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The interferon-induced transmembrane protein 3 (IFITM3), a small molecule
transmembrane protein induced by interferon, is generally conserved in vertebrates,
which can inhibit infection by a diverse range of pathogenic viruses such as influenza virus.
However, the precise antiviral mechanisms of IFITM3 remain unclear. At least four post-
translational modifications (PTMs) were found to modulate the antiviral effect of IFITM3.
These include positive regulation provided by S-palmitoylation of cysteine and negative
regulation provided by lysine ubiquitination, lysine methylation, and tyrosine
phosphorylation. IFITM3 S-palmitoylation is an enzymatic addition of a 16-carbon fatty
acid on the three cysteine residues within or adjacent to its two hydrophobic domains at
positions 71, 72, and 105, that is essential for its proper targeting, stability, and function.
As S-palmitoylation is the only PTM known to enhance the antiviral activity of IFITM3,
enzymes that add this modification may play important roles in IFN-induced immune
responses. This study mainly reviews the research progresses on the antiviral mechanism
of IFITM3, the regulation mechanism of S-palmitoylation modification on its subcellular
localization, stability, and function, and the enzymes that mediate the S-palmitoylation
modification of IFITM3, which may help elucidate the mechanism by which this IFN effector
restrict virus replication and thus aid in the design of therapeutics targeted at
pathogenic viruses.

Keywords: interferon-inducible transmembrane proteins, S-palmitoylation, post-translational modifications,
interaction, interferon-stimulated gene
INTRODUCTION

When pathogens invade the host cells, pattern recognition receptors (PRRs), presenting in the host
endosomes and within the cytoplasm, could recognize the microbial components as pathogen-
associated molecular patterns (PAMPs) to induce an innate immune response.

In total, six PRRs have been discovered so far, including retinoic acid-inducible gene-I-like
receptors (RLRs), Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin receptors
(CLRs), cyclic GMP-AMP synthase (cGAS), and absent in melanoma 2 (AIM2). RLRs locate in the
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cytoplasm, and they can recognize long or short double-stranded
RNAs; TLRs sense double-stranded RNA, single-stranded RNA,
double-stranded DNA, and bacterial lipopolysaccharide (1);
NLRs could detect microorganisms and parasites; CLRs are a
class of calcium-dependent glycol-binding proteins presenting
on the surface of immune cells such as macrophages,
neutrophils, and immature dendritic cells, and they could
distinguish b-glucan and mannan structures in fungal cell
walls; cGAS predominantly distributes throughout the
cytoplasm and binds to microbial DNA (2); AIM2, a member
of the HIN-200 family, mainly responses to cytoplasmic
dsDNA (3).

Upon binding to PRRs, PAMPs trigger signaling cascades
culminating in the secretion of numerous pro-inflammatory
cytokines, including type I interferon that contributes to the
host antiviral response. Type I interferon acts in both autocrine
and paracrine mode by binding to its receptor to activate Janus
kinase (JAK), which results in activation of the downstream
STAT proteins (STAT1 and STAT2), by phosphorylating their
Tyr residues. The activated STAT proteins bind to IRF9 and the
trimeric complex, IFN-stimulated gene factor 3 (ISGF3),
translocate into the nucleus (4). ISGF3 in the nucleus induces
the transcription of hundreds of IFN- Stimulated genes (ISGs) by
binding to their ISRE sequences in the nucleus. These ISGs
encode various of known effector proteins with different
biological characteristics. They play antiviral roles during
different stages of the viral life cycle, including invasion,
replication, protein translation, packaging, and release (5, 6).
Recent studies on innate immune response mechanisms have
suggested hundreds of IFN-stimulated genes (ISGs) that could
inhibit the replication of human and animal viruses (7).

For instance, Interferon-stimulated gene 15 (ISG15), which
encodes ubiquitin-like proteins, can be strongly upregulated by
Type I interferon treatment or pathogen infection. It mainly
regulates intracellular innate immune signal transduction,
therefore inducing immune tolerance and antiviral immune
response through ubiquitination (8). Another example of well-
studied ISGs is oligoadenylate synthetase-like proteins (OASL).
OASL are a class of protein kinases induced by double-stranded
RNA and could inhibit viral protein synthesis depending on their
kinase activity (9, 10). Activated OASL induce ATP hydrolysis to
produce (2′-5′) oligoadenylate acid and activate endoribonuclease.
Once activated, endoribonuclease degrades viral nucleic acid,
thereby inhibiting viral protein synthesis and viral replication. It
has been shown that down-regulating the expression of OASL
restrains RIG-I signaling and promotes viral replication.
Conversely, overexpression of OASL can prevent the replication
of a range of viruses in a RIG-I-dependent manner and promote
RIG-I mediated IFN induction (11).

Among the IGSs endowed with antiviral activity, the
interferon-induced transmembrane proteins (IFITMs),
especially IFITM3, are the most well-characterized due to their
most potent restriction of IAV, Dengue virus, etc. IFITMs are a
family of conserved small transmembrane proteins in
vertebrates, expressed on cytoplasmic and endolysosomal
membranes (5). The human IFITMs family contains five
Frontiers in Immunology | www.frontiersin.org 2
members located on chromosome 11, including IFITM1,
IFITM2, IFITM3, IFITM5 and IFITM10 genes (12). The five
homologous IFITM genes in chicken are located on chromosome
5. Whereas in mice, there are seven IFITM genes, including
IFITM1-3, IFITM5-7 and IFITM10. IFITM7 is located on
chromosome 16 and the other six genes are on chromosome 7.
Homologous IFITM genes have also been found in many other
species, such as fish, cattle, birds, marsupials and reptiles,
implicating conserved function for IFITM proteins (12–14).

IFITM proteins are composed of five domains based on their
structural characteristics. Human IFITM3 contains a
hydrophobic and variable N-terminal (NTD, 1-57 aa), a
hydrophobic and conserved intramembrane domain (IMD, 58-
80 aa), a conserved intracellular cyclic domain (CIL, 81-104 aa), a
hydrophobic transmembrane domain (TMD, 105-126 aa), and a
highly variable C-terminal (CTD, 127-133 aa) (15). IMD and CIL
together comprise the CD225 domain, which presents in more
than 300 proteins (16).

Previous studies showed that there were three models of
IFITM topological structure on the membrane. Initially, IFITM
was recognized as a kind of transmembrane protein with
transmembrane NTD and CTD facing extracellular (Figure 1,
Model I) (17). Subsequent studies showed that NTD, CTD, and
CIL were all located in the cytoplasm, and the two hydrophobic
domains (IMD and TMD) folded back in the membrane but did
not cross the membrane (Figure 1, Model II) (18). Recently,
Bailey CC et al. suggested that IFITM3 has a type II
transmembrane topology, with its NTD and CIL located in the
cytoplasm, while the CTD is located in the extracellular domain
(Figure 1, Model III) (19). This model was also confirmed by
some other researchers (20, 21). However, the precise topological
structure of IFITM is still uncertain and needs further
confirmation by crystal structure analysis.

IFITM1-3 proteins possess broad-spectrum antiviral activity
against partial DNA viruses, enveloped RNA viruses, and non-
enveloped RNA viruses (15, 22, 23). They can reduce the fluidity
and stability of cell lipid membrane, block the fusion of the viral
envelope and cell membrane to inhibit virus invasion (24). Evidence
implicating IFITM3 as an innate immune protein with broad-
spectrum antiviral activity accumulates rapidly. This review will
summarize recent progress on the innate antiviral mechanism of
IFITM3, focusing on the regulation mechanism of S-palmitoylation
modification on its subcellular localization, stability, and function,
and the enzymes that mediate the S-palmitoylation modification of
IFITM3. This article may help elucidate how IFITM3 restricts virus
replication and thus aid in developing novel therapeutic approaches
to enhance the immune response against pathogenic virus infection.
ANTIVIRAL ACTIVITIES OF INTERFERON-
INDUCED TRANSMEMBRANE PROTEINS

Interferon-induced transmembrane proteins (IFITM) are widely
expressed and highly conserved in mammalian cells. They can be
up-regulated by interferon stimulation to participate in antiviral
June 2022 | Volume 13 | Article 919477
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immune responses. In recent years, small interfering RNA (15) and
overexpression-based screens (25) have confirmed that IFITM1,
IFITM2, and IFITM3 possess broad-spectrum antiviral effects. It
has been reported that IFITM proteins, when expressed in target
cells, significantly inhibit more than ten families of viruses including
Alphaviridae (Semliki Forest virus, Sindbis virus) (26), Arteriviridae
(Porcine reproductive and respiratory syndrome virus), Asfarviridae
(African swine fever virus) (27, 28), Bunyaviridae (Rift valley fever
virus, La Crosse virus, Andes virus, Hantaan virus) (29–32),
Caliciviridae (Mouse norovirus) (33), Coronaviridae (SARS
coronavirus) (22, 30, 34, 35), Filoviridae (Marburg virus, Ebola
virus) (22, 36, 37), Flaviviridae (Dengue virus, West Nile virus,
Yellow fever virus, Zika virus, Omsk hemorrhagic fever virus,
Hepatitis C virus, Classical swine Fever Virus, Japanese encephalitis
virus and tick-borne encephalitis virus) (23, 30, 31, 38–44),
Iridoviridae (Singapore grouper iridovirus and frog iridovirus) (45–
48),Nodaviridae(red spotted grouper nervousnecrosis virus) (45, 46),
Orthomyxoviridae (Influenza A virus) (49, 50), Paramyxoviridae
(Respiratory Syncytial Virus) (51–54), Poxviridae (Vaccina virus)
(55) Reoviridae (Reovirus) (56), Retroviridae (HIV-1 and Jaagsiekte
sheep retrovirus) (24, 30, 57, 58), Rhabdviridae (Vesicular stomatitis
virus) (57, 59, 60),Phenuiviridae (Severe feverwith thrombocytopenia
syndrome virus) (33).

It has been shown that IFITM1 in mammalian cells is located
in the plasma membrane and early endosomes, while IFITM2
and IFITM3 are mainly expressed in the late endosomes and
lysosomes (61). Due to different subcellular localization, the
antiviral spectrum of the three IFITM molecules also varies.
IFITM1 mainly inhibits replication of viruses that enter cells by
fusing with the plasma membrane. Whereas, IFITM2 and
IFITM3 mainly inhibit viruses invading cells through late
endosomal and lysosomal pathways (22). Compared with
IFITM1 and IFITM2, IFITM3 is considered to have the
strongest antiviral activity (62). Furthermore, IFITM3, when
released by the virus-infected cells into the intercellular space
as a component of exosomes, could provide antiviral protection
to the uninfected cells (63).

The abnormality of the IFITM3 gene in vivo is involved in
severe clinical symptoms caused by pathogenic viral infection.
Some studies have suggested that the morbidity and mortality of
IFITM3 knockout mice infected by H3N2 or H1N1 increased
Frontiers in Immunology | www.frontiersin.org 3
(64–66). In addition, the naturally occurring single nucleotide
polymorphism in IFITM3 (SNP RS12252), which is the
truncated N-terminal type of IFITM3 in human may be
associated with the severe outcomes following infection by IVA
(64, 67), human cytomegalovirus (HCMV) (68), and human
enterovirus 71 (69), as well as increased incidence and mortality
caused by COVID-19 (70–72). Given the circumstance, some
researchers suggested predicting the severity of COVID-19
infection among ethnic minorities based on IFITM3-rs12252
(73). Another IFITM3 SNP rs34481144 identified in the 5 ‘UTR
of the IFITM3 gene was reported to decrease the transcription
level of its mRNA and the CD8+T cell number in the airways of
influenza-infected individuals. As a result, it weakens the
antiviral effect of IFITM3 and leads to severe illness in adults
infected by 2009 IAV (74). These studies further attest to the
physiological importance of IFITM3 in the innate immune
response to pathogenic viral infections.

The Antiviral Mechanism of IFITM3
IFITM3 may inhibit the release of viral protein and nucleic acid
into the cytoplasm and accelerate the trafficking of incoming
viral particles to lysosomes for destruction (Figure 2). However,
the antiviral mechanism of IFITMs remains unclear till now.
IFITM3 mainly plays an antiviral role in the early stage of virus
infection, and at least four antiviral mechanisms are suggested
based on current studies.

The first possible mechanism is that FITM3 clusters on virus-
containing vesicles. This IFITM3 oligomerization increases
membrane lipid order (increasing rigidity and decreasing fluidity)
in cells, thus blocking fusion pore formation following virus-
endosome hemifusion and before forming an enlarged fusion
pore (75, 76). The overexpression of IFITM3 expands Rab7- and
LAMP1-positive late endocytic compartments and accelerates the
trafficking of incoming viral particles to lysosomes for
destruction (77).

Moreover, IFITM3 may be incorporated into nascent virion
particles during viral assembly to decrease their infectivity (39,
78, 79). The third possible mechanism is that IFITM3 may also
bind itself to multiple host proteins essential to its antiviral
activities. For example, a previous study showed that IFITM3
protein interacts with Vesicle-membrane-protein-associated
FIGURE 1 | The proposed models of IFITM protein topology. The first model suggests a kind of transmembrane protein with transmembrane NTD and CTD facing
extracellular. The second model shows NTD, CTD, and CIL were all located in the cytoplasm, and the two hydrophobic domains (IMD and TMD) folded back in the
membrane but did not cross the membrane. The third model proposes a type II transmembrane topology, with its NTD and CIL located in the cytoplasm, while the
CTD is located in the extracellular domain. NTD, N-terminal domain; CTD, C-terminal domain; TM, transmembrane domain; CIL, intracellular cyclic loop; ER,
endoplasmic reticulum.
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protein A (VAPA) and inhibits its association with oxysterol-
binding protein (OSBP). This effect leads to the accumulation of
cholesterol in the late endosomes, and thus inhibits the cytosolic
release of virions (80). Likewise, it has been reported that PRRSV
was arrested in IFITM3 positive endosomes, followed by the
accumulation of cholesterol in endosomes or lysosomes,
resulting in obstruction of PRRSV-endosome fusion (79).
However, the antiviral mechanism of IFITM3 mediated by
VAPA and cholesterol has been questioned by some
researchers (81–84). In addition, hABHD6A, capable of
inhibiting the influenza virus by itself, has been purported to
act as a cofactor required for the anti-IVA effects of IFITM3
during the diseases process (49).

Another example of a putative cofactor for IFITM3 is VCP
(valosin-containing protein, also called p97). The hexametric
AAA-type ATPase participates in diverse cellular processes,
including endoplasmic reticulum-associated degradation
(ERAD), membrane fusion, nuclear factor kB (NF-kB)
activation, and chromatin-associated degradation. It has been
proven to enable the antiviral function of IFITM3 by modulating
its intracellular localization (85).

IFITM3 also interact with the Atp6v0b subunit of the v-ATPases
within the cell to form a functional v-ATPase complex. This
complex contributes to the stability of the v-ATPases and
appropriate localization of clathrin, which is required for the
antiviral effect of IFITM3 (86). Finally, Zinc metalloproteins
STE24 (ZMPSTE24; also known as ACE1), constitutively
expressed and localized to the inner nuclear membrane and
cytoplasmic organelles, is an intrinsic broad-spectrum antiviral
protein, which is suggested to be essential for the antiviral activity
of IFITM3 through interacting with IFITM3 (37).
Frontiers in Immunology | www.frontiersin.org 4
Finally, a recent study showed that cholesterol could change the
conformation of IFITM3 in membrane bilayers and interact with S-
palmitoylated IFITM3 directly. CARC domain lies on N-terminus
of IFITM3, a conserved motif that mediates direct interaction
between this transmembrane protein and cholesterol. Further
study suggested that the CARCD construct of IFITM3 showed a
significant loss of antiviral activity against IAV and SARS-CoV-2
infection compared with IFITM3 WT (87). In addition, cholesterol
can facilitate the negative membrane curvature induced by IFITM3
resulting in increased lipid order and membrane stiffness (75).
Therefore, cholesterol may play a crucial role in blocking virus
fusion and the release of genetic material into the cytosol.

The Antiviral Activity of IFITM3 Was
Regulated by at Least Four PTMs
IFITM3 is a highly regulated protein with at least four PTMs
occurring on multiple residues reported till now (Figure 3). For
example, ubiquitination, the addition of the 9kDa ubiquitin
polypeptide to proteins, occurring on the four lysines has been
suggested to be a negative regulator of IFITM3 stability and
activity by targeting the protein away from endolysosomes for
degradation (18). Once all four lysines were mutated into
alanine, IFITM3 became more stable and was completely
located in the endosomal membrane. Meanwhile, its co-
localization with endoplasmic reticulum markers also
disappeared, indicating that ubiquitinated IFITM3 was
recruited to the endoplasmic reticulum for degradation.

Another negative regulator of IFITM3 activity has been reported
to be the protein-tyrosine kinase FYN-dependent phosphorylation
on tyrosine 20 (Tyr20) (88). Mutation of Tyr20 resulted in
decreased antiviral activity against vesicular stomatitis virus and
FIGURE 2 | Possible antiviral mechanisms of IFITM3. IFITM3 may inhibit the release of viral protein and nucleic acid into the cytoplasm by blocking the formation of
fusion pores following virus-endosome hemifusion and before forming of an enlarged fusion pore. Whereafter, it accelerates the trafficking of incoming viral particles
to lysosomes for destruction. IFITM3 can bind itself to multiple host proteins, interact with cholesterol, or packages into virions to reduce their infectious activity.
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enrichment of IFITM3 at the plasma membrane (88). Interestingly,
cross-regulation of phosphorylation and ubiquitination of IFITM3
was observed in a previous study. It is generally expected that
IFITM3 phosphorylation may enhance its ubiquitination level
because phosphorylation normally serves as a signal for E3
ubiquitin ligases. However, the opposite was observed in that
IFITM3 ubiquitin was attenuated by phosphorylation (89). How
ubiquitin and phosphorylation co-regulate the antiviral effect of
IFITM3 deserves further study.

Finally, single lysine (Lys88) methylation of IFITM3mediated
by SET7 has also been described to negatively regulate IFITM3
antiviral activity (90). In this study, methylation of IFITM3 was
up-regulated by SET7 overexpression leading to a loss of antiviral
activity. In contrast, knockdown of SET7 decreased IFITM3
methylation and resulted in enhanced IFITM3 antiviral activity
against influenza virus and vesicular stomatitis virus.

Except for the three PTMs, S-palmitoylation of IFITM3 is the
only one that can positively regulate its antiviral activity by
multiple mechanisms discussed in the following.
PROTEIN S-PALMITOYLATION

Palmitoylation is the posttranslational process by which a 16-
carbon palmitic acid is covalently attached to eukaryotic and
viral proteins. It is catalyzed by a family of proteins known as
DHHC acyltransferases. The most common forms of
palmitoylation are S-palmitoylation and N-palmitoylation. S-
palmitoylation, a reversible modification, occurs on cysteine
residues via a thioester bond and is commonly found in most
palmitoylated proteins. N-palmitoylation reactions occur on the
amino terminus or the epsilon amino group of lysine.

Recently, improved proteomic of cellular proteins has identified
tens to hundreds of proteins as substrates for S-palmitoylation.
Many lines of evidence suggest that S-Palmitoylation is implicated
in various physiological processes, including intracellular trafficking,
the activity of ion channels, localization of neuronal scaffolding
proteins Ras signaling, and host-pathogen interactions (91–95). As a
posttranslational modification, S-palmitoylation was first reported
in 1979 (96). However, the enzymes that catalyze protein S-
palmitoylation were not discovered until 2002 in yeast (97, 98). A
family of low-abundance and polytopic eukaryotic integral
membrane enzymes responsible for modifying proteins with
palmitate on the cytoplasmic face of cellular membranes is
DHHC-palmitoyl transferase. They are so named because they
Frontiers in Immunology | www.frontiersin.org 5
share a signature DHHC (Asp-His-His-Cys) motif, the catalytic
center of the enzyme, within a cysteine-rich domain.

Many intracellular soluble and membrane proteins can
undergo S-palmitoylation modification, generally occurring in
intracellular-membrane contact. S-palmitoylation modifies the
hydrophobicity of proteins, affects their membrane-binding
properties, intracellular sorting, stability, and thus regulates a
series of cellular physiological and pathological processes.

S-Palmitoylation and Viral Infection
It has been suggested that S-palmitoylation modification is also
involved in the host defense against pathogens. Some pathogens use
palmitoyl transferase of host cells tomodify their virulence proteins to
enter host cells (95, 99). In 1979, S-palmitoylation of Sindbis virus
envelope glycoprotein and vesicular stomatitis virus glycoprotein G
werefirstly identified (96, 100).With thedevelopmentof technologies,
many other viral proteins have also undergone S-palmitoylation
modification as well. Previous studies have shown that S-
palmitoylation of influenza virus HA contributes to the recruitment
of the viral protein tomembrane lipid raft, the buddingprocess of new
virus particles, and the fusion of virus particles and membrane to
promote virus invasion (101–103). Recent studies have shown that S-
palmitoylationmodificationofHAregulates themembrane curvature
and promotes the interaction between HA and matrix protein (M1)
during viral particle assembly (104),which promotes the expansion of
fusionpores (102). Thehighly conserved amphiphilic helical regionof
M2 is also S-palmitoylated to regulate the membrane curvature,
promote the separation of the virion from the membrane, and
virion release (105, 106).

S-Palmitoylation and Innate Immunity
Chesarino et al. found that S-palmitoylation of TLR2 (a member
of the TLR family) mediated its membrane localization, NF-kB
activation and inflammatory factor release. Once inhibited, its
response to all microbial ligands were restrained. Palmitoyl
transferases ZDHHC2, 3, 6, 7, and 15 are responsible for the
TLR2 S-palmitoylation (107).

In 2016, Mukai’s lab proved that S-palmitoylation of
interferon gene stimulator protein (STING) affects its ability to
regulate innate immune signals. STING was S-palmitoylated in
the Golgi and is restricted to the trans-Golgi network (TGN).
The general S-palmitoylation inhibitor 2-BP can selectively
inhibit STING-mediated cytoplasmic DNA sensing and its
downstream interferon response. In addition, a STING Cys88/
91Ser double mutant that significantly reduced S-palmitoylation
FIGURE 3 | Post-translational modification sites of human IFITM3. The human IFITM3 protein was phosphorylated on tyrosine20; Ubiquitinated on Lysine24, 83, 88
and 104; methylated on Lysine88; and S-palmitoylated on cysteine71,72 and 105.
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could not induce STING-dependent host defense after infection
with DNA viruses, and palmitoyl transferases ZDHHC3, 7, and
15 are responsible for STING modification (108).

Studies have shown that S-palmitoylation of Rac1(the Rho
family Small Guanosine triphosphatase SE) inhibits the
ubiquitination activation of E3 ubiquitin ligase TRIM31 on
MAVS, thereby negatively regulating the RLR signaling
pathway. However, it remains unclear which ZDHHC protein
is responsible for the S-palmitoylation of Rac1 (109).

Recently, Lu and colleagues suggested that targeting NOD1 and
NOD2 to bacterial-containing endosomal membranes requires
them to be S-palmitoylated by ZDHHC5. They identified
pathogenic bacterial-derived peptidoglycan components in the
cytoplasm that promote intracellular NOD1/2-mediated immune
responses, including autophagy and release of inflammatory factors
(110). However, the precise mechanism that ZDHHC5 recruits
bacteria to the entry site remains unclear.

It was found that S-palmitoylation of cysteine residues at
position 463 near the cytoplasmic end of the IFN AR1
transmembrane region is necessary for phosphorylation activation
of STAT1 and STAT2 (downstream of IFNAR1). Blocking S-
palmitoylation of IFNAR1 inhibits the nuclear translocation of
STAT and thus affects the transcription of ISGs. However, S-
palmitoylation of IFNAR1 has no effect on its in vivo endocytosis,
intracellular distribution, stability on the cell surface, and the
formation of IFNAR1-IFNAR2 heterodimer (111).
MECHANISM OF S-PALMITOYLATION TO
REGULATE THE ANTIVIRAL CAPACITY
OF IFITM3

To date, S-palmitoylation is believed to be essential for the antiviral
activity of IFITM3, but the research on the molecular mechanism of
how S-palmitoylation regulates its antiviral activity is relatively slow.
One of the main reasons is that protein S-palmitoylation was
originally studied using radioactive palmitate metabolic labeling
methods. However, this approach has the defects of limited
sensitivity and poor security. New technologies, such as acy-
biotinyl exchange and click-chemistry that allow S-palmitoylation
sites to be experimentally-determined have greatly promoted the
study of this lipid modification (112). Currently, the research
progresses of IFITM3 S-palmitoylation were listed in Table 1.

Based on the previous findings, S-palmitoylation of IFITM3 is
essential for its antiviral effect, subcellular location, stability,
virion trafficking, interaction with cholesterol, and molecular
conformation (Figure 4).

S-Palmitoylation Affects the Subcellular
Location of IFITM3
S-palmitoylation of IFITM3 was first identified by Yount and his
colleagues (113) through large-scale profiling of fatty-acylated
proteins in the mouse DC line DC2.4 using palmitic acid
chemical reporter ALK-16 and CuAAC. Further study revealed
that all the three cysteine residues at positions Cys71, Cys72, and
Cys105 of IFITM3 were S-palmitoylated. Bioinformatics analysis
Frontiers in Immunology | www.frontiersin.org 6
showed that the S-palmitoylated Cysteine residues are conserved
in IFITM isoforms in most vertebrates, suggesting an added layer
of regulation of protein S-palmitoylation in innate immunity.
Moreover, it was observed that the S-palmitoylation of IFITM3
on membrane-proximal cysteines enhanced its clustering in the
membrane compartments. Whereas, the mutation of the three
cysteine residues to alanine eliminated the S-palmitoylation of
IFITM3, resulting in its spot-like distribution in the endoplasmic
reticulum. Additionally, wild-type IFITM3 (WT IFITM3),
primarily membrane-associated, also present at lower levels in
the cytoplasmic portion. In contrast, IFITM3-PalmDmutants are
less membrane-associated, suggesting that IFITM3 has an
inherent affinity for cell membranes, enhanced by hydrophobic
S-palmitoylation (18).

Furthermore, it has been suggested that BODIPY-labeled
IFITM3 Cys-to-Ala mutants showed a subcellular localization
similar to WT human IFITM3 (116). Meanwhile, a confocal
experiment revealed that sIFITM3-PalmD (C71,72,105A) was
co-located with early/late endosomes and lysosomes in MARC-
145 sIFITM3-PalmD-Flag cells, consistent with WT IFITM3
(79). Subcellular location change of sIFITM3-PalmD was not
observed in PK15 as well (38).

Another study proved no change in subcellular location for
C71A and C105A, but a more centralized intracellular distribution
for C72A compared with WT human IFITM3 (16). Besides, all
cysteine mutants of microbat IFITM3 relocalized to perinuclear
Golgi-associated sites (117). Together, these studies indicate that S-
palmitoylation regulates the subcellular location of human, murine,
swine and microbat IFITM3 in different manners.
S-Palmitoylation Affects the Antiviral
Activity of IFITM3
Mounting evidence showed that IFITM3 S-palmitoylation was
crucial for its antiviral effect. For example, the S-palmitoylation-
deficient, triple cysteine-to-alanine IFITM3 mutant significantly
weakened its anti-IAV activity (113). A consistent result was
observed in another study, in which the antiviral activity of the
IFITM3 S-palmitoylation deficient mutant against H1N1 influenza
virus (type A, PR8 strain) was significantly reduced (18).

As the analysis of S-palmitoylation levels of endogenous
IFITM3 is in need to better elucidate the association between
S-palmitoylation and IFITM3 antiviral activity, a mass-tag
labeling method termed acyl-PEG exchange (APE) was
developed (114). The APE analysis combined with fatty acid
metabolic labeling showed that S-palmitoylation occurred in
most endogenous IFITM3 in IFN-stimulated cells, and Cys72
was the predominant S-palmitoylation site. Indeed, after the
mutation of Cys72 into alanine, the antiviral effect of IFITM3
decreased significantly. Although Cys71 of IFITM3 is highly
conserved in mice and humans, its mutation to Ala is reported to
have no significant effect on the S-fatty level and antiviral effect of
IFITM3. The effect of Cys105 S-palmitoylation on the antiviral
activity of IFITM3 varies in different IFITM isoforms, expression
levels, and cell types, since mutation of this Cys residue hampers
the antiviral activity of IFITM3 in mice but does not affect the
activity of human IFITM3.
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It is also proved that the mutant of Cys72 to Ala significantly
reduced its antiviral activity against IAV, while the IFITM3
mutant of Cys71 and Cys105 to Ala retained more activity
(116). These results suggest that the antiviral activity of
IFITM3 is directly related to the level of S-palmitoylation, and
the double S-fatty acylation of IFITM3 on Cys72 and Cys105
may be the most active subtype in mammalian cells. However,
when any one of the three cysteines was mutated to alanine, the
anti-PRRSV activity of sIFITM3 was almost completely lost (79),
indicating that S-palmitoylation on the three cysteine residues
were all crucial for sIFITM3 in PRRSV restriction.

S-Palmitoylation Affects the Trafficking of
IFITM3 to Virions
S-palmitoylation affects the trafficking of IFITM3 to virions as
well. Compared with WT IFITM3 or Ala mutants at Cys71 or
Frontiers in Immunology | www.frontiersin.org 7
Cys105, trafficking and co-localization of IFITM3-C72A
mutants with quenched DID-IAV particles was significantly
reduced by about 20% through site-specific fluorescent labeling
and live-cell imaging analysis. Meanwhile, the trafficking of
IFITM3-C72A mutants to DID-IAV particles was also delayed
(116). These results suggest that S-palmitoylation at Cys72 is
important for the IFITM3 trafficking to IAV particles
during infection.

S-Palmitoylation Affects the Stability
of IFITM3
S-palmitoylation also affects the stability of IFITM3. It has been
revealed that FITM3 protein abundance was significantly
decreased in cells treated with the general protein palmitoylation
inhibitor (2-brompalmitate, 2-BP), and the inhibition effect is
dose- and time-dependent, but IFITM3 mRNA levels were not
TABLE 1 | Research progresses of IFITM3 S-palmitoylation.

Year Progress Reference

2010 S-palmitoylation of IFITM3 was first identified and this lipid modification controls its clustering in membrane compartments and anti-IVA activity. (113)
2012 IFITM3 had an inherent affinity for cell membranes, enhanced by hydrophobic S-palmitoylation (18)
2013 a C72A mutation made human IFITM3 more centralized intracellular distribution (16)
2016 Acyl-PEG exchange (APE) was developed, and dually S-palmitoylated IFITM3 at Cys72 and Cys105 was suggested to be the most active isoform in

mammalian cells
(114)

2017 More than half of the ZDHHCs were capable of increasing IFITM3 palmitoylation with ZDHHCs 3, 7, 15, and 20 having the greatest effect (115)
2019 S-palmitoylation of IFITM3 at Cys72 is important for its rate of trafficking to IAV particles during infection (116)
2020 S-palmitoylation has no effect on the subcellular localization of swine IFITM3; (38)

S-palmitoylation on the three cysteine residues were all crucial for sIFITM3 to restrict PRRSV replication; (79)
All cysteine mutants of microbat IFITM3 relocalized to perinuclear Golgi-associated sites; (117)
S-palmitoylation of IFITM3 mediated by ZDHHC1 was indispensible for keeping it from lysosomal degradation. (39)

2021 modulation of IFITM S-palmitoylation levels and cholesterol interaction may influence host susceptibility to different viruses; (87)
S-palmitoylation also enhanced the antiviral activity of IFITM3 by modulating its conformation and interaction with lipid membranes. (62)
June 2022 | Volume 13 | Art
FIGURE 4 | Possible mechanism of s-palmitoylation to regulate the antiviral capacity of IFITM3. S-palmitoylation may affect its membrane proportion, trafficking to
virions, stability, interaction with cholesterol, and conformation to regulate the antiviral activity of IFITM3. Whether S-palmitoylation affects the binding of IFITM3 to
virus particles or its interaction with host proteins has not been reported yet.
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affected. The half-life of IFITM3 protein in 2-BP treated cells was
significantly reduced to 1.5 h vs 5 h in control cells. Additionally,
exogenous IFITM3DPalm mutants were degraded rapidly, with a
half-life of 2.9 h compared with 7.9 h for WT IFITM3. Moreover,
2-BP-induced IFITM3 degradation in A549 and HCT116 cells can
be significantly blocked by lysosome pathway inhibitor (leupeptin
and bafilomycin A1) rather than ubiquitin-proteasome pathway
inhibitor (MG132), indicating that IFITM3 may be degraded in a
lysosome pathway (not ubiquitin-proteasome pathway) when its
S-palmitoylation was restrained (39). Nonetheless, IFITM3 PalmD
mutants were reported to be ubiquitinated effectively in a previous
study (114). And it has been suggested that ubiquitinated IFITM3
can be recruited to an ER-proximal site for degradation (18, 89,
118). Therefore, whether the ubiquitin-proteasome pathway is
involved in S-palmitoylation deficit-induced IFITM3 degradation
needs to be further elucidated.

S-Palmitoylation Affects the Interaction
Between IFITM3 and Cholesterol
Of note, the S-palmitoylation level of IFITM2 was significantly
lower than IFITM3 by metabolic labeling analysis. High levels of
S-palmitoylation enhanced IFITM3 interactions with cholesterol
and inhibited viruses like IAV and SARS-CoV2. While with
lower levels of S-palmitoylation and fewer interactions with
cholesterol, IFITM2 showed more efficient anti-EBOV activity,
indicating that S-palmitoylation may inhibit cholesterol-
dependent viruses by regulating the interaction between
IFITM3 and cholesterol (87).

S-Palmitoylation Affects the Conformation
of IFITM3
Compared with S-palmitoylation-deficient IFITM3, Cys72-
maleimide palmitate, a reasonable substitute for S-
palmitoylation modification, showed a significant structural
change both locally and in the disordered N-terminal regions.
Meanwhile, the disrupted AH1 region of S-palmitoylation-
deficient IFITM3 was stabilized and its association with the
membrane bilayer was increased by adding maleimide
palmitate to Cys72 in a flotation assay. These results suggest
that lipidation can change the biophysical conformation of
IFITM3. As the disruption of AH1 attenuates the antiviral
activity of IFITM3, it is suggested that the S-palmitoylation at
Cys72 directly enhances the antiviral activity of IFITM3 by
stabilizing AH1 (62). Besides, stabilization of IFITM3 AH1 by
S-palmitoylation of Cys72 may also explain the subcellular
distribution of IFITM3 during infection.

ZDHHCs Are Implicated in
S-Palmitoylating IFITM3
Although many substrate proteins of ZDHHC transferase have
been identified, the mechanism of how transferase recognizes its
target protein remains unclear. The distribution of each specific
ZDHHC protein in different subcellular locations affects the type
of substrate protein. Only a few substrate/ZDHHC pairings have
been identified among the hundreds of known S-palmitoylated
proteins. For example, ZDHHC9 and ZDHHC17 can only
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S-palmitoylate HRas and SNAP25, whereas ZDHHC14 has
PAT activity toward PSD93 (30).

A variety of ZDHHC proteins are capable of S-palmitoylating
IFITM3. To identify the enzyme that performs S-palmitoylation
modification for IFITM3, Temet et al. constructed rodent
ZDHHC1-23 expression plasmids for overexpression screening.
Results showed that ZDHHC1, 2, 5, 6, 9, 14, 23, 24, and 25 could
up-regulate IFITM3 S-palmitoylation by 1.7-3 times, whereas
ZDHHC3, 7,15, and 20 increased the S-palmitoylation level of
IFITM3 by more than 3 times. Importantly, it was reported that
the three cysteine residues of IFITM3 protein were not
completely modified by S-palmitoylation, which explains why a
class of ZDHHC proteins can enhance IFITM3 S-palmitoylation
level (115).

Wang et al. reported that p53 up-regulated ZDHHC1
expression and S-palmitoylation level of IFITM3. Overexpression
of ZDHHC1 increased the S-palmitoylation level of exogenous
IFITM3 and the protein expression level of endogenous IFITM3.
The ZDHHC1 mutant with DHHC deficiency could still increase
the S-palmitoylation level of exogenous IFITM3, but not the
protein expression level of endogenous IFITM3. Meanwhile,
ZDHHC1 could not up-regulate endogenous IFITM3 protein
expression in the presence of 2-BP. Similar to wild-type
ZDHHC1, the ZDHHC1 DHHCD mutant can co-precipitate
with exogenous IFITM3, suggesting that ZDHHC may interact
with IFITM3 independently of the DHHC region and modify it
with S-palmitoylation. This study raises the question whether other
reg ions bes ides DHHC are involved in ZDHHC1
palmitoyltransferase activity (39).

In total, 13 ZDHHCs have been revealed to enhance S-
palmitoylation of IFITM3, including 1, 2, 3, 5, 6, 7, 9, 14, 15,
20, 23, 24, and 25. Only ZDHHC1 and ZDHHC20 can enhance
the antiviral activity of IFITM3, and further study showed that
ZDHHC20 and IFITM3 are co-localized in lysosomes. By
contrast, ZDHHC3, ZDHHC7, and ZDHHC15 are co-localized
around the nucleus with IFITM3, suggesting that the subcellular
localization where hIFITM3 was S-palmitoylated may affect its
antiviral activity (115). As ZDHHC2, 5,6,9,14,23,24,25 can also
enhance the S-palmitoylation level of IFITM3, it’s interesting to
explore where the eight ZDHHCs colocalize with IFITM3 and
whether these enzymes can enhance its antiviral effect.
CONCLUSIONS AND PERSPECTIVES

In summary, S-palmitoylation of IFITM3 is essential for its
antiviral effect, subcellular localization, stability, virion
trafficking, interaction with cholesterol, and molecular
conformation. IFITM3 can bind directly to the surface of the
virus particle to reduce its infective activity or interact directly
with host proteins to play an antiviral role. However, whether S-
palmitoylation affects the binding of IFITM3 to virus particles or
its interaction with host proteins has not been reported yet. This
topic is worthy of further research, which could help to reveal the
molecular mechanism of how S-palmitoylation regulates the
antiviral effect of IFITM3. Furthermore, all the three cysteines
June 2022 | Volume 13 | Article 919477
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of IFITM3 in murine and humans can be palmitoylated, and
Csy72 is the most important palmitoylated site, followed by
Csy105. In contrast, The S-palmitoylated modification of Csy71
alone seems to have the least effect on its biological function.
However, it has been shown that anyone mutation of the three
cysteines to alanine can almost completely abolish the anti-
PRRSV activity of porcine IFITM3, suggesting that the dually
S-palmitoylated IFITM3 at Cys72 and Cys105 may not
necessarily be the most active isoform in mammalian cells.

In this review,wehaveprimarily focusedontheclassical andnovel
progress concerning the antiviral mechanism of IFITM3 and the
mechanism of how S-palmitoylation regulates its antiviral activity.
The role ofPTMofproteins involved in regulatingof cellular antiviral
activity has been a hot topic. Despite recent advances in
understanding the mechanism of S-palmitoylated proteins in
immune response, little is known about the regulation of natural
immune response. Therefore, how S-palmitoylation modification
regulates natural immune response could be a research focus in the
future. Of note, S-palmitoylation modification participates in virus
replication and infection and the regulation of antiviral effect
mediated by IFITM3, but the mechanisms of how the host
balances these two effects await further elucidation.

As is shown in many studies, the catalytic center of the ZDHHC
family is the highly conserved DHHC domain. However, the
exogenous ZDHHC1 mutants deficient in the HDDC region can
enhance S-palmitoylation of IFITM3. It’s worthy of exploring
whether other catalytic dominants exit in ZDHHC protein.
Moreover, emerging evidence has revealed the interplay between
S-palmitoylation and other PTMs. For example, inhibition of S-
palmitoylationmodification of IFITM3 can significantly up-regulate
Frontiers in Immunology | www.frontiersin.org 9
its ubiquitination level. What effect does S-palmitoylation
modification have on the other two posttranslational
modifications (methylation and phosphorylation) of IFITM3? The
precise molecular mechanisms that govern the synergistic effect of
PTMs deserves further exploring.

In general, S-palmitoylation regulates the antiviral activity of
IFITM3 through influencing its membrane proportion,
trafficking to virions, stability, interaction with cholesterol, and
conformation. Future studies are still in need to clarify the
regulation mechanism of S-palmitoylation on IFITM3.
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34. Yánez DC, Ross S, Crompton T. The IFITM Protein Family in Adaptive
Immunity. Immunology (2020) 159(4):365–72. doi: 10.1111/imm.13163

35. Zhao X, Sehgal M, Hou Z, Cheng J, Shu S, Wu S, et al. Identification of
Residues Controlling Restriction Versus Enhancing Activities of IFITM
Proteins on Entry of Human Coronaviruses. J Virol (2018) 92(6):e01535-
17. doi: 10.1128/jvi.01535-17

36. Wrensch F, Karsten CB, Gnirß K, Hoffmann M, Lu K, Takada A, et al.
Interferon-Induced Transmembrane Protein-Mediated Inhibition of Host
Cell Entry of Ebolaviruses. J Infect Dis (2015) 212(Suppl 2):S210–218.
doi: 10.1093/infdis/jiv255
Frontiers in Immunology | www.frontiersin.org 10
37. Fu B, Wang L, Li S, Dorf ME. ZMPSTE24 Defends Against Influenza and
Other Pathogenic Viruses. J Exp Med (2017) 214(4):919–29. doi: 10.1084/
jem.20161270

38. Xu Z, Li X, Xue J, Shen L, Zheng W, Yin S, et al. S-Palmitoylation of Swine
Interferon-Inducible Transmembrane Protein is Essential for its Anti-JEV
Activity. Virology (2020) 548:82–92. doi: 10.1016/j.virol.2020.06.004

39. Wang X, Wu Z, Li Y, Yang Y, Xiao C, Liu X, et al. P53 Promotes ZDHHC1-
Mediated IFITM3 Palmitoylation to Inhibit Japanese Encephalitis Virus
Replication. PLoS Pathog (2020) 16(10):e1009035. doi: 10.1371/
journal.ppat.1009035
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