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Cardiomyocyte renewal in the failing heart:

lessons from the neonate?
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The renewal capacity of the heart is extremely limited, with
less than 1% cardiomyocyte turnover per year in an adult
human heart (Bergmann et al. 2015). This process is thought
to be mediated by the proliferation of existing cardiomyocytes
rather than by differentiating stem cells (Eschenhagen et al.
2017; Senyo et al. 2013).

One of the hallmarks of heart failure is the loss of function-
al cardiomyocytes. Whether cardiac disease supports cardio-
myocyte renewal is a matter of ongoing debate (Eschenhagen
et al. 2017); however, many studies have reported increased
cell cycle activity after cardiac injury (Senyo et al. 2013; Vujic
et al. 2018).

Intriguingly, a failing heart shows some resemblance to a
neonatal heart (Table 1). As observed in the fetal heart
(Sturzu et al. 2015), neonatal cardiomyocytes can still dupli-
cate, thereby regenerating the injured heart (Porrello et al.
2011, 2013). During postnatal maturation, cardiomyocytes
undergo marked changes in metabolism, redox state, sarco-
meric protein expression, and morphology (Guo and Pu
2020; Karbassi et al. 2020). Throughout this process,
cardiomyocytes gradually lose their proliferative capacity
(Alkass et al. 2015; Karbassi et al. 2020). In failing hearts,
certain conditions, including ischemia, hypertrophy, and at-
rophy, can induce the reactivation of fetal gene programs,
leading to partial reversal of morphological differentiation
and metabolic maturation processes (Kubin et al. 2011,
Taegtmeyer et al. 2010).

Nevertheless, we know that increased cell cycle activity in
diseased and injured hearts does not lead to efficient regen-
eration, most likely because cell cycle activity mainly leads
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to polyploidy and not to substantial proliferation of existing
cardiomyocytes (Herget et al. 1997; Hesse et al. 2012;
Meckert et al. 2005) (Table 1). However, recent work sug-
gests that mononuclear diploid cardiomyocytes, which are
mainly present in early neonatal hearts, retain their capacity
to divide (Bersell et al. 2009; Kuhn et al. 2007; Patterson
et al. 2017). Based on these findings, the “subpopulation”
theory emerged, stating that mononucleated diploid
cardiomyocytes are a reservoir to generate new
cardiomyocytes (Gan et al. 2019; Patterson and Swift
2019). If this theory was true, only a small fraction of
cardiomyocytes would be able to divide in the diseased heart,
making it difficult to generate sufficient numbers of new
cardiomyocytes to support heart regeneration.

Mature adult cardiomyocytes are rod-shaped, with a high
length-to-width ratio, develop invaginations in the form of T-
tubules, and are densely packed with myofibrils and mito-
chondria (Karbassi et al. 2020) (Table 1). However, successful
mitosis and cytokinesis require extensive morphological
changes, including the disassembly of sarcomeres, to allow
symmetric assembly of the mitotic spindle and formation of
the contractile ring (Ahuja et al. 2004; Green et al. 2012).
Thus, without substantial remodeling, successful cytokinesis
seems to be incompatible with the size and shape of adult
cardiomyocytes. Importantly, loss of sarcomere organization
and disrupted ultrastructure of cardiomyocytes have been doc-
umented in patients with failing hearts (Hein et al. 2009),
suggesting that one requisite for cardiomyocyte division is
present in the diseased heart. A recent study by Gabisonia
et al. showed that dedifferentiation of mature cardiomyocytes
can be triggered by the delivery of microRNA-199a in large
mammals, leading to reentry into the cell cycle. However,
these cells resembled a pool of poorly differentiated
cardiomyocytes with a myoblastic phenotype, which results
in fatal arrhythmias (Gabisonia et al. 2019), demonstrating
that a reversal of cardiomyocyte maturation needs to be tem-
porally and spatially tightly controlled to efficiently regenerate
the heart.
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Table 1 Myocardial characteristics of the neonatal, adult, and failing heart

Neonatal heart Adult heart Failing heart
Extracellular matrix - Soft - Stiff - Extensive remodeling of ECM

- Low number of fibroblasts - High number of fibroblasts - Increased number of fibroblasts

- Neonatal fibroblast subtype - Adult fibroblast subtype - Activated myofibroblasts

Metabolism - Glycolysis
- Low number of mitochondria
Cardiomyocyte - No T-tubules
morphology - Low length-to-width ratio
Contractility - Low contractility
- Low 3-MHC to «-MHC ratiof
Cell cycle - Cell cycle activity

- Proliferation of cardiomyocytes
- Mostly mononucleated diploid
cardiomyocytes

- Oxidative phosphorylation
- High number of mitochondria

- Rod shape

- T-Tubules

- High length-to-width ratio

- Increase in cardiomyocyte size

- High contractility

- High 3-MHC to a-MHC ratiof

- ssTnl to cTnl switch

- Very low cell cycle activity and
cardiomyocyte proliferation

- Mostly multinucleated and polyploid
cardiomyocytes

- Switch towards glycolysis
- Mitochondrial dysfunction

- Further enlargement of cardiomyocyte
- Loss of sarcomere organization
- Cardiomyocyte structural degeneration

- Reduced contractility
- Decreased 3-MHC to «a-MHC ratiof

- Increased cell cycle activity (relative to
non-diseased adult hearts)

- Some evidence for increased cardiomyocyte
proliferation

- Increase in nuclear ploidy

T Human-specific isoform switch

In concert with the cellular changes in the myocyte, the
composition of the extracellular matrix (ECM) is an important
factor in regulating cardiomyocyte maturation and cardiomyo-
cyte cell cycle activity (Bassat et al. 2017; Dixon et al. 2019;
Morikawa et al. 2017; Yahalom-Ronen et al. 2015). Several
components of the neonatal ECM, such as agrin (Bassat et al.
2017) and periostin (Kuhn et al. 2007), have been implicated
in augmented cardiomyocyte cell cycle activity. Remodeling
of the ECM in cardiac pathologies is controlled by cardiac
fibroblasts, and a recent study revealed that a switch in fibro-
blast subtype from a neonatal to adult state controls cardio-
myocyte maturation and cell cycle activity (Wang et al. 2020).
ECM synthetized by postnatal cardiac fibroblasts inhibited
cardiomyocyte proliferation and increased cardiomyocyte
binucleation, indicating that during postnatal maturation the
ECM becomes a non-permissive environment for mitotic
rounding and cytokinesis of cardiomyocytes (Wu et al.
2020). As the phenotype and number of fibroblasts fundamen-
tally change during aging and in heart disease (Bergmann
et al. 2015; Kanisicak et al. 2016), it will be important to
investigate how the ECM composition and crosstalk between
fibroblasts and cardiomyocytes can be manipulated to devise
new regenerative strategies for diseased hearts.

There are some unexpected similarities between regenera-
tive neonatal hearts and adult failing hearts. However, only
limited regeneration is observed in the failing heart. It is evi-
dent that cardiac regeneration does not depend solely on one
factor, but rather on the interplay of changes occurring in the
cardiomyocyte and its microenvironment. Future research
needs to show how to orchestrate these factors to not only
mimic distinct neonatal features of regeneration (e. g., meta-
bolic switch, disassembly of sarcomeric organization) but also
achieve complete regeneration of an adult heart.
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