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Abstract: Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors
based on protein-glycan/protein recognition. These processes are emerging to involve several regions
on the protein so that the availability of a detailed structural characterization of a full-length galectin
is essential. We report here the first crystallographic information on the N-terminal extension of
the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed
proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5
is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop
protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch
position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan
array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group
B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures
revealed the characteristically preformed structural organization around the central Trp77 of the
CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also
characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an
ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between
flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in
this region.

Keywords: β-hairpin; β-sandwich; blood group B; lectin; sugar code

1. Introduction

Storage of biological information involves more than nucleic acids and proteins. The
ubiquity of occurrence, the enormous diversity already at the level of oligomers and the
fine-tuned spatiotemporal regulation of the appearance of distinct structures are solid
arguments for a fundamental functional meaning of the glycan part of cellular glycocon-
jugates [1–6]. Indeed, by molecular complementarity of oligosaccharides with a contact
region in the carbohydrate recognition domains (CRDs) of sugar-binding proteins (lectins),
glycan-encoded messages are ‘read’ and ‘translated’ into cellular effects [6–8]. Toward this
end, triggering specific bioeffects, not only the selection of the binding partner(s), appears
to matter. Furthermore, the lectin’s design, modularity and quaternary structure are first
revealed in the case of the tetrameric leguminous lectin concanavalin A by a lower extent
of crosslinking of certain cell surface receptors [9,10]. Fittingly, the context of presentation
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of the CRD shows a wide range of variability within lectin families. When considering
the emerging multifunctionality of lectins, regions not involved in glycan binding can also
affect their mode of action. Variability in design and the potential of regions beyond the
glycan-binding site to be a physiologically relevant call for a detailed structural analysis
within the lectin families in all their naturally occurring forms.

Focusing on the adhesion/growth-regulatory ga(lactose-binding) lectins, their com-
mon CRD is presented in three types of protein architecture, i.e., as (non)covalently associ-
ated homo/heterodimers (proto or tandem-repeat types) or as the chimera-type galectin-3
(Gal-3) with its N-terminal stalk attached to the CRD [11–14]. This highly dynamic, over
100-amino-acid-long sequence is composed of sections of known functionality; i.e., non-
triple helical collagen-like repeats (for self-association) and an N-terminal peptide with two
sites for serine phosphorylation (for intracellular compartmentalization) [12,15–17]. Two
members of this lectin family are peculiar: galectin-related protein (GRP) and rat galectin-5
(rGal-5) present a short N-terminal extension (of up to 37 amino acids) of the canonical
CRD of unknown function, which is clearly a challenge to study. Their special status as
N-tailed proto-type-like proteins thus prompted to accomplish structural characterization
of the full-length protein. In particular, it is of interest to define the structural features of
the N-terminal extension, if adopted. Since respective attempts had so far been unsuccess-
ful in the cases of human and chicken GRP, which had been crystallized as a truncated
version [18,19], rGal-5 is the remaining target protein to try a full characterization of an
N-tailed proto-type-like galectin.

This lectin was first purified from rat lung (denoted as RL-18) [20]. Sequencing of
the cDNA from a rat reticulocyte library identified a strong homology (over 80%) to the
C-terminal CRD of the tandem-repeat-type galectin-9 (Gal-9C), and monitoring among
mammalian genomes disclosed its status as being uniquely present in rats [21–24]. The exon
profile assumed that the rGal-5 gene originated from a species-specific gene duplication
event followed by partial deletion to maintain the first exon coding for 13 amino acids and
then the three exons of Gal-9C [12,24] (Figure 1). Notably, duplications and copy number
variability of the galectin genes between species are not uncommon among mammals [25],
rGal-5 being a specially processed species-specific form.

In solution, the current status of analysis describes rGal-5 as a monomer with a weak
haemagglutinin activity [20,22,26]. Non-sialylated glycan termini are binding partners,
especially when clustered, as is the case for N-acetyllactosamine (LacNAc) of the three
complex-type N-glycans of the nonavalent pan-galectin-binding glycoprotein asialofetuin,
and rGal-5 binding distinguishes late-stage apoptotic from secondary necrotic peripheral
blood lymphocytes [27–30]. Selectivity in glycan binding is also implied in rGal-5′s in-
volvement in the sorting processes during reticulocyte membrane remodeling by exosomal
release [31].

In our study, we first report the binding specificity of rGal-5 through a glycan array,
followed by further analysis of the ligand binding by isothermal titration calorimetry (ITC).
The top places of a blood-group tetrasaccharide in the array test are due to its high affinity
relative to LacNAc and is envisioned by evidence-based docking. Having succeeded in
obtaining crystals of full-length rGal-5, structural information is then presented on the
lectin in the absence and in the presence of lactose (Lac). The detected difference in the
arrangement of the N-terminal tail in ligand-free and -loaded protein might suggest a
molecular switch controlling contact formation in this area.
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Figure 1. (A) Gene structures for rGal-5 and -9. The size of the exons (boxes) is indicated, and introns
are drawn as lines (not drawn to scale). The N- and C-terminal CRDs of rGal-9 are labelled and given
in different grey levels. Homologous exons are indicated (double arrows). (B) Sequence alignment of
rGal-5 with rat and human Gal-9. Strictly conserved residues (red) and similar residues (boxed red
letters) between rat proteins are shown. The upper lane represents the secondary structure elements
of rGal-5 (α represents α-helices, β represents β-sheets and TT represents β-turns).

2. Materials and Methods
2.1. Protein Production and Purification

Recombinant production and purification by affinity chromatography followed by
controls to ascertain purity were performed as previously described [26,32]). After-
wards, the rGal-5 and GRIFIN protein samples were extensively dialyzed at 277 K against
5 mM sodium phosphate buffer (pH 7.2), 0.2 M NaCl and 4 mM β-mercaptoethanol
(PBSβ). Finally, the galectin-containing solutions were concentrated using Amicon Ul-
tra 10,000 MCWO centrifugal filter units (Millipore, Darmstadt, Germany), and then
loaded into a Hi-Prep 16/60 Sephacryl S100 column (GE Healthcare, Freiburg, Germany)
equilibrated with 20 mM Na-K phosphate buffer (pH 7.0), 150 mM NaCl and 4 mM β-
mercaptoethanol. To obtain the cGRIFIN–tetrasaccharide complex, the purified protein
sample was then incubated with the sugar at a 1:2 molar ratio in the same buffer for
10 min in ice. In the case of the rGal-5–lactose complex, the sample was purified by affinity
chromatography using home-made lactosylated Sepharose 4B [33] immediately after the
first dialysis. The protein bound to the resin was eluted with PBSβ and 200 mM lactose,
concentrated and loaded into a Hi-Prep 16/60 Sephacryl S100 column (GE Healthcare,
Freiburg, Germany) equilibrated with the previously described buffer supplemented with
5 mM lactose. All solutions of sugar-free and -loaded proteins were concentrated to a final
concentration of 15 mg/mL for the screening of crystallization conditions.

2.2. Glycan Array Measurements

The array consisted of 609 compounds covering glycans and polysaccharides printed
onto commercial NHS-activated Slide H (Schott Nexterion, Jena, Germany), tested with
100 µg/mL biotinylated rGal-5 and involving Alexa555-labeled streptavidin (Thermo



Biomolecules 2021, 11, 1854 4 of 16

Fisher Scientific, Eugene, OR, USA) as second-step reagent for Innoscan 1100AL scanner-
based (Innopsys, Carbonne, France) signal qualification, expressed in medium relative
fluorescence units (RFU) and medium absolute deviation (MAD), as described previ-
ously [34,35]. When the fluorescence intensity exceeded the background value by a factor
of five, the respective signal was considered to be significant.

2.3. Crystallization, Data Collection and Processing

Protein crystals were grown at 295 K by the vapor diffusion method. Specifically,
rGal-5 and rGal-5–lactose crystals grew in 10% PEG 8000, 100 mM Tris pH 7.0 and 200 mM
MgCl2. Crystals were soaked in this solution supplemented with 30% v/v glycerol as
cryoprotectant. GRIFIN–tetrasaccharide crystals were grown in 15% w/v PEG 400 and
100 mM MES pH 6.5. The same solution supplemented with 25% w/v PEG 400 was used as
cryoprotectant. All crystals were flash-cooled by immersion in liquid nitrogen. Diffraction
data were collected at the beamlines BM14 of the ESRF Synchrotron (Grenoble, France)
and BL13-XALOC of the ALBA Synchrotron (Cerdanyola del Valles, Barcelona, Spain).
Crystallographic data were processed using XDS [36] and Aimless [37]. Details of the
diffraction data are presented in Table 1.

Table 1. Data collection and refinement statistics.

rGal-5 rGal-5 + Lactose cGRIFIN
+ Tetrasaccharide

Data collection
Space group P 21 P 22121 P 22121
Cell dimensions

a, b, c (Å) 66.1, 68.1, 95.4 39.0, 65.8, 112.7 39.1, 70.6, 87.7
A, β, γ (◦) β = 91.8

Resolution(Å) a 33.03–1.70 39.02–1.90 43.85–1.13
(1.76–1.70) (1.97–1.90) (1.17–1.13)

Total reflections 402258 (17733) 46992 (4574) 181470 (17698
Unique reflections 92950 (9247) 23584 (2322) 90857 (8884)
Rmerge 0.057 (0.457) 0.060 (0.252) 0.015 (0.305)
Rmeas 0.077 (0.623) 0.085(0.947) 0.021 (0.431)
CC 1/2 0.99 (0.84) 0.99 (0.84) 1.00 (0.90)
Completeness (%) 99.75 (99.21) 99.78 (99.74) 99.13 (97.73)
<I/σ(I)> 14.01 (2.80) 7.60 (2.74) 22.0 (2.0)
Wilson B-factor 13.96 15.69 9.99
Multiplicity 4.1 (3.7) 2.0 (2.0) 2.0 (2.0)

Refinement
Rwork 0.17 (0.23) 0.17 (0.22) 0.15 (0.42)
Rfree 0.21 (0.28) 0.23 (0.29) 0.17 (0.43)
Nº atoms (non-hydrogens) 7547 2533 2926

Protein 6659 2212 2350
Ligands 42 47 184
Water 846 274 482

Protein residues 834 279 276
Average B factor (Å2) 18.06 16.67 14.52

Protein atoms 16.60 15.61 12.39
Ligands 31.46 15.19 14.45
Water 28.88 25.47 24.93

R.m.s. deviations
Bond lengths (Å) 0.006 0.007 0.007
Bond angles (◦) 0.81 0.88 1.05

Ramachandran statistics
Favoured (%) 98 98 95.59
Outliers (%) 0.5 1.2 0.37

Clashscore 5.7 1.79 3.56
PDB code 5JP5 5JPG 7P8H

a Values in parentheses are for the highest-resolution shell.
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2.4. Structure Determination and Refinement

The Molecular Replacement Method was used to solve the structures. A poly-Ala
model based on the structure of Gal-9C (PDB entry 3NV1 [38]) was used to determine
the structure of rGal-5. The PDB entry 5NMJ [32] was used as the search model to solve
the cGRIFIN–tetrasaccharide structure. Structural refinements were carried out using
Phenix [39]. Manual building, addition of water molecules and placement of ligands were
done using Coot [40]. Details of the model refinements are given in Table 1. Protein–protein
interactions, in particular those engaging the rGal-5 N-terminal residues, were analyzed
using the PISA web server [41]. Figures for structural representation were drawn with the
Pymol program [42].

2.5. Analytical Ultracentrifugation

Galectin-containing samples were diluted to a final protein concentration of 0.45 mg/mL
in buffers for size-exclusion chromatography and pre-cleared by a centrifugation step at
16,000× g. Sedimentation velocity experiments were run at 293 K in an Optima KL-I analytical
ultracentrifuge (Beckman Coulter, Krefeld, Germany) with an An50-Ti rotor and standard
double-sector Epon-charcoal center pieces (1.2 cm optical path length). Measurements were
performed at 48,000 rpm, registering successive entries every minute at 280 nm. Rayleigh
interferometric detection was used to monitor the profile of the concentration gradient as
a function of time and radial position, and the data were analyzed using SedFit software
(Version 14.7).

2.6. SAXS Experiments

SAXS data were collected at the beamline BM29 (ESRF Synchrotron, Grenoble, France)
using the BioSAXS robot and a Pilatus 1M detector (Dectris, Switzerland) with synchrotron
radiation at a wavelength of λ = 1.000 Å and a sample-detector distance of 2.867 m [43].
Each measurement consisted of 10 frames of 1 s exposure each for a 100 µL sample flowing
through a 1-mm-diameter capillary during X-ray exposure. Buffer scattering was measured
immediately before each measurement of the corresponding protein sample at 277 K. The
obtained scattering images were spherically averaged and the buffer scattering intensities
subtracted using in-house software. Protein samples were prepared at concentrations of
4 mg/mL and 6 mg/mL in 20 mM Na-K phosphate buffer at pH 7.0 containing 150 mM
NaCl and 5 mM lactose. Particle envelopes were generated ab initio using the program
DAMMIF [44]. Multiple runs were performed to generate 20 independent model shapes
that were combined and filtered to produce an averaged model using the DAMAVER
software package [45].

2.7. ITC Measurements

The spacered B (type 2) tetrasaccharide was synthesized as described previously [46].
Titrations were monitored in a PEAQ-ITC calorimeter (Malvern, Westborough, MA, USA),
using a galectin-containing solution of 250 µL in PBS (10 mM Na2HPO4, 2 mM KH2PO4,
137 mM NaCl and 3 mM KCl at pH 6.8) containing 10 mM β-mercaptoethanol and injections
at 150 s intervals of 2 µL ligand-containing solution (up to adding 36.4 µL) at 25 ◦C
(750 rpm), as described [33,47]. The protein concentration was 125 µM, and the ligand
concentration in the syringe was 2.5 mM. In each titration, a fitted offset parameter was
applied to account for potential background. Data processing was performed using the
MiroCal PEAQ-ITC Analysis software.

3. Results
3.1. Glycan Array Data

rGal-5 is first tested to determine its binding profile to chip-presented substances,
mostly glycans up to the molecular mass of bacterial polysaccharides. By using an array
platform with 609 compounds, the spacered histo-blood-group B (type 2) tetrasaccharide,
LacNAc-based dimers and the xenoantigen with α1,3-linked galactose added to a LacNAc
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core were found to be frontrunners in terms of signal intensity, together with several bacte-
rial polysaccharides (Figure 2; for a complete listing of compounds and signal intensities,
please see Supplementary Material, Table S1). rGal-5, in contrast to GRP, which has lost the
ability to bind β-galactosides [19], thus presents a profile with typical selectivity among this
class of glycans. To report the contact pattern between rGal-5 and the selected carbohydrate
ligands, we then carried out systematic screening to find conditions for crystallization. In
these experimental series, we used the full-length protein to obtain structural information
on the N-terminal tail.

1 
 

Figure 2. Top-12 glycans in the composition of the glycan array that exhibit binding with rGal-5.

3.2. Overall Crystallographic Structure of Full-Length rGal-5

Ligand-free full-length rGal-5 crystallizes in the monoclinic P21 space group and
diffracts to a resolution of 1.7 Å. An estimation of the crystal solvent content suggested the
presence of six galectin molecules in the asymmetric unit (Figure 3A). The rGal-5–lactose
complex crystals belong to space group P22121, with only two molecules present in the
asymmetric unit (Figure 4A), and diffract to a 1.9 Å resolution.

The overall fold in ligand-free (Figure 3B) and -loaded rGal-5 (Figure 4A) is composed
of two antiparallel β-sheets (F1 to F5 and S1 to S6 strands) that form the characteristic
β-sandwich structure. A short 310 helix is placed between strands F5 and S2. Beyond ana-
lyzing the architecture of the contact site for glycans (see below), these crystals offered the
opportunity to examine whether the N-terminal extension presents well-ordered elements
or high flexibility.

3.3. Structure of Ligand-Free rGal-5

In the ligand-free structure, six rGal-5 molecules are arranged in the asymmetric unit,
as shown in Figure 3A. The core of the different protein units can readily be superimposed
onto each other, as revealed by the low average root mean square deviation (RMSD) value
among them of 0.26 Å for all Cα atoms. Differences are attributed mainly to the N-terminus,
and the six protein monomers can be divided into two groups (Figure 3A), based on the
experimental electron density. In the first group (chains A–C), the 11 residues at the N-
terminus are not visible in the electron density map. Their likely extended and flexible
structure in solution can indeed be derived from our SAXS data: the ab initio model of
rGal-5 calculated on this basis exhibits, expectably, a globular shape. Most interestingly,
though, a cylindrical extension on its top was seen in the model. When placing the CRD
within the spherical region, the extended N-terminal section matches the geometry of the
cylindrical part of the SAXS model (see below).
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Figure 3. Structure of ligand-free rGal-5. (A) Ribbon diagram of the asymmetric unit of the crystals
containing six molecules(A–F) of rGal-5 (helix in orange, β-strands in blue and the N-terminal
extension in green). (B) Strands (labelled F0 to F5 on one side and S1 to S6 on the other) forming the
characteristic β-sheets are labelled (helix in orange, β-strands in green and the N-terminal extension
in magenta). An extra strand is found, named F0, placed immediately in front of a loop protruding
from the CRD. (C) Intermolecular interactions stabilize the extended loop conformation. These
interactions involve residues Gly52 (G52), Pro9 (P9), His142 (H142), Tyr10 (Y10), Glu103 (E103),
Asn12 (N12), Gly52 (G52), Asn74 (N74). Symmetry-related molecules are shown in yellow.

When inspecting the second group (chains D–F), the electron density for this peptide
stretch was clearly observed: the three amino acids from Ser2 to Ser5 form an extra β-strand,
named F0, running in antiparallel direction to the C-terminal F1 strand. Residues Thr6 to
Asn12 are in a loop, placed in parallel to the axis of the β-sandwich and protruding more
than 10 Å from the S1 and F0 strands (Figure 3B).

The conformation within this loop is stabilized by interactions with symmetry-related
molecules: hydrogen bonds between Pro9–His142, Tyr10–Glu103 and Asn12–Gly52 as well
as a water bridge between Asn12 and Asn74 (Figure 3C).

3.4. Structure of Ligand-Loaded rGal-5

The two CRDs present in the asymmetric unit, which have bound lactose (Lac), exhibit
very similar features to ligand-free rGal-5 (Figure 4A), with an RMSD value of only 0.3 Å
for all Cα atoms. One of the two monomers in the asymmetric unit exhibits strong electron
density for the first 10 residues so that their structure could be modelled. Intriguingly,
these residues run parallel to the edge of the β-sandwich (Figure 4A) instead of forming
the F0 strand and the protuberant loop observed in the ligand-free state. Intramolecular
(hydrogen bonds between Ser2 and Ser3 with Ser39) and intermolecular contacts with
symmetry-related molecules (hydrogen bond between Thr6 and Asp40) stabilize this
special spatial arrangement (Figure 4B).
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Figure 4. Structure of the rGal-5–lactose complex. (A) Overall architecture of the asymmetric unit of
the rGal-5–lactose complex, with two CRDs; in one of them, the N-terminal residues (in magenta)
adopt an extended geometry interacting with the edge of the β-sandwich. Strands that form the
characteristic β-sheets are labelled (S1 to S6 on one strand, F1 to F5 on the other), and lactose
molecules represented in sticks showing the 1.9 Å resolution 2Fo-Fc electron density map (in blue)
contoured at 1.0 σ. (B) Inter- and intra-molecular interactions that stabilize the extended conformation
of the N-terminal residues. These interactions involve residues Ser2 (S2), Ser3 (S3), Ser39 (S39), Thr6
(T6) and Asp40 (D40). Symmetry-related molecules are represented in different colors. (C) Close-up
view of the ligand-binding site of rGal-5 to show interactions between the protein and lactose. Key
protein residues [His57 (H57), Asn59 (N59), Arg61 (R61), Asn70 (N70), Glu80 (E80) Arg82 (R82),
Arg43 (R43), Glu64 (E64) and Trp77 (W77)] and lactose are represented in stick mode and water
molecules as red spheres. (D) Superposition of the ligand-binding sites of rGal-5 (yellow) and the
rGal-5–lactose complex (grey). Side-chain positions of residues at this site are not affected by ligand
binding, indicating a preformed geometry. In the ligand-free structure, the position of the residues is
kept by interactions with water or glycerol molecules. Water molecules from this last structure are
shown in purple for clarity.

The carbohydrate-binding site in the concave face of the β-sheet is constituted by
β-strands S4 to S6. The amino acids of the signature sequence, i.e., His57, Asn59, Arg61,
Asn70, Glu80 and Arg82, directly interact with lactose through hydrogen bonding interac-
tions. Additionally, Arg43, Gln45 and Glu64 form water-mediated hydrogen bonds with
the ligand. As commonly found in galectin–lactose complexes, the indole ring of Trp77
stacks to the β-face of the pyranose ring of galactose (Figure 4C). In the absence of lactose,
these residues form contacts with water (or glycerol molecules under conditions used for
crystallization) molecules. Only minor rearrangements are observed for residues Arg43 and
Glu64, which interact through water molecules with lactose (Figure 4D). Moving beyond
defining the contact pattern, the thermodynamics of the ligand binding was analyzed
by ITC.

3.5. ITC Measurements

rGal-5 interact with Lac with a dissociation constant of 136 ± 16 µM, which is low-
ered in the case of LacNAc to 30.5 ± 1.9 µM and 5.5 ± 0.6 µM for the blood-group B
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tetrasaccharide (Table 2 and Supplementary Material, Figure S2). This stepwise affinity
enhancement can be explained by the increased number of contacts that these ligands
make with additional amino acids. In this case, we used its complex with an avian galectin
cGRIFIN (see below) shown in Figure 5 and the respective model building to obtain the
relevant information for the new additional contacts, as described below, between the
tetrasaccharide and rGal5.

Table 2. ITC data for ligand binding to recombinant rGal-5 (at 25 ◦C).

Ligand Kd (µM) Stoichiometry ∆G0
obs (kcal/mol) ∆H0

obs (kcal/mol) −T∆S0
obs (kcal/mol)

Lactose 121 ± 5 0.95 ± 0.05 −5.35 −4.99 ± 0.08 −0.36
151 ± 5 0.99 ± 0.06 −5.22 −5.03 ± 0.41 −0.18

LacNAc 28.6 ± 2.0 0.92 ± 0.01 −6.1 −10.0 ± 0.2 3.87
32.3 ± 7.1 0.94 ± 0.20 −6.0 −10.5 ± 2.6 4.43

Tetrasacc
haride 6.1 ± 0.2 0.94 ± 0.01 −7.11 −5.60 ± 0.03 −1.51

5.0 ± 0.2 0.98 ± 0.01 −7.11 −5.74 ± 0.03 −1.37

3.6. Structure of Ligand-Loaded cGRIFIN

Our attempts to crystallize rGal-5 bound to the blood-group B tetrasaccharide were
unsuccessful. Thus, we decided to test chicken GRIFIN (cGRIFIN) as a model for the
binding of this compound. This very stable protein has been previously crystallized in
several conditions [32]. We were able to obtain crystals of cGRIFIN in the presence of
the blood-group B tetrasaccharide. These crystals diffracted up to a resolution of 1.14 Å
(Table 1). This high-resolution data allowed us to build the sugar structure in the electron
density in both carbohydrate-binding sites of the dimer. A comparison of the lactose-bound
(PDB 5NLE) and the tetrasaccharide-bound cGRIFIN structures shows the absence of
any significant structural change between these two structures, the RMSD value being
0.382 Å for all Cα atoms. The GalB moiety fully superposes with the galactose moiety of
lactose, forming H-bonds with His46, Asn48, Arg50, Asn59 and Glu69. On the other hand,
the GlcNacB moiety is rotated in the tetrasaccharide compared to the glucose moiety of
lactose. Despite this change in the conformation, the H-bond with Glu69 is conserved.
The acetamido group is exposed to the solvent as it is the FucA moiety. The GalA moiety
establishes two additional H-bonds, one of them linking the 6′-hydroxyl group with the
NE atom of Trp66. The second one extends the binding site beyond the S4 strand, linking
the 2′-hydroxyl group with Glu32 (Figure 5A).

The superposition of the lactose-bound rGal-5 structure with the blood-group B
tetrasaccharide-bound cGRIFIN gave an RMSD of 0.69 Å for all Cα atoms, showing the
similarity of both complexes. This similarity allows us to analyze the interactions that
could be established between this ligand and rGal-5 (Figure 5B). The GalB and GlcNacB
moieties of the tetrasaccharide could stablish the same interactions as those observed for
lactose, including the one with Arg82. The GalA moiety is properly placed to interact
with the NE atom of Trp66 and with the side chain of Gln45, a residue from the S3 strand.
In addition, Arg43 faces the FucA ring and could interact with this moiety, expanding
the ligand-protein surface of contact (Figure 5C). This last residue belongs to the loop
connecting the S3 and F2 strands, the region interacting with the N-terminal residues in
the ligand bound rGal-5 structure.
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4 

Figure 5. (A) Close-up view of the carbohydrate-binding site (CBD) of cGRIFIN showing the
interactions between the histo-blood-group B tetrasaccharide and the active site residues [Met32
(M32), Glu34 (E34), His48 (H48), Asn50 (N50), Arg52 (R52), Ser55 (S55), Asn61 (N61), Trp68 (W68),
Glu71 (E71) and Val73 (V73)]. (B) Structural comparison between cGRIFIN bound to the blood-
group B tetrasaccharide complex (carbons in white) with the rGal-5/lactose complex (lactose in
green, carbons of the interacting residues in orange). While residues such as His57, Asn59, Arg61,
Asn70, Glu80 and Arg82 occupy almost the same position than residues in the former structure,
the presence of charged residues (Arg53, Glu64 and Arg82) (highlighted in semitransparent yellow
color) may lead to direct or water-mediated interactions with the ligand. (C) Superposition of the
cGRIFIN/tetrasaccharide structure (grey; the histo-blood-group B tetrasaccharide in cyan) with
the rGal-5–lactose complex (yellow; lactose in green) highlighting the differences in the active site
residues between cGRIFIN and rGal-5 [Met32 (M32) to Arg43 (R43), Ser55 (S55) to Glu64 (E64),
and Val73 (V73) to Arg82 (R82)]. (D) The rGal-5/histo-blood-group B tetrasaccharide modeled by
superposition with the cGRIFIN/tetrasaccharide structure. The active site residues involved in
bindig of the ligand are: Arg43 (R43), Gln45 (Q45), His57 (H57), Asn59 (N59), Arg61 (R61), Glu64
(E64), Asn70 (N70), Trp77 (W77), Glu80 (E80) and Arg82 (R82). Residues Arg43, Glu64 and Arg82
might explain the affinity of rGal-5 for the histo-blood-group B (type 2) tetrasaccharide.

3.7. Oligomerization State of Full-Length rGal-5

Despite the disparity in packing inside the asymmetric unit of rGal-5 crystals without
and with a ligand, intramolecular interactions, computed using the PISA Web server [41],
did not appear to be sufficient to promote oligomerization, in both cases.

We experimentally confirmed by analytical ultracentrifugation and small-angle X-ray
scattering (SAXS) in solution the absence of any oligomerization. The range of protein
concentrations from 0.45 mg/mL up to 6 mg/mL was covered to trace any tendency
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to form oligomers at high non-physiological concentrations. In sedimentation velocity
experiments in the absence or presence of 0.1 M lactose, rGal-5 (at 0.45 mg/mL) appeared
as a single peak with a sedimentation coefficient of 1.8 ± 0.1 S (s20, w value of 1.9 ± 0.1 S,
after correcting for the effect of solvent density and viscosity) (Supplementary Material,
Figure S1). This result is fully in line with a globular protein of a mass of 13.8 kDa, as
calculated from its amino acid sequence. Small-angle X-ray scattering (SAXS) data for
the rGal-5–lactose complex at the concentrations of 4 mg/mL and 6 mg/mL yielded a
particle distribution that is also attributed to a molecular mass of approximately 13 kDa
(Figure 6). These data sets further substantiate that rGal-5 is a monomer in solution (under
these conditions), as it is in the obtained crystals.

 

4 

Figure 6. Small-angle X-ray scattering (SAXS) experiment supports a monomeric quaternary structure of rGal-5 in solution.
(A) SAXS scattering profile of rGal-5. Black squares represent the experimental data, the red line the theoretical fitting
obtained with the program GNOM. Inset: pair distances distribution function. (B) Ab initio SAXS model generated with
the program DAMMIN (grey mesh). The crystallographic structure of the rGal-5 CRD domain with additional N-terminal
residues modelled in an extended conformation is shown inside the envelope.

4. Discussion

Gal-5 is an N-tailed proto-type-like galectin present exclusively in rats and exists in
solution as a monomer. To fill the gap of the structural characterization of this particular
protein and obtain information of a full-length N-tailed proto-type-like galectin, the three-
dimensional structures of the apo form and in complex with lactose were determined
by X-ray crystallography. The protein crystallizes as a monomer in the absence and in
the presence of ligand. In solution, analytical ultracentrifugation and SAXS experiments
extended the available evidence for the lack of any intermolecular association.

Within the ligand-binding site, the side chains of the residues of the signature sequence
for sugar recognition do not adopt their position by ligand binding. In the ligand-free
structure, a network of water molecules or the presence of a single glycerol molecule takes
the place of the core of a cognate glycan in the preformed contact site. The validity of the
concept for such an intimate preorganization that can also accommodate a compound with
a sugar-like constellation of hydroxyls, such as glycerol, has been thoroughly documented
for the CRD of human Gal-3 [48–50], also described for murine Gal-4′s N-terminal CRD [51].
In order to define cognate compounds, glycan array testing revealed preferential affinity
of rGal5 for the histo-blood-group B determinant and its fucose-less trisaccharide as well
as LacNAc-based tetrasaccharides among the tested set of mammalian glycans. The
calorimetric titrations reflect the affinity gain for LacNAc and the blood-group B epitope
relative to lactose (Table 2 and Figure S2).

Reflecting its proposed origin, rGal-5 shares structural features with Gal-9C (respective
data available for the human protein) to a great extent. The availability of individual
crystallographic information for human (h) Gal-9N and Gal-9C [52–55] made it possible
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to superimpose the rGal-5 structure to both Gal-9 CRDs. The calculated RMSD value
is smaller for hGal-9C (0.37 Å) than for hGal-9N (0.56 Å). rGal-5 and hGal-9C could be
overlaid almost perfectly, with loops occupying similar positions around the ligand-binding
site (Figure 7A). As observed in the hGal-9N structure, a short β-strand is formed in the
ligand-free rGal-5. This extension of the β-sandwich involves residues Pro9 and Tyr10
(Figure 7B). The N-terminal CRD of the human tandem-repeat-type Gal-9 thus mimics
rGal-5′s tendency for gaining some order in the N-terminal extension.
 

5 

 

Figure 7. (A) Structural comparison of rGal-5 (grey) with the N-terminal (green) and the C-terminal
(orange) CRD domains of hGal-9 showing the closer relationship between the first and the last
structure. Differences in loops connecting strands in the S-face (labelled S1 to S6) are highlighted
with colored squares. (B) Close view of N-terminal residues showing the formation at the F0 strand
in rGal5, as observed in the structure of the N-terminal domain for hGal-9. (C) Specificity for LacNAc
motif repeats in hGal-9N involves a hydrogen bond with Asn137 (N137) in the hGal-9N, while the
corresponding residues in hGal-9C and rGal5 are Gly313 (G313) and Ala135 (A135), respectively.
Furthermore, His223 (H223, in hGal-9C) and Gln45 (Q45, in rGal5) occupy the equivalent position of
Ala46 (A46) in hGal-9N, causing steric impediment.

Structural differences between rGal-5 and hGal-9C relative to the N-terminal CRD
of hGal-9 were found in the loop regions by insertion or deletion of residues (Figure 7A).
These differences can be linked to shifts in specificities in glycan-binding between both
CRDs in hGal-9, such as a reduction in affinity towards the LacNAc oligomers for the
C-terminal with respect to the N-terminal CRD [38,56,57]. Loops connecting the F2-S3
and S3-S4 strands have additional residues in hGal-9N, covering the S2-S4 β-strands and
forming a highly favorable binding site for LacNAc and its oligomers (polyLacNAc repeats)
in N- and O-glycans and keratan sulphate, interacting with both CRDs [56–58]. Binding of
these ligands involves a hydrogen bond with Asn137 in the hGal-9N [38]. The correspond-
ing residues in hGal-9C and rGal5 are Gly313 and Ala135, respectively, hindering this
interaction. In addition, His223 (in hGal-9C) and Gln45 (in rGal5) occupy the equivalent
position of Ala46 in hGal-9N, causing a steric impediment for ligand accommodation
within this region of the S3 β-strand (Figure 7B). This residue was linked to the specificity
of hGal-9N for polyLacNAc repeats, the Forssman pentasaccharide and the histo-blood-
group A hexasaccharide [52,53]. The loops connecting the S4-S5 and the S5-S6 strands
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are shorter in rGal5 and hGal-9C than in hGal-9N. These loops form the entrance for the
ligand-binding site, their similar shape letting rGal-5 and the C-terminal CRD of hGal-9
share affinity.

The distinctive characteristic of rGal-5 (and GRP) is the N-terminal extension to the
canonical CRD. Since the galectin CRD can interact with binding partners beyond the
site for accommodating lactose and can engage in two types of contact at the same time
(e.g., Gal-3 binding glycan and the chemokine CXCL12 [59]), changes between flexible and
ordered arrangements of a tail may establish a molecular switch to let a protein ligand dock
or not onto this region. For example, the considerably longer tail in Gal-3 has been shown
by ESI MS and NMR [60,61] to backfold. This move results in blocking the access to a
region of the S-face of the CRD. The systematic design of the Gal-3 variants with truncated
versions attached to the CRD facilitated the possibility of generating a new double-stranded
antiparallel β-sheet at the F-face [62,63]. In that case, the obtained information indicated
the potential for forming an ordered structural element in the distal section that may have
a bearing on the presentation of the Ser acceptor for phosphorylation [62]. Identification of
respective counterreceptors for rGal-5 with a contact at this site will be required to support
such an idea, giving further work a clear direction.

Interestingly, the monomeric C-type lectin RegIIIγ (HIP/PAP in mice) express a flexi-
ble N-terminal extension, which is a prosegment maintaining the protein in a biologically
inactive state and is proteolytically removed to let the CRD become antibacterial via pepti-
doglycan binding [64]. Equally important, functional assays with an engineered variant to
establish a protein pair (such as lectin with and without the N-terminal tail) can be informa-
tive for rGal-5 and GRP to trace the physiological significance for the extension, such as for
the N-tailed proto-type-like galectins. The detection of the relevance of the isomer state of
the Pro4 or Pro5 peptide bond in two galectins, chicken galectin-1B and human galectin-7,
in the quaternary structure, illustrates the apparent fine-tuning of galectin activity by
in-built molecular switches [65,66]. More work on the N-terminal tail is encouraged as a
result of this.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11121854/s1, Figure S1: Sedimentation velocity of rGal5 in the absence and in the presence
of lactose. Figure S2: Binding of lactose, LacNAc and histo-blood-group B (type 2) tetrasaccharide to
rGal5 studied by Isothermal Titration Calorimetry. Table S1: Results of the glycan array.
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