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This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on phar-
macokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using
the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine
centers. Each center used a site-specific method to measure the individual AIF from each data set and submit-
ted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature
population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans

(volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and
�i (mean intracellular water lifetime). All other variables, including the definition of the tumor region of inter-
est and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in
only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation
(wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and �i, respectively, using the unadjusted
AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV � 0.50 and 0.10,
respectively), but had smaller effects on kep and �i (wCV � 0.39 and 0.22, respectively). kep is less sensitive
to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvascula-
ture. With low sensitivity to AIF uncertainty, the SSM-unique �i parameter may have advantages over the
conventional PK parameters in a longitudinal study.

INTRODUCTION
As a noninvasive method to measure tissue microvascular per-
fusion and permeability, dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) is increasingly used in oncologic
imaging for cancer diagnosis and therapeutic monitoring (1, 2).

DCE-MRI generally involves the serial acquisition of heavily
T1-weighted images before, during, and after the injection of a
paramagnetic contrast agent (CA). Quantitative pharmacoki-
netic (PK) modeling of DCE-MRI time-course data allows esti-
mation of imaging biomarkers, such as Ktrans (volume transfer
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rate constant) and ve (extravascular, extracellular volume frac-
tion), that are direct measures of tissue biology and in principle
independent of data acquisition details and MRI scanner plat-
form (3). However, the accuracy and precision of the derived PK
parameters can be largely affected by the selection of the PK
model for data fitting (3-5), errors in quantification of the native
tissue T1 value (3, 4, 6), and variance in determination of arterial
input function (AIF; the time-course of CA plasma concentra-
tion) (3, 4, 7-9). These challenges lead to substantial variations
in the reported PK parameter values for the same disease and are
fundamental obstacles in translating quantitative DCE-MRI into
multicenter clinical trials and general clinical practice. There-
fore, it is important for the DCE-MRI community to investigate
the impact of variations/errors in different steps of PK data
analysis on the estimated parameter values, establish ways to
reduce parameter variance, and identify those parameters that
are less sensitive to certain variations in data analysis and,
therefore, the more robust imaging biomarkers for multicenter
studies.

Quantification of the AIF is generally required in most PK
models to fit the DCE-MRI time-course data from the tissue of
interest. There are many approaches to determine the AIF, in-
cluding blinded estimation (10), reference tissue (11-13), empir-
ically derived population-averaged AIF (14), and direct mea-
surement of AIF from a feeding artery if the artery is clearly
visible within the image field of view (9). In a previous multi-
center data analysis challenge (9) within the Quantitative Imag-
ing Network (QIN) of the National Cancer Institute, we have
shown, with shared DCE-MRI data sets from patients with pros-
tate cancer, different extents of PK parameter variations owing
to differences in individually measured AIFs using site-specific
methods. We have shown that parameter variations could be
reduced by using a reference-tissue method (15, 16) to adjust the
amplitude of the measured AIF. The commonly used standard
Tofts model (17, 18) with two independent fitting parameters
(Ktrans and ve) was used for PK analysis in that study. A recent
single-center prostate DCE-MRI study (19) also shows parameter
variations when individually measured AIFs and literature pop-
ulation-average AIFs were used for PK analysis with the Tofts
model, resulting in substantial variations in diagnostic accuracy
of prostate cancer.

In this study, part II of the QIN multicenter data analysis
challenge, the shutter-speed model (SSM) (20, 21) was used to
perform PK analysis of the shared data sets with AIFs measured
by multiple QIN centers. The main difference between the SSM
and the Tofts model is that the former takes into account inter-
tissue-compartment water-exchange kinetics. An additional pa-
rameter, the mean intracellular water lifetime (�i), is used in the
SSM to account for the transcytolemmal (cross cell membrane)
water-exchange kinetics. Recent studies show that the SSM-
derived Ktrans parameter is a more accurate diagnostic marker
for both breast (22, 23) and prostate cancer (24), and pretreat-
ment �i is predictive of breast cancer response to neoadjuvant
chemotherapy (25) and overall survival in patients with head
and neck cancer (26). Furthermore, recent results suggest that �i

is potentially a new imaging biomarker of cellular metabolic
activity (27-31), specifically the activity of the Na�-K�-ATPase
pump, which is essential for all mammalian cells and is primar-

ily responsible for maintaining the K� and Na� gradient in vivo.
In addition, a simulation study (16) has shown low sensitivity of
�i to AIF amplitude scaling compared with other conventional
PK parameters such as Ktrans. Thus, it is important to experimen-
tally investigate the effect of uncertainty in AIF determination
on parameters estimated with the SSM, which was the goal of
this study.

MATERIALS AND METHODS
Data Sharing and Multicenter AIF Measurement
Axial prostate DCE-MRI data were collected by one QIN center
(32) for pretreatment staging of patients with prostate cancer.
Data sets from 11 patients were shared with other QIN centers
through TCIA (The Cancer Imaging Archive). These data sets
were acquired at 3 T using a 3-dimensional SPoiled Gradient
Recalled (SPGR) sequence with repetition time � 3.6 millisec-
onds, echo time � 1.3 milliseconds, flip angle � 15°, a temporal
resolution ranging from 4.4 to 5.3 seconds, and about 60 frames
for a 4.5- to 6-minute acquisition time. Nine QIN centers, de-
noted as QIN1 to QIN9, downloaded the DCE-MRI data and
performed AIF measurement from a single image slice for each
individual data set using site-specific methods. The smaller
circular region of interest (ROI) placed in the left femoral artery
(Figure 1A insert) shows the most common location where the
AIFs were measured. The derived AIFs in the form of signal
intensity time-course data were then submitted to one of the 9
centers, the data managing center, for centralized PK analysis of
the 11 DCE-MRI data sets. Additional details on DCE-MRI ac-
quisition parameters and the methods used by each center for
AIF measurement from the imaging data are described in Huang
et al.’s study (9).

DCE-MRI Data Analysis
The AIF signal intensity time-course was converted by the
managing center to blood R1 (' 1/T1) time-course, R1,b(t), using
the steady-state MRI signal intensity equation for a gradient
pulse sequence (33) with the known acquisition parameters of
flip angle, echo time, and repetition time, and a fixed precon-
trast blood R1 of 0.61 s�1 (34), and then to plasma CA concen-
tration time-course, Cp(t), using the following equation:

R1,b(t) � r1hCP(t) � 0.61 s�1 (1)

where r1 is the CA relaxivity at 3 T, set at 3.8 mM�1s�1; h is the
hematocrit, set at 0.45.

For comparison with the individually measured AIFs, a
frequently cited and used population-averaged AIF published by
Geoff Parker (GP) et al. (14) was also included in this study. The
analytical expression of the GP AIF was implemented at the
managing center and resampled to match the temporal features
of the prostate DCE-MRI data sets.

For each data set, the prostate tumor ROI was defined on a
single image slice through the central portion of the tumor by
one investigator from the center where the data were generated.
The signal intensity time-course for each voxel within the tumor
ROI was converted by the managing center to R1 time-course,
R1(t), in the same way as for R1,b(t), but with a fixed precontrast
R1 for the tumor tissue, R10, assumed to be 0.63 s�1 (7). Follow-
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ing calculation of Cp(t) [equation (1)] for each of the AIFs
measured by the 9 QIN centers and the literature GP AIF, and
R1(t) for each tumor voxel, the managing center performed PK
analysis of the shared 11 prostate DCE-MRI data sets on a
voxel-by-voxel basis using an in-house Python-based SSM
software package. All AIF arrival times were manually aligned
with the uptake phase of the average tissue response curves from
the tumor ROIs. The 2-compartment–3-parameter version of the
SSM (20, 21) was used for R1(t) data fitting in this study:

R1(t) � (1⁄2)[{2R1i � r1K
trans⁄ve�

0

t

Cp(t�)exp((�Ktrans⁄ve)

� (t � t�))dt� �(R10 � R1i � 1⁄�i)⁄ve} � {[2⁄�i

� (R1i � R10 � 1⁄�i)⁄ve � r1K
trans⁄�ve�

0

t

Cp(t�)exp

� ((�Ktrans⁄ve)(t � t�))dt�)]2 � 4(1 � ve)⁄�i
2ve}

1⁄2] (2)

where R1i is the intrinsic intracellular longitudinal relaxation
rate constant and is assumed to be equal to the tissue R10. The PK
model fitting returned Ktrans, ve, and �i parameter values for each
voxel within the tumor ROI, and the CA efflux rate constant, kep,
was calculated as kep � Ktrans/ve. The mean parameter values of
the single-slice tumor ROI were obtained by averaging the voxel
parameter values within the ROI.

Owing to large differences in the site-specific methods for
the AIF measurement (9), such as the placement of the ROI in the
artery and the ROI size, substantial variations in AIF amplitude

were observed in the AIFs measured from the same data set. A
reference tissue method (15, 24) was used to adjust the ampli-
tude of the measured AIFs, as well as the literature GP AIF, in an
attempt to reduce the variations (9). In this approach, an ellip-
soidal ROI (Figure 1A insert) was drawn in the adjacent, normal-
appearing obturator muscle area on the same image slice as the
one for the AIF measurement and used as the reference tissue
ROI. The AIF amplitude was varied until the Tofts model fitting
of the DCE-MRI data from the muscle reference tissue ROI
returned a ve value of 0.1 (35). In total, 20 AIFs, including
unadjusted and reference tissue-adjusted AIFs measured by the
9 QIN centers and of the literature GP AIF, were used for PK
modeling of each prostate DCE-MRI data set using the SSM,
resulting in 20 sets of mean tumor Ktrans, ve, kep, and �i values
that were then separated into two groups of results based on the
unadjusted and reference tissue-adjusted AIF approaches.

Because a physically meaningful ve is in the range of 0.0 to
1.0, these two values were used as the lower and upper bound-
aries, respectively, for SSM fitting of all voxel data. All returned
voxel ve values were within the two boundaries (none at bound-
ary values) when the reference tissue-adjusted AIFs were used,
while, on average, �3% voxels (range: 0%–6.6% for all the AIF
and data set combinations) had returned ve values reaching the
upper boundary of 1.0 when the unadjusted AIFs were used. In
the latter case, the parameter values from these limited number
of voxels with ve value of 1.0 were not excluded from the
calculation of tumor mean parameter values.

Figure 1. Individual arterial in-
put functions (AIFs) measured
from one subject’s prostate dy-
namic contrast-enhanced mag-
netic resonance imaging (DCE-
MRI) data set by 9 Quantitative
Imaging Network (QIN) centers.
The insert in (A) is a zoomed ax-
ial postcontrast DCE-MRI image
slice showing the smaller red,
circular region of interest (ROI) in
the left femoral artery where the
blood signals were measured for
the AIF time-courses, and the
larger red, ellipsoidal reference
ROI in the normal-appearing ob-
turator muscle adjacent to the
prostate. Substantial variations in
both the shape and magnitude
can be observed in the AIF
curves determined by the 9 QIN
centers (A), which are clearly re-
duced following magnitude ad-
justment using the reference tissue
method (B).
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Statistical Analysis
The mean parameter values for the tumor ROI obtained from all
fittings were used for statistical analysis. Descriptive statistical
analysis was conducted to summarize the PK parameter values
returned using different AIFs, with the distribution graphically
assessed by boxplots. Intraclass correlation coefficients (ICC),
within-subject coefficient of variation (wCV), and concordance
correlation coefficients (CCC) were calculated, and these were
reported with the corresponding 95% confidence intervals (CIs).
Although all three coefficients were computed to assess the
reproducibility of the PK parameter values obtained with differ-
ent AIFs, each had specific focus. The ICC measures the propor-
tion of total variation contributed by between-subject differ-
ences, with a high ICC value indicating good agreement (36). The
wCV is the ratio of within-subject standard deviation to the
mean of a parameter, with smaller wCV value suggesting better
reproducibility. Closely related to ICC, CCC represents the level
of pairwise linear agreement to a 45° line of which the intercept
is forced to be zero. A larger CCC indicates better agreement
between results from a pair of measurements and thus better
reproducibility. Bland–Altman plots were used to graphically
demonstrate pairwise agreements in results from different AIF
measurements. SAS 9.4 (Cary, NY) was used for all statistical
analysis. SAS macro “%ICC9” and “%mccc” were used for the
estimations of ICC, wCV, and CCC.

RESULTS
Variations in AIF Determination
For each data set, substantial variations in both the amplitude
and shape of the Cp(t) time-course can be observed as a result of
direct AIF measurement from the DCE-MRI data by the 9 QIN
centers using site-specific methods. A clear example of Cp(t)
variation is shown in Figure 1A. Following amplitude adjust-
ment of Cp(t) using the reference tissue (Figure 1A insert), the
agreement among the individually measured AIF curves was
clearly improved (Figure 1B). Table 1 lists the standard deviation
(SD) of the Cp(t) peak amplitude for unadjusted and reference
tissue-adjusted AIFs from measurements by the 9 centers for
each patient. Two-tailed paired t test shows that the AIF peak
value SD of the reference tissue-adjusted AIFs is significantly
(P � .018) smaller than that of the unadjusted AIFs.

PK Parameter Variations Due to AIF Differences
Figure 2 shows the boxplots of Ktrans, ve, kep, and �i parameters
estimated from SSM modeling of the 11 DCE-MRI data sets with
adjusted and unadjusted AIFs (including those from the GP AIF).
For most measurements, the mean is greater than the median,
which is commonly seen when distributions are skewed toward
larger parameter values. The dispersion of the estimated param-
eter values from the 11 patients varies substantially across the
QIN centers (or AIFs), with Ktrans showing clearly the largest
variation, while ve and �i exhibiting the least variations. As
another marker of microvascular properties, kep shows less vari-
ation than Ktrans. Comparing the boxplots between unadjusted
and adjusted AIFs, it can be visually observed that the agree-
ment in parameter dispersion among different centers (or AIFs)
is improved for Ktrans and ve when the reference tissue-adjusted
AIFs were used in data fitting, but this is not clearly the case for

kep and �i. Similar observations can be obtained from Table 2,
which shows the mean SSM parameter values and 95% CIs for
each patient under the unadjusted and reference tissue-adjusted
AIF approaches. The mean values were calculated by averaging
the tumor parameter values derived with the individual AIFs
determined by the 9 QIN centers.

Figure 3 shows a column graph of wCV for Ktrans, ve, kep,
and �i obtained with the unadjusted (gray) and adjusted (white)
AIFs. The error bars represent the 95% CIs. The larger the wCV
value, the higher the variation in a measurement performed on
the same subject by different methods. The wCV values for
Ktrans, ve, kep, and �i are 0.58, 0.27, 0.42, and 0.24 for unadjusted
AIFs, and 0.50, 0.10, 0.39, and 0.22 for adjusted AIFs, respec-
tively. The wCV of Ktrans is the largest among all 4 parameters
with either unadjusted or adjusted AIFs, while those of ve and �i

are the smallest. From unadjusted to adjusted AIFs, the decrease
in parameter variation is more prominent for Ktrans and ve (wCV
value decreases from 0.58 to 0.50 and from 0.27 to 0.10, respec-
tively), compared with kep and �i (0.42 to 0.39 and 0.24 to 0.22,
respectively). Figure 4 shows a similar graph of ICC values for
Ktrans, ve, kep, and �i obtained with the two AIF approaches. The
ICC values for Ktrans, ve, kep, and �i are 0.44, 0.51, 0.72, and 0.92
for unadjusted AIFs, respectively, and 0.59, 0.91, 0.79, and 0.93
for adjusted AIFs, respectively. Consistent with the results
shown in Figure 3 , Ktrans has the smallest ICC value with either
AIF approach, while �i has the largest ICC value. From unad-
justed to adjusted AIFs, the increase in ICC is the most obvious
for Ktrans and ve (ICC value increases from 0.44 to 0.59 and from
0.51 to 0.91, respectively) compared with kep and �i (0.72 to 0.79
and 0.92 to 0.93, respectively).

As an example of differences in AIF-caused variations in
estimated PK parameters when unadjusted and reference tissue-
adjusted AIFs were used for SSM analysis, Figure 5 shows
voxel-based parametric maps of Ktrans and �i of a prostate tumor
generated from the SSM analysis. The tumor ROI was in the

Table 1. Standard Deviation of AIF Peak
from Multicenter Measurements

Patient

SD of AIF Peak Value (mM)

Unadj. AIF Adj. AIFa

1 0.88 0.54

2 2.36 0.72

3 4.74 1.98

4 0.75 0.65

5 0.55 0.32

6 0.68 0.32

7 0.55 0.76

8 1.63 0.64

9 0.41 0.42

10 1.28 0.56

11 4.45 2.27

a Standard deviation (SD) of AIF peak value is significantly smaller for
reference tissue-adjusted (Adj.) AIFs in comparison with unadjusted
(Unadj.) AIFs: 2-tailed paired t test, P � .018.
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peripheral zone, as indicated by the arrow in the postcontrast
DCE-MRI image. Ktrans and �i maps obtained with unadjusted
AIFs from the 9 QIN centers are shown on the left panels and
those with reference tissue-adjusted AIFs are shown on the right.
These maps are displayed under the same Ktrans and �i color
scales, respectively. With either AIF approach, substantially
higher variations among the 9 Ktrans maps can be visually
observed compared with the 9 �i maps. While the variations
among the Ktrans maps can be seen reduced when the reference
tissue-adjusted AIFs were used, there is no noticeable improve-
ment in agreement among the �i maps going from unadjusted to
adjusted AIFs. It is interesting to note, however, that despite
considerable variations in Ktrans maps owing to AIF differences,

the spatial pattern of voxel Ktrans distribution largely remains
the same in all the maps. This was also observed in the �i maps,
and in the maps of ve and kep (data not shown for the latter two
parameters).
Concordance Analysis
Concordance correlation analysis was conducted to assess pa-
rameter agreement between any two AIFs under the same con-
dition (adjusted or unadjusted). Tables 3 and 4 tabulate the CCC
values for Ktrans and �i, respectively, with those for the unad-
justed AIFs listed in the top right half and those for the adjusted
AIFs in the lower left half. The CCC ranges for Ktrans and �i are
0.005–0.937 and 0.558–0.993, respectively, for unadjusted
AIFs, and 0.102–0.991 and 0.640–0.997, respectively, for ad-

Figure 2. Boxplots of the tumor
mean Ktrans, ve, kep, and �i pa-
rameters for the 11 subjects ob-
tained with shutter-speed model
(SSM) analysis using unadjusted
(left column) and reference tissue-
adjusted (right column) AIFs mea-
sured by the 9 QIN centers and
the population-averaged Geoff
Parker (GP) AIF from the literature
(14). The diamond and bar sym-
bols represent the mean and me-
dian values, respectively. The
body of the box is bounded by
the upper 75% and lower 25%
quartiles, representing the inter-
quartile range of the middle 50%
of the measurements. The upper
and lower whiskers define the
range of non-outliers. The outliers
are plotted as dots beyond the
whiskers.
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justed AIFs. Reflective of the results shown in Figures 3 and 4,
there is generally a considerable increase (comparing values that
are symmetric to the diagonal line in Table 3) in the CCC value
for pair-wise comparisons of the Ktrans parameter going from
unadjusted to adjusted AIFs, while little CCC changes are ob-
served (comparing values that are symmetric to the diagonal
line in Table 4) for the �i parameter. The CCC ranges for ve and
kep (tables not shown) are 0.334–0.986 and 0.145–0.957, re-
spectively, for unadjusted AIFs, and 0.554–0.993 and 0.129–
0.965, respectively, for adjusted AIFs. From unadjusted to ad-
justed AIFs, the changes in CCC for ve and kep are similar to those
for Ktrans and �i, respectively. In addition, it is important to note
that with either AIF approach, the CCC values for pair-wise
comparisons that included the GP AIF are among the smallest
values in the aforementioned CCC ranges.

Bland–Altman plots are shown in Figure 6 to show exam-
ples of pair-wise agreements in Ktrans (Figure 6A) and �i (Figure
6B). The plots are displayed only for the AIF pairs with the
largest (top rows in Figure 6, A and B) and smallest (bottom rows
in Figure 6, A and B) CCC values for the unadjusted (left col-
umns) and reference tissue-adjusted (right columns) AIFs. Al-
though the differences between the measurements are mostly
within the 95% CIs for all the plots, it is clear, with the vertical
axis scales kept the same for the Ktrans and �i plots, respectively,
that the width of the CI band differs substantially between AIF
pairs with greater CCC values and those with smaller CCC val-
ues: narrower for the former and wider for the latter. For Ktrans

and �i with the largest CCC values (ie, the best pair-wise agree-
ments in the estimated Ktrans and �i values), the means of pa-
rameter difference represented by the dotted lines are 0.22

Table 2. Mean and 95% Confidence Interval of the SSM PK Parameters Obtained with Unadjusted and
Reference-Tissue-Adjusted AIFs

Patient

Unadj. AIF Adj. AIF

Ktrans (min�1) ve kep (min�1) �i (s) Ktrans (min�1) ve kep (min�1) �i (s)

1 0.52 (0.26, 0.77) 0.65 (0.55, 0.76) 0.80 (0.60, 1.00) 0.38 (0.32, 0.44) 0.35 (0.26, 0.43) 0.48 (0.46, 0.51) 0.75 (0.60, 0.90) 0.31 (0.28, 0.34)

2 0.99 (0.45, 1.52) 0.41 (0.25, 0.57) 2.26 (1.92, 2.61) 0.20 (0.14, 0.27) 0.94 (0.79, 1.08) 0.41 (0.39, 0.43) 2.27 (1.92, 2.60) 0.19 (0.16, 0.22)

3 1.89 (1.32, 2.46) 0.35 (0.26, 0.43) 5.58 (4.55, 6.61) 0.34 (0.24, 0.44) 2.29 (1.88, 2.65) 0.44 (0.41, 0.47) 5.44 (4.59, 6.49) 0.36 (0.25, 0.46)

4 2.67 (2.45, 2.89) 0.74 (0.65, 0.83) 3.73 (3.26, 4.20) 0.40 (0.29, 0.50) 2.15 (1.88, 2.42) 0.49 (0.46, 0.53) 4.47 (3.87, 5.07) 0.34 (0.24, 0.44)

5 0.60 (0.43, 0.77) 0.44 (0.39, 0.49) 1.45 (1.20, 1.71) 0.60 (0.42, 0.83) 0.48 (0.38, 0.58) 0.36 (0.34, 0.40) 1.44 (1.21, 1.68) 0.58 (0.41, 0.82)

6 1.21 (0.77, 1.65) 0.92 (0.89, 0.96) 1.26 (0.84, 1.68) 0.42 (0.37, 0.48) 1.06 (0.83, 1.28) 0.93 (0.92, 0.94) 1.11 (0.87, 1.34) 0.46 (0.44, 0.48)

7 0.44 (0.33, 0.54) 0.84 (0.60, 0.99) 0.48 (0.38, 0.58) 0.41 (0.36, 0.46) 0.22 (0.16, 0.28) 0.81 (0.76, 0.85) 0.29 (0.23, 0.36) 0.56 (0.54, 0.58)

8 0.68 (0.32, 1.04) 0.78 (0.62, 0.94) 0.82 (0.47, 1.18) 0.42 (0.37, 0.47) 0.63 (0.35, 0.91) 0.79 (0.74, 0.84) 0.79 (0.46, 1.12) 0.41 (0.39, 0.44)

9 1.10 (0.75, 1.45) 0.63 (0.58, 0.67) 2.01 (1.50, 2.52) 1.25 (1.18, 1.32) 0.80 (0.59, 1.02) 0.51 (0.49, 0.53) 1.97 (1.42, 2.51) 1.21 (1.13, 1.29)

10 1.25 (0.59, 1.91) 0.62 (0.49, 0.76) 1.87 (1.29, 2.44) 0.35 (0.24, 0.46) 1.28 (0.75, 1.82) 0.71 (0.66, 0.76) 1.81 (1.14, 2.40) 0.39 (0.32, 0.46)

11 1.13 (0.55, 1.71) 0.52 (0.42, 0.61) 2.13 (1.45, 2.81) 0.23 (0.20, 0.26) 0.90 (0.31, 1.40) 0.37 (0.30, 0.45) 2.36 (1.56, 3.25) 0.22 (0.19, 0.24)

The values in the parenthesis represent the lower and upper bounds of the 95% confidence interval.

Figure 3. Column graphs of within-subject coeffi-
cient of variation (wCV) for the SSM Ktrans, ve,
kep, and �i parameters obtained with the unad-
justed (gray) and adjusted (white) AIFs. The re-
spective 95% confidence intervals (CI) are shown
as error bars.

Figure 4. Column graphs of intraclass correla-
tion coefficient (ICC) for the SSM Ktrans, ve, kep,
and �i parameters obtained with the unadjusted
(gray) and adjusted (white) AIFs. The respective
95% CIs are shown as error bars.
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min�1 and 0.012 seconds, respectively, for unadjusted AIFs, and
0.078 min�1 and 0.005 seconds, respectively, for adjusted AIFs.
For Ktrans and �i with the smallest CCC values (ie, the worst
pair-wise agreements in the estimated Ktrans and �i values), the
means of parameter difference represented by the dotted lines
are �0.56 min�1 and �0.18 seconds, respectively, for unad-
justed AIFs, and �1.29 min�1 and �0.18 seconds, respectively,
for adjusted AIFs. From unadjusted to adjusted AIFs, the de-
crease in the width of the 95% CI band is substantially greater

for the Ktrans parameter than that for the �i parameter; the
average percent decrease (from the cases with the largest and
smallest CCCs) is 37% for Ktrans and 15% for �i. This indicates
that the use of reference tissue-adjusted AIF has a stronger effect
in improving parameter agreement in Ktrans compared with �i.
The same observation was made when comparing Ktrans and kep

(data not shown). In addition, in cases of poor Ktrans agreement
(bottom row of Figure 6A), there appears to be a correlation
(linear bias) between the difference in Ktrans and the mean of

Table 3. CCC Values for Ktrans

QIN1 QIN2 QIN3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.239 0.702 0.683 0.914 0.846 0.921 0.838 0.790 0.005

QIN2 0.406 0.464 0.188 0.197 0.358 0.317 0.325 0.337 0.084

QIN3 0.836 0.642 0.440 0.666 0.937 0.825 0.857 0.639 0.159

QIN4 0.462 0.277 0.498 0.669 0.565 0.541 0.600 0.581 0.182

QIN5 0.960 0.409 0.840 0.643 0.820 0.864 0.747 0.718 0.089

QIN6 0.881 0.586 0.991 0.548 0.880 0.937 0.886 0.685 0.144

QIN7 0.990 0.447 0.862 0.562 0.969 0.906 0.780 0.800 0.045

QIN8 0.975 0.372 0.864 0.682 0.942 0.911 0.961 0.595 0.148

QIN9 0.977 0.488 0.866 0.620 0.938 0.895 0.981 0.931 0.057

GP 0.191 0.102 0.162 0.348 0.224 0.173 0.209 0.159 0.194

CCC values for unadjusted (unadj.) AIFs are presented in the top right triangle and those for reference-tissue-adjusted (adj.) AIFs are presented in the bottom
left triangle.

Figure 5. Voxel-based Ktrans (top two panels) and �i (bottom two panels) parametric maps in a prostate tumor ROI, with
each panel consisting of 9 maps corresponding to those obtained with AIFs measured by 9 QIN centers. The left and
right two panels show the maps obtained with unadjusted and adjusted AIFs, respectively. The grayscale image at the
center shows an axial postcontrast DCE-MRI image slice, with the arrow pointing to the cyan-colored prostate tumor ROI.
The color scales of Ktrans and �i are kept the same, respectively, for the unadjusted and adjusted AIF approaches.
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Ktrans; the larger the parameter value, the larger the difference in
the parameter value between the two measurements. No clear
correlation is observed for �i, even in cases of poor agreement
(bottom row of Figure 6B).

DISCUSSION
In this part II of a multicenter data analysis challenge to evaluate
the effect of variations in AIF determination on estimated PK
parameters from prostate DCE-MRI data, the SSM was used for
PK modeling of the DCE-MRI data. All other aspects in the data
analysis were kept the same as those in part I (9) of the challenge
where the standard two-parameter (Ktrans and ve) Tofts model
was used. For example, quality control measures such as fixed

tumor ROI definition, fixed tumor T10, and central data analysis
with a single SSM software package were adopted to ensure that
PK parameter variations are mainly due to variations in only
AIF. Compared with challenge part I (9), where the effect of AIF
uncertainty was evaluated on parameters of Ktrans, ve, and kep,
one additional parameter, �i, was included in this part II study.

Consistent with results from challenge part I (9), substantial
variations in the estimated PK parameters were observed in this
study owing to variations in AIF quantification by 9 QIN centers
using site-specific methods (9), especially in Ktrans and kep.
Among the four parameters derived with the SSM using unad-
justed AIFs, Ktrans shows the largest AIF-caused variation with a
wCV value of 0.58, while ve and �i show the smallest variations

Table 4. CCC Values for �i

QIN1 QIN2 QIN3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.858 0.937 0.821 0.947 0.977 0.972 0.933 0.953 0.583

QIN2 0.920 0.935 0.835 0.895 0.855 0.869 0.881 0.882 0.577

QIN3 0.945 0.976 0.849 0.974 0.899 0.908 0.949 0.920 0.594

QIN4 0.803 0.845 0.859 0.860 0.842 0.864 0.840 0.872 0.773

QIN5 0.938 0.955 0.995 0.849 0.922 0.925 0.964 0.941 0.600

QIN6 0.997 0.906 0.938 0.806 0.937 0.993 0.949 0.973 0.619

QIN7 0.989 0.920 0.945 0.844 0.941 0.990 0.943 0.965 0.662

QIN8 0.974 0.916 0.960 0.815 0.957 0.971 0.965 0.954 0.617

QIN9 0.978 0.929 0.965 0.830 0.962 0.979 0.971 0.992 0.558

GP 0.702 0.640 0.658 0.840 0.653 0.714 0.764 0.675 0.677

CCC values for unadjusted (unadj.) AIFs are presented in the top right triangle and those for reference-tissue-adjusted (adj.) AIFs are presented in the bottom
left triangle.

Figure 6. Bland–Altman plots showing agreements in Ktrans (A) and �i (B) for AIF pairs with the largest (top row in A
and B) and smallest (bottom row in A and B) CCC values under the conditions of unadjusted (left column in A and B)
and adjusted (right column in A and B) AIFs. The two solid horizontal lines represent the upper and lower limits of the
95% CI, while the dotted horizontal line represents the mean value of Ktrans (A) and �i (B) difference between the paired
measurements.
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with nearly equal wCV values of 0.27 and 0.24, respectively.
Although higher than ve and �i, kep has a lower AIF-caused
variation than Ktrans, with a wCV value of 0.42. Our findings are
in agreement with a recent study comparing fully automated
and semiautomated AIF determination approaches for prostate
DCE-MRI data analysis (7), showing that Ktrans variation owing
to AIF uncertainty is the most prominent compared with other
PK parameters. A similar conclusion was drawn in a brain
DCE-MRI study (8) that investigated PK parameter variations
caused by the use of AIFs measured from different vessels.

As shown by this study using the SSM, as well as part I of
the challenge (9) using the standard Tofts model, adjusting the
amplitudes of individually measured AIFs with a reference-
tissue method (15, 24) by placing the reference ROI in the
adjacent normal muscle region can decrease AIF variance
(Table 1) and, as a result, reduce parameter variations. For
example, the wCV values were decreased from 0.58 to 0.50 and
from 0.27 to 0.10 for Ktrans and ve, respectively, when the
reference tissue-adjusted AIFs replaced the unadjusted AIFs in
the SSM analysis. The effect of AIF amplitude adjustment was
smaller, however, on kep (wCV: 0.42 to 0.39) and �i (wCV: 0.24 to
0.22) parameters. These observations are consistent with the
results from a simulation study using the SSM (16), which found
significantly lower sensitivity of kep and �i to a 30% change in
AIF amplitude compared with Ktrans and ve. Interestingly, the
aforementioned brain DCE-MRI study (8) using the extended
Tofts model (18) also showed lower variation of kep in response
to different AIF sources compared with Ktrans. Because kep, like
Ktrans, is also a measure of perfusion and permeability, the low
sensitivity of kep to AIF amplitude uncertainty suggests that kep

could be a more robust and reproducible imaging biomarker
than Ktrans for DCE-MRI characterization of tissue microvascu-
lature (37) when consistent and accurate AIF quantification is
difficult.

In pair-wise assessment of agreement in parameter values
obtained with two different AIFs, the worst agreements (or the
smallest CCC values) generally occurred when a measured AIF
(from acquired DCE-MRI data) was paired with the literature
population-averaged GP AIF, for any parameter and under the
condition of either unadjusted or adjusted AIFs. It is important
to note that, in addition to amplitude, the AIF curve shape also
influences the estimation of the PK parameters (3, 9). Although
the methods used by the 9 QIN centers to measure the AIFs were
quite different (9), the individually measured AIFs captured the
actual AIF curve shapes from the DCE-MRI data. The curve
shape is specific to data acquisition details and data sampled for
AIF quantification. This may not be well represented by the GP
AIF, which is modeled on the basis of data from the aorta or iliac
arteries acquired with different pulse sequence parameters at a
different field strength. Such differences between the measured
AIFs and GP AIF are probably a central reason why any pair-
wise comparison of the GP AIF with a measured AIF resulted in
large differences in estimated PK parameter values. Therefore,
whenever possible, an individually measured AIF should be used
for PK analysis of DCE-MRI data instead of a generic popula-
tion-averaged AIF, which may be unrelated to a specific study.
This conclusion is based on the results from this study, as well as
on those from part I of this data analysis challenge (9), which

were obtained from a single time-point pretreatment prostate
DCE-MRI data sets. For longitudinal DCE-MRI studies of cancer
response to treatment, percent changes in parameter values
(rather than absolute values) are generally used to assess therapy
response, and high parameter repeatability is crucial. The use of
a fixed population-averaged AIF may have advantages over
individually measured AIFs because of the likely randomness of
AIF measurement errors in the latter approach across multiple
studies over a period of time. A recent DCE-MRI study of 13
patients with abdominal metastases by Rata et al. (38) shows
that the highest parameter repeatability in a baseline test–retest
study was achieved with a population-averaged AIF in compar-
ison with three approaches of direct AIF measurement from
acquired imaging data, and that, as a result, parameters derived
with the population-averaged AIF have the highest sensitivity to
treatment-induced changes. Further investigations with larger
patient cohorts and data collected from different organs are
needed before clear recommendations can be made in terms of
direct AIF measurement versus fixed population-averaged AIF
(39) for longitudinal DCE-MRI evaluation of cancer therapy
response.

The representative parametric maps of Ktrans and �i (Figure
5) indicate that DCE-MRI parameter variations caused by AIF
variations are mostly systematic. Despite differences in absolute
voxel parameter values owing to different AIFs used in SSM
analysis, it can be seen that the pattern of voxel parameter
distribution largely remains the same for all the Ktrans or �i maps,
that is, there are no visible changes in the spatial locations of the
parameter “hot” and “cold” spots when different AIFs were used.
This is also observed in the voxel-based kep and ve parametric
maps (not shown). Therefore, the assessment of PK parameter
spatial heterogeneity using texture analysis of parametric maps
may not be affected by variations in AIF determination. How-
ever, quantitative texture feature analysis needs to be conducted
to test this hypothesis.

The �i parameter is unique to the SSM, and its reciprocal,
1/�i, is a measure of the rate of water cycling across cell mem-
brane. Previous studies (27-31) indicate that �i is an imaging
biomarker of cellular metabolic activity, specifically the activity
of Na�-K�-ATPase, which consumes ATP and drives active
water cycling. The relationship between �i and Na�-K�-ATPase
was recently validated by a study of breast cancer cell lines
using magnetic resonance and immunofluorescence measure-
ments (40). The present multicenter data analysis challenge
shows that �i (along with ve) not only has the smallest AIF-
caused variance among the PK parameter but is also (along with
kep) the least sensitive to changes in AIF amplitude. Therefore,
the inclusion of the �i parameter (or the use of the SSM) in
DCE-MRI studies could be advantageous, especially for stud-
ies of therapeutic monitoring when random errors of AIF
measurement in multiple exams over time could lead to low
accuracy and precision in parameters such as Ktrans and
consequently either over- or underestimation of true re-
sponse to treatment.

Similar to challenge part I (9), this multicenter study has
several limitations. The study cohort size is small (11 patients)
and the results should be validated with a larger cohort size. Due
to the lack of data for R10 measurement in the shared data sets,
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a fixed R10 value was used for PK analysis of all voxel data
across all 11 patients. Although this approach eliminated the
contamination of R10 variation in the evaluation of the effect of
AIF variation on SSM parameters, the use of a uniformed pre-
sumed R10 value most likely reduced the accuracy in the esti-
mated parameter values, as well as in the assessments of intra-
and intertumoral heterogeneity. The AIF determination methods
used by the 9 QIN centers are constrained to direct measurement
from the imaging data. Other AIF quantification methods were
not evaluated in this study. It would be interesting to investigate
if AIF variations from a method like blinded estimation (10) will
have similar effects on PK parameter variance. Because the
shared prostate DCE-MRI data sets were all acquired before
treatment, it was not possible to assess the effects of AIF vari-
ation on DCE-MRI assessment of prostate cancer response to
treatment, particularly the comparison of the individually mea-
sured AIFs with the population-averaged GP AIF.

CONCLUSION
The results from this part II of a multicenter DCE-MRI data analysis
challenge using the SSM are generally consistent with those ob-
tained using the standard Tofts model (9). Variations in AIF quan-
tification result in considerable variance in the estimated PK

parameters. Among the three conventional PK parameters (ie,
Ktrans, ve, and kep), the AIF-caused parameter variation is the high-
est in Ktrans and the lowest in ve. The SSM-specific �i parameter has
low AIF-caused variation, similar to ve. Use of the reference tissue
method to adjust the amplitude of measured AIF can improve
agreement in AIF and reduce variations in Ktrans and ve, but it has
little effect on kep and �i. kep may be a more robust and reproducible
marker of prostate microvasculature than Ktrans because of its lower
sensitivity to AIF uncertainty. Because �i is the least sensitive
among the four parameters to AIF variation and has the potential of
being an imaging biomarker of metabolic activity, the SSM could
be the better choice for PK analysis of DCE-MRI data acquired with
sufficient sensitivity to the water-exchange kinetics (41), especially
those acquired in longitudinal studies to assess cancer response to
treatment. In multicenter quantitative DCE-MRI studies, central
data analysis with a fixed AIF determination method should be
adopted to minimize parameter variations due to inconsistency in
AIF determination by each local site. If local PK data analysis is
required, the AIFs used by the local sites need to be consistent:
either individually measured from acquired data or a population-
averaged AIF, but not both. Furthermore, the reference tissue-
adjusted AIF should be used in data modeling to reduce AIF-caused
parameter variations.
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