigen-specific T cells and B cells, meanwhile
induced Tregs and Bregs in SJL mice and protected from EAE
development by s.c. or i.v. administration.490 Further study
demonstrated the robustness of induced tolerance even under
antigen rechallenge with TLR7/8 agonist or complete Freund’s
adjuvant (CFA) and the transferrable tolerance of antigen-specific
Tregs to EAE.491

Antigen-specific PLGA dual microparticle (dMP) system which
contained two sizes of MPs, one is phagocytosable MPs about
1 μm for antigen delivery and the other is non-phagocytosable
about 50 μm for encapsulating factors delivery, was designed for
the treatment of mouse model for MS and showed complete
protection against disease.492,493 A similar study is also reported
about acPLG-PLP-TGF-β,494 PLGA NPs-MOG/MHC-TGF-β1 coupled
with PD-L1 Fc and CD47 fragments495,496 and PLG- BDC peptide
binding GM-CSF.497 In NOD mice, the dMP system induces
immature phenotype and LPS-activated resistance phenotype of
DC and also prevents the T1D development to a certain
extent.498,499

Moreover, studies have shown that colloidal gel vaccine
containing alginate, chitosan and autoantigen peptide can
induce long-term suppression of EAE500 (Fig. 6). Park et al.
developed a tolerogenic nanovaccine to deliver MOG peptide
and dexamethasone loaded on an abatacept-modified poly-
dopamine core nanoparticle (AbaLDPN-MOG). AbaLDPN-MOG
can reduce IFN-γ secretion by blocking the interaction between
CD80/CD86 and CD28.501 NPs-MOG35-55 coupled with 2-(1’H-
indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE)
also induce the FoxP3+ Treg differentiation in vitro and inhibit
the EAE model.502 Yeste A at el. have designed nanoparticles to
deliver both a tolerogenic molecule and β-cell antigen
proinsulin to induce tolerogenic phenotype in DCs through
induction of SOCS2 and suppressed autoimmune diabetes in the
nonobese diabetic mice model.503 Similarly, the NP-allergen
epitope fragment coupled with adjuvant R848 (TLR7 ligand for
reducing the allergy symptoms) protected mice from food
allergic responses.504 At an early stage, Capini et al. also
reported that RA-related Ag-NF-κB inhibitor-egg phosphatidyl-
choline liposomes can induce Ag-specific FoxP3+ Tregs and
inhibit the clinical symptoms of RA.505 Upregulation of PD-L1 is
observed in mice treated with calcitriol-antigenic peptide-
liposomes, and disease development has been alleviated in
the corresponding RA model and vasculitis models.506 Besides,
Multiepitope citrullinated peptide (Cit-ME)-Rapa-Lipid coating
calcium phosphate nanoparticles (LCPs) can inhibit the

consistent inflammation in RA models.507 A similar formula
drug was also validated in another experiment for RA
treatment.508

Luo et al. did not choose tolerogenic drugs but used CRISPR-
Cas9 plasmid (pCas9) combined with antigens and nanoparticles,
which can present the antigens and block the CD80, CD86, and
CD40 simultaneously. It also promoted the generation and
expansion of antigen-specific Tregs.509

Thus, co-delivery of autoantigen peptides with other tolero-
genic agents is essential to combine multiple signals to induce
long-term immune tolerance for antigen-specific immunotherapy.

Autoantigen coupled probiotics and extracellular vesicles
Lactococcus lactis as a versatile and mucosa-targeted vehicle has
been applied to carry a series of drugs including peptides in
recent years.510–513 It has been reported that genetically
engineered Lactococcus lactis can induce antigen-specific toler-
ance through oral administration and the utilization of genetically
modified Lactococcus lactis for celiac disease514,515 (Fig. 6). The
main advantage of the therapeutic approach is to induce
intestinal Tregs (iTregs) differentiation by CD103+ DC after the
antigen uptake516 and facilitate bystander immunosuppression
effects by secreting anti-inflammatory cytokines.517 The co-
delivery of IL-10 and proinsulin via oral administration of
Lactococcus lactis combined with low-dose anti-CD3 therapy can
induce infiltration of autoimmune CD8+ T cells and promote the
accumulation of Tregs in the pancreas.518

Furthermore, extracellular vesicles (EVs) are the cell-natural
nanoparticles released from all eucaryotic and procaryotic cells
and play a vital role in intercellular communication and material
transport, and show great potential in drug or peptide deliv-
ery.519–521 Meanwhile, EVs contain multiple intracellular proteins
and cell surface proteins that are similar to the source cells.522,523

These characteristics of EVs are extremely useful for antigen-
specific therapy. Oligodendrocyte-derived EVs (OI-EVs) containing
multiple myelin peptides naturally have been shown to induce up-
regulation of PD-L1 in monocytes as well as IL-10 in immune
microenvironment to suppress EAE development524 (Fig. 6).
Another group designed engineered EVs coupled with HLA-
PPI15-24 (pre-proinsulin peptide) and PD-L1 to negatively regulate
the activation of T cells in T1D.525

Cell-based antigen-specific immunotherapy
Chimeric antigen receptor T cells. Chimeric antigen receptor
T cells (CAR-T) is a technology biased towards cell engineering
by importing a manually designed CAR molecule to the surface of
T cells to enable these cells’ efficient stress recognition with
targeting cells in the MHC-independent manner.526–528 The
original intention of this therapy was to achieve precise tumor
treatment and it achieved breakthrough results.529,530 Due to the
precise targeting mechanism, researchers have tried to promote
it to other fields such as autoimmune disease treatment531–534

(Fig. 6).
The CAR structure is composed of extracellular structures,

transmembrane domains and intracellular domains. The extra-
cellular portion is usually a single-chain variable fragment (scFv)
and spacer, and the former is connected by heavy and light chain
ligands of monoclonal antibodies and can combine the specific
antigen.535 The transmembrane domains usually come from CD8
or CD28, and these domains are used to connect the extracellular
antigen binding domains and intracellular signal transduction
domain. The intracellular domains are usually CD28, CD3ζ, and
other co-stimulatory molecule domains for T cell activation.536

Zhang et al. chose the 4 citrullinated peptide epitopes as the
ligands targeting autoreactive B cells to generate engineering
T cells. These engineering T cells can kill the hybridoma cells
induced by antigenic peptides and the autoreactive B cells from
RA patients specifically.537 A recent report about a young woman
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with severe SLE and serious complications accepted the CAR-T
targeting CD19 and other B cell epitopes after the failure of
treatment with other monoclonal antibodies and glucocorticoids.
During the next 7 weeks after treatment, CAR-T cell numbers
rapidly increased and the patient did not have any adverse events
related with CAR-T.538 Zhang et al. also reported the mAb287 CAR
(287-CAR) which can target the critical I-Ag7-B:9- 23(R3) complex
for attacking the pathogenic CD4+ T cells in NOD mice and
demonstrated that these 287-CAR-T can gather in the pancreatic
lymph nodes. However, they also reported that a single dose of
injection can only delay but cannot prevent the progression of the
disease because of the exhaustion of transferred 287-CAR-T.539

HLA-DR1 CAR CD8+ T cells are designed to target the pathogenic
autoreactive CD4+ T cells and restrict RA development.540 In
addition, it has been reported that the engineered CAR-T cells
produced by importing mRNA encoding InsB15-23/β2m/CD3-ζ
into the CD8+ T cell can target the pathogenic CD8+ T cells and it
offers a new approach to treat T1D diseases.541

Ellebrecht et al. designed the chimeric autoantibody receptor
(CAAR) expressed human T cells, and CAAR can aim to target the
pemphigus vulgaris (PV) autoantigen, desmoglein (Dsg) 3. It has
been confirmed that Dsg3 CAAR-T can specifically kill the B cells
expressing Dsg3 on BCR, and they can proliferate to prolong the
killing effect.542 Other groups also designed the NMDA receptor
(NMDAR)-CAAR-T which can identify and eliminate the autoanti-
bodies originating from B cell lines in NMDAR encephalitis.543

Compared with the engineering of effective T cells, the
engineered Tregs have a wider range of applications in
autoimmune diseases.544 In previous studies, polyclonal and
broad-spectrum T cells were also used for autoimmune disease
treatment, however, the effectiveness of these polyclonal T cells is
not satisfactory.545–548 The emerging engineered CAR-Treg can
effectively solve this problem. Actually, researchers developed
Tregs redirected by antigen-specific chimeric receptor targeting
specific antigens and the therapeutic effect has been vali-
dated.549–551 Fransson et al. tried to engineer the CD4+ T cells
with CAR targeting MOG in trans with the murine FoxP3 gene
which can drive Tregs differentiation and suppress EAE when
administered by intranasal cell delivery.552 Tenspolde et al.
redirected the specificity of T cells to insulin by CAR technology
and induced effective T cells to differentiate into Tregs. These CAR
Tregs have stable expression, effective inhibition, and long-term
existence in NOD mice, but they cannot prevent the disease
development in female NOD/Ltj mice significantly.553 Other
groups also reported that engineering Tregs with anti-InsB10-
23(InsB-g7 CAR Treg) can down-regulate BDC2.5T effector cells in
the pancreas and peripheral lymphoid organs and induce
bystander immunosuppression for T1D.554

However, CAR-T also has some potential safety hazards
including cytokine release syndrome (CRS)555 and neurological
toxicity.556 CRS is the most prevalent adverse effect after CAR-T
therapy which can manifest as a strong immune activation and
powerful inflammatory storm. Neurological toxicity usually man-
ifests as confusion, myoclonus, and expressive aphasia.557 Some
researchers found that CAR Treg will change the cellular
phenotype with regulatory function and convert to pathogenic
autoreactive T cells which is undoubtedly devastating for
autoimmune disease patients accepting CAR-T therapy. It is
uncertain whether side effects like CRS and neurological toxicity
will occur in CAR Treg, but it still needs more attention.531

Cell engineering beyond CAR-T technology. In addition to the
engineering of T cells, other immune cells can be engineered for
autoimmune disease treatment. As mentioned above, tolDCs can
efficiently induce T cell tolerance and they are also a key target of
many therapeutic drugs so that they can be engineered to treat
autoimmune diseases326–328 (Fig. 6). A group developed the
engineering tolDCs by importing lentiviral vectors carrying some

specific antigens and IL-10 sequence. These engineering tolDCs
can secrete IL-10 and inhibit the autoreactive CD4+ and CD8+

T cells from celiac disease patients. Besides, these engineering
tolDCs can induce antigen-specific Tr1 and prevent the develop-
ment of T1D in NOD mice.558 Gudi et al. engineered DC to express
B7.1wa, PD-L1, HVEM-CRD1 or multi-ligand combination which
can prevent the CD4+ T cells proliferation and related inflamma-
tory cytokines secretion. Researchers use DCs loading mouse
thyroglobulin to prevent the development in experimental
autoimmune thyroiditis.559 In a phase 1b trial, the engineering
tolDCs loading with myelin proteins and aquaporin-4 (AQP4) to
treat MS patients and induced increase of Tr1 and IL-10 levels
successfully without serious adverse events and therapy-related
reactions.560 VitD3-antigen-specific tolDCs pulsed with MOG40-55

ameliorated EAE.561,562 OVA-pulsed DCs activated by LPS also
alleviated inflammation in OVA-sensitized mice.563

Investigators generated MOG mRNA-electroporated tolDCs
presenting autoantigen via electroporation with mRNA encoding
MOG and demonstrated its capability to stabilize the clinical score
in EAE mice.564 Besides, engineered bi-specific Tregs expressing
TCR cross-reactive to MOG and neurofilament-medium (NF-M) had
superior protective properties than engineered Tregs expressing
MOG mono-specific TCR.565 Other researchers synthesized engi-
neered MBP-specific human Tregs to suppress the development of
EAE and demonstrated the induction of bystander suppression.566

Qian et al. engineered naïve T cells by importing a retroviral
expression system connected with related antigens and verified
that these engineered Tregs can exhibit different abilities
compared with traditional Tregs.567

By cell engineering, the specific antigen can also couple with
some other cells for tolerance induction568–572 (Fig. 6). Erythro-
cytes covalently linked to antigenic peptides via the interaction
between RBCs endogenous proteins and LPET-sortase covalent
intermediate, are designed for protecting against EAE and T1D in
an antigen-specific manner.573 Peripheral blood mononuclear cells
(PBMCs) coupled with 7 myelin-related peptides have been
investigated in a phase 1 trial in patients with MS and the results
indicated good safety and tolerance of this strategy.574 The
engineered cells can also originate from the location of
inflammation, and Au et al. reported the bioengineering PD-L1
and CD86 functionalized Schwann cells for EAE tolerance
treatment.575

TolDCs cell for antigen-specific therapy. Harry et al. harvested
monocytes from RA patients and healthy donors and induced the
cells to differentiate into tolDCs using immunosuppressive drugs,
immunomodulatory, and vitamin D3 (VitD3). TolDCs established
from patients with RA exhibited typical tolerogenic phenotypes
and are comparable to those induced from healthy controls.576

TolDCs can also be generated from MS patients and T1D patients
with the aim of developing therapeutics for these diseases.577,578

Recently, VitD3-tolDCs generated from healthy donors and MS
patients combined with IFN-β decreased the percentage of
activated T cells and induced a shift towards the Th2 profile to
inhibit EAE.579 These tolDCs derived from the patients themselves
may also have a certain antigen-specific inhibitory effect and are
safer for transplantation.576 Some groups also chose to culture
tolDCs derived from patients in vitro with autoantigens which may
further increase antigen specificity.580 Other groups obtained
tolDCs derived from healthy mice and cultured with 2-deoxy
glucose (2-DG), and inhibited the experimental autoimmune
uveoretinitis (EAU) in vivo581 (Fig. 6).
Subsequent studies implicated that the mature induction is

required for tolDCs to maintain immune tolerance.582 Another
study reported that efficient treatment will be achieved only when
tolDCs are coupled with disease-related autoantigen peptides.583

Boks et al. compared clinical-grade tolDCs generated by coculture
with different cytokines (VitD3, IL-10, dexamethasone, TGF-β or
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RAPA) and demonstrated that clinical-grade IL-10 generated DCs
were optimal in tolerance induction.584

Treg cell therapy: In a 2015 report, the polyclonal Tregs are
effective for T1D patients by adoptive transplantation without
infusion reactions and related serious adverse events.585 The
combination of IL-2 and autologous polyclonal Tregs also showed
therapeutic effects.586 Investigators reported a SLE patient who
accepted autologous Tregs enhanced and expanded in vitro can
keep the disease stable. These transplanted cells can accumulate
in the skin and induce IFN reduction, and enhance Th17-related
pathways.587 In addition, some researchers directly extracted the
MBP-reactive Tregs from Tg4 mice expressing transgenic MBP-
reactive TCR and expanded them in vitro. Adoptive transplanta-
tion of these cells can improve the EAE condition588 (Fig. 6).

Gene therapy
Gene therapy can overcome the limitation of duplicate injection
and some side effects caused by antibodies and cytokines therapy

and has enormous potential in autoimmune diseases.589–591 We
mainly introduce the treatment methods related to nucleic acid
vaccines here.

DNA vaccine. DNA vaccines have been developed for a long time
in numerous medical fields and today’s technologies of DNA
vaccine have reached a high level for disease therapy.592,593 For
autoimmune diseases, DNA vaccine encoding autoantigen/pep-
tides have been used in antigen-specific immunotherapy594–596

(Fig. 6). We summarized the preparation process and drawn a
flowchart (Fig. 10).
Recently, several strategies have been tested to improve the

efficacy of this approach. To target hepatocytes for immune
suppression induction, Akbarpour et al. designed
ICLV.ET.InsB9-23.142T, which consisted of DNA sequence coding
antigen peptides, integrase-competent lentiviral vectors (ICLVs),
the enhanced transthyretin (ET) hepatocyte-specific promoter, and
142T regulatory elements.597 This DNA vaccine showed long-term
existence and continuous expression in hepatocytes, and induced

Fig. 10 The flowchart of LNP-mRNA and plasmid-DNA vaccines for autoimmune diseases. The encoding of autoantigen is designed by protein
and gene databases. DNA sequence fragments encoding the target antigen peptides are inserted into the plasmid vector to synthesize the
recombinant plasmids. These plasmids can be used as DNA vaccines after quality control (QC) and purification. Plasmid DNA is transcribed
into mRNA by incorporation of the modified bases. Therapeutic mRNA contains 5’cap, 5’UTR, ORF encoding the target protein/peptides,
3’UTR, and Poly(A) tail. Purified mRNA is mixed with LNP (its components are PEG-Lipids, ionizable lipids, helper lipids, and cholesterol) in a
Microfluidic mixer to produce the mRNA-LNP vaccines. (Part of the figure was modified from Servier Medical Art(http://smart.servier.com/),
licensed under a Creative Common Attribution 4.0 Generic License. (https://creativecommons.org/licenses/by/4.0/)
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specific immune anergy to antigen peptides and bystander
suppression to other antigens via Tregs generation.597 The
adeno-associated virus-related antigen-specific vaccine targeting
the liver can also restore the tolerance to EAE.598 Some groups
also use plant virus nanoparticles such as cowpea mosaic virus
and tomato bushy stunt virus to express the p524 in T1D or pLip1
and pFADK2 in RA to treat corresponding autoimmune diseases.
They emphasized the peptide scaffold and adjuvant effect of the
plant virus nanoparticles and it can provide experience in
preclinical testing.599

The use of a single β-cell antigen to induce antigen-specific
tolerance for the treatment of T1D patients has so far not been
successful. Investigators designed DNA vaccines to deliver multi-
epitopes from several β-cell antigens. This approach resulted in a
broad engagement of antigen-specific CD4+ and CD8+ diabeto-
genic T cells and delayed the development of T1D diseases.600 In
another report, this group showed that DNA vaccines can expand
the regulatory CD4+ cell phenotype and achieve the best therapy
effect via long-term intradermal injection.601 In a clinical trial, DNA
vaccine encoding proinsulin (BHT-3021) has been shown to
reduce the frequency of Proinsulin-reactive CD8+ T cells.602

However, DNA vaccines encoding GAD glutamic acid decarbox-
ylase (GAD) showed mixed results in NOD mice for the treatment
of T1D.603,604 More DNA vaccines for the treatment of auto-
immune diseases have been put into clinical trials and the efficacy
is still uncertain.605,606

Besides, DNA vaccines also have the risk of causing insertional
mutations because DNA works by entering the nucleus which
leads to the exposure to exogenous genes for vaccines.593 The
DNA vaccines also may promote the generation of anti-DNA IgG
autoantibodies, which will lead to the aggravation of autoimmune
diseases.607

mRNA vaccine. In 1961, researchers discovered mRNA and tried
to use protamine for mRNA delivery.608,609 Unlike DNA vaccines,
mRNA-based vaccine has no potential risk to enter the host
genome because it does not need to enter the nucleus. However,
the characteristics of ease of decay, instability and immunogeni-
city restrict the application of mRNA to a large extent.610–612

Karikó et al. found that naturally occurring modified nucleosides
can suppress the immunostimulatory activity of RNA.613,614

Furthermore, the modified nucleosides can promote the transla-
tional capacity and enhance the biological stability more
effectively.615 This discovery allowed the fast development of
various mRNA-based vaccines and therapeutics. Investigators tried
to develop mRNA-based DCs vaccines.564,616,617 mRNA can code
and produce any protein/peptides and this advantage makes it an
ideal strategy to treat diseases that need protein/peptide
expression. Moreover, a single mRNA strand can encode several
antigens or tandem constructs that contain several epitopes from
different antigens (Fig. 6). In 2016, Dastagir et al. have reported the
delivery of mRNA with tandem multiple diabetes-associated
antigen epitopes by DCs for T1D treatment.618

As mentioned earlier, the FDA approved the first liposome
complex for small interfering RNA (siRNA) binding for the treatment
of a rare disease called hereditary transthyretin-mediated amyloi-
dosis (hATTR) in 2018294,295 and it is suggested that liposomes are
feasible for transformation in the clinical application of RNA delivery.
Thanks to the great efforts made by several research groups

and companies to develop efficient delivery systems and methods
to decrease mRNA immunogenicity and improve the transporta-
tion efficiency over the past decades, mRNA technology has made
a major breakthrough during the COVID-19 pandemic. Pfizer-
BioNTech utilized LNPs to prepare the BNT162b2 mRNA vaccine
against COVID-19 and achieved great success.619–621 LNPs are the
most advanced mRNA delivery systems and have shown unique
advantages.622–625 It is precisely because LNPs promote endoso-
mal escape and thus enhance mRNA translation efficiency.626,627

mRNA structure consists of a 5’cap, a 5’ untranslated region
(5’UTR), an open reading frame (ORF), a 3’untranslated region
(3’UTR), and a poly (A) tail. Each part of mRNA has specific
structures and composition to maintain mRNA stability.628,629 We
summarized the preparation process of the LNP-mRNA vaccines
and described the structure of mRNA sequence and the
components of LNP (Fig. 10).
Krienke et al. designed nanoparticle formulated 1

methylpseudouridine-modified noninflammatory mRNA (m1Ψ
mRNA) vaccine coding autoantigens and tested its efficacy to
treat EAE630 (Fig. 6). They showed that autoantigen encoding m1Ψ
mRNA treatment suppressed disease progress in several mouse
models of MS via the expansion of Treg cells and the reduction of
effector T cells.630 Furthermore, epitope spreading is suppressed
via Treg cell-mediated bystander tolerance induced by LPX-m1Ψ
mRNA encoding MOG35-55.

630

There is growing interest in designing new LNPs to target
different organs and cells for mRNA-based vaccines and
therapeutics. Researchers designed a liver-targeting LNP platform
to deliver mRNA-encoding allergen epitopes to treat peanut-
induced anaphylaxis.631 When comparing mRNA delivered by
LNPs and mRNA electroporated DCs, LNPs can stimulate T cell
responses within a wider antigen-specific T cell subpopulation.
Furthermore, nanoparticle-delivered mRNA localized in the spleen
preferentially while mRNA electroporated DCs primarily localized
in the lung after intravenous injection.632 Some researchers
designed LNPs containing an anionic phospholipid, phosphati-
dylserine (PS) to deliver mRNA in the spleen for EAE treatment and
achieved a promising efficacy.633 Microbubble-assisted focused
ultrasound (FUS) technology can increase the BBB permeability for
LNP-mRNA and may be more beneficial for mRNA-LNP therapy for
MS.634

Recent studies reported that EVs extend the function of mRNA-
LNPs, protect them from degradation and promote the transport
of mRNA between cells.635,636 It can improve the efficiency of
mRNA transmission as well as the cure rate of autoimmune
diseases.
Although the application of mRNA technology is in full swing,

we should still pay attention to the future challenges for mRNA
development and application in the clinic, which include the
delivery of mRNA macromolecules, improvement of the stability of
mRNA-delivery carrier and the regulation of mRNA-delivery carrier
for immune system.637

CLINICAL PROGRESS OF THERAPEUTIC DRUGS
In recent years, we have witnessed the clinical translation of novel
therapies for the treatment of autoimmune disorders. Here we
overview the FDA-approved drugs and clinical pipelines of
antigen-specific immunotherapy for autoimmune diseases. Major
breakthroughs have been made in this field, which may pave the
way for successful clinical translation of antigen-specific
immunotherapies.

The FDA-approved drugs
Currently, available drugs for autoimmune diseases focus on the
targeted blockade of immune inflammation-related membrane
surface molecules or cytokines by monoclonal antibody (mAb).
Main targets for autoimmune disease treatment include IL-23, IL-
17, integrin, TNF, CD20, IL-1, IL-5, IL-6, BAFF/APRIL, etc., and their
related receptors or ligands638 (Table 1).
Here we describe several mAb-targeting drugs that have

achieved significant clinical treatment effects and some possible
side effects.638 DUPIXENT (dupilumab) and ADBRY (tralokinumab)
which target IL-4/13 can effectively treat atopic dermatitis and
asthma. Rituximab targeting CD20, TYRUKO (natalizumab-sztn)
and TYSABRI (natalizumab) targeting α4β1 and α4β7 integrins
have been found to be efficient in treating MS. Anakinra,
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canakinumab, rilonacept targeting IL-1 and related loci can be
effective for systemic autoinflammatory disease. STELARA (usteki-
numab) and WEZLANA (ustekinumab-auub) targeting IL-12/23
(p40) can treat Crohn’s disease effectively. TREMFYA (guselkumab),
SKYRIZI (risankizumab-rzaa) and ILUMYA (tildrakizumab-asmn)
targeting IL-23 (p19) and COSENTYX (secukinumab), TALTZ
(ixekizumab), BIMZELX (bimekizumab-bkzx) and SILIQ (brodalu-
mab) targeting IL-17 or related loci are surprisingly effective for
the treatment of plaque psoriasis.638

mAbs have some side effects related to their specific
targets.639,640 For example, serious infections usually occur
because of the removal of the target ligand for the mAbs.
Patients will experience symptoms including cough, weight loss
and low-grade fever. Allergic reaction is another common side
effect and this symptom can be very dangerous once it occurs.
In addition, we also emphasize an antigen-mimetic drug,

glatiramer acetate, which is a synthetic copolymer, and the
component is based on the structure of MBP641,642 (Table 1). It has
shown astonishing therapeutic effects in animal models and has
been applied to clinical MS treatment.643–645

Antigen-specific immunotherapy clinical research progress
Antigen-specific immunotherapy has the high specificity and
possesses the potential to induce bystander immune regulation, it
holds great potential for the treatment of autoimmune diseases
compared with systemic immunosuppressive therapy. There are
many different approaches for antigen-specific immunotherapy
including whole antigen or peptides, material-based delivery,
modified peptides, MHC-peptides, cell-based therapy, and DNA
vaccines. Antigen-specific therapies for autoimmune diseases are
still in the early stages of clinical application50,646–648 and these
new approaches hold great promise for successful clinical
translation. Here we mainly summarize some related drug designs,
progress, outcomes, etc., in clinical trials conducted on antigen-
specific immunotherapy (Table 2). Some MS-related clinical trials
show hypersensitivity reactions and disease deterioration in
individual patients.399,400,649 Other clinical trials also show
inadequate therapeutic effects.650–652 Researchers demonstrated
the strong immunogenicity of MBP83-99 APL which can induce the
cross-reactive with native autoantigen and lead to inflammatory
differentiation of naïve T cells. The weak effect of specific
treatment occurs not only in MS, but also in T1D.653–655

Admittedly, dose and route of administration are the key factors
for treatment effects and side effects.399,653 However, these
conditions are variable and adjustable. The fundamental reason
is our limited understanding of the breadth of human autoantigen
repertoire and the strategy to deal with the epitope spreading.358

For MS, although the role of some myelin has been verified in
animal EAE models, the relation with MS is still debatable.399

Differences in the epitopes of autoreaction in different patients
may provide an explanation for the different treatment effects and
side effects in patients while they received the same medicine and
routes of administration. Hence, the identification of relevant
antigens and personalized autoantigen design need to be
addressed urgently for the heterogeneity in individual
patients.358,399 The combination of autoantigens with immuno-
modulatory drugs and nanomaterials has made a great progress in
animal models,430,486,656 however, the toxicity and limitation of
nanomaterials and immunomodulatory drugs should also deserve
adequate attention in the process of clinical transformation.657

Besides, effective biomarkers are urgently essential for the
establishment of preclinical diagnosis and long-term monitoring
of the disease progress after administration.358

CONCLUSION
This review summarized the epidemiology, mechanisms, and
new therapeutic strategies for autoimmune diseases. Continued

surveillance of epidemiologic data around the world is needed
to improve our understanding of disease risk and disease
burden. The development of autoimmune diseases is driven by
genetic and environmental factors. With regard to drug
development, the treatments of autoimmune diseases have
achieved great progress in both antigen-specific immunother-
apy and biotherapeutics. The former is still in its infancy in
clinical translation, but it has great potential in precise treatment
without affecting the whole immune system. Biotherapeutics
especially mAbs have successfully applied in clinics for the
treatment of autoimmune diseases. The identification of new
targets and related biomarkers will enable the development of
new biotherapeutics.
Cumulative findings have shown that nanomaterials are

promising approaches to deliver autoantigen protein/peptides,
DNA, and mRNA for induction of immune tolerance for the
treatment of autoimmune diseases.658–661 One of the mechanisms
behind it is that specific antigens can induce the generation and
differentiation of tolerogenic APCs, which will drive the anergy,
deletion, and apoptosis of pathogenic CD4+/CD8+ T cells and
induction of Foxp3+ Tregs. Furthermore, tolDCs can secrete a
series of immunosuppressive cytokines including TGF-β and IL-10
to promote immune anergy.662 The additional immunomodula-
tory molecules/drugs (dexamethasone, ITE, RAPA, etc.) co-
delivered by nanomaterials are also a highly efficient approach
for antigen-specific therapy by providing multiple suppression-
related signals.663–666 In addition, these compounds also promote
the differentiation of tolDCs and exhibit immunomodulatory
effects. Nowadays, many nanomaterials applied in antigen-specific
therapy are in the preclinical stage. We believe that the practice of
these nanomaterials in clinical trials can further promote the
antigen-specific therapy.
The fast development of mRNA-based therapies has attracted

people’s attention to many diseases, especially cancer and
autoimmune diseases.637 Investigators validated that mRNA
vaccines have the capacity of inducing Treg cells which execute
bystander immunosuppression in animal models for MS.630 mRNA
technique has several advantages over protein or DNA drugs,
including faster manufacturing, lower insertion risk, lower cost and
controllable immunogenicity by nucleotide modification. In brief,
the mRNA-LNP vaccine has infinite potential in the treatment of
many difficult-to-treat diseases, including autoimmune diseases in
the future, and now this is just the beginning.667 Novel ionizable
lipids for mRNA delivery are continuously developed for efficient
delivery, better therapeutic effect and safety.668,669 Besides, the
mRNA-LNP vaccine has been approved for marketing for COVID-
19, so it also can provide certain clinical transformation guidance
for autoimmune diseases.
The administration routes are also key factors in tolerance

induction. For MS, some groups have used the inhalation
administration and intranasal delivery strategy for the EAE model
and achieved the expected results.670 The next research direction
can focus on synthesizing drug delivery vehicles for intranasal
drug delivery routes. We also emphasize that the effectiveness of
drugs varies at different stages of the disease. For MS, almost all
drugs only target RRMS.671 For example, Tysabri and Fingolimod
are approved drugs for RRMS, however, these therapies are
ineffective for PMS. Therefore, it is essential to develop new
effective therapies for all stages and types of the disease. Besides,
the definition of optimal dose conversion, selection of route of
administration, and the establishment of effective biomarkers are
also huge challenges for individual optimization therapy and
disease surveillance in clinical application.
In sum, we emphasized the development and future prospects

of highly potential antigen-specific therapies for autoimmune
diseases. We summarized antigen-specific therapy including
whole antigen protein therapy, antigen modification methods,
APL strategies, pMHCs, biomaterials-based delivery methods,
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tolerogenic cell-based therapy, and gene techniques treatment.
Although significant advances have been made in this field, the
treatment efficacy of antigen-specific therapy in humans is still
uncertain. The development of a tolerable biomaterial delivery
system, accurate prediction of specific antigen epitopes, and
combination therapy with other immunomodulatory drugs is
necessary in both animal research and human clinical trials.
Meanwhile, this is also a fundamental challenge we will face in the
future. In particular, the decoding of the autoantigen repertoire
and epitope prediction can help us better understand the
mechanism and origin of autoimmune diseases, and select the
corresponding antigen for specific therapy. For the induction of
bystander immunity to deal with epitope spreading, researchers
must integrate multiple disciplines such as immunology, materials
science, biotechnology, bioinformatics, etc. We expect that
antigen-specific immunotherapy will soon have clinical application
and benefit the patients with various autoimmune diseases.
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