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Abstract

Phenotypic assays using human primary cells are highly valuable tools for target discovery

and validation in drug discovery. Expression knockdown (KD) of such targets in these

assays allows the investigation of their role in models of disease processes. Therefore, effi-

cient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9

system has been shown to be a versatile and efficient means of gene inactivation in immor-

talized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for

efficient gene inactivation in two human primary cell types, normal human lung fibroblasts

and human bronchial epithelial cells. The effects of gene inactivation were studied in the

TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mes-

enchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic

mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-tar-

geting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by inser-

tion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression

and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition,

including substantially decreased alpha smooth muscle actin and fibronectin 1 expression,

which are markers for FMT and EMT, respectively. A direct comparison between co-TD of

separate Cas9 and gRNA AdV, versus TD with a single “all-in-one” Cas9/gRNA AdV, re-

vealed that both methods achieve similar levels of indel formation. These data demonstrate

that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell

phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over

the current existing tools and should enhance target discovery and validation opportunities.

Introduction

First-in-class drug discovery generally starts with the identification of novel targets in a rele-

vant disease model, by pinpointing which genes contribute to a specific biological process or

disease [1]. Phenotypic assays with human primary cells in combination with reduction of

gene expression ("knockdown", KD) are a valuable tool to explore the function of targets in
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this context. Until recently, such expression KD has been largely achieved using RNA interfer-

ence (RNAi) [2]. In this case, messenger RNA (mRNA) is cleaved and degraded in a sequence-

specific manner, dependent on the presence of double stranded RNA molecules, such as small

interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs). As a result, mRNA levels of a

given gene, and subsequently protein expression are decreased. Although RNAi has proven

to be a highly useful technology, downregulation of unintended targets (“off-targets”) is a gen-

uine problem, potentially resulting in unspecific effects [3]. Furthermore, using RNAi the

degree of mRNA KD can vary greatly and will never reach full penetrance. While this may not

pose a problem as long as the KD is sufficient to cause a change in phenotype, sometimes com-

plete KD is required and often desirable [4]. This is generally achieved through gene knockout

(KO) leading to total absence of a functional protein.

Traditional methods to generate targeted gene KOs are tedious and relatively inefficient,

depending on homologous recombination (HR) of a donor sequence with the host genome.

Recombination frequencies can be improved by orders of magnitude using so-called engi-

neered nucleases, including zinc-finger nucleases (ZFNs) and transcription activator-like

effector nucleases (TALENs), as well as RNA-guided endonucleases (RGENs) such as the

CRISPR/Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associ-

ated) system [5]. These nucleases are characterized by their sequence-specific binding to and

cleavage of genomic DNA, resulting in the formation of either a DNA single-strand or double-

strand break (SSB and DSB, respectively). Both types of lesions need to be repaired in order to

maintain genomic integrity. Presence of a DSB activates the cellular DNA repair machinery

leading to repair by the error-prone non-homologous end joining (NHEJ) and/or homology-

directed repair (HDR) pathways [6]. By providing a donor template for repair, one can modify

the DNA sequence in a targeted fashion, a process referred to as genome editing. A gene KO

or point mutant can thus be established in a relatively short time span.

Of all genomic engineering nucleases known to date the CRISPR/Cas9 system has become

the most attractive, owing to its simplicity and ease of use. CRISPR/Cas9 was originally identi-

fied as part of the adaptive immune system in prokaryotes, silencing invading foreign nucleic

acids, such as viruses and plasmids [7]. Recently this system has been adapted for use in eu-

karyotes, to allow easy manipulation of the genome. It requires two components for proper

functioning: the Cas9 endonuclease and a guide RNA (gRNA) containing a targeting sequence

of roughly 20 base pairs (bp) complementary to a specific genomic region [8]. By expressing

these components in mammalian cells together it appears that virtually any genomic sequence

can be modified. One restriction of the CRISPR/Cas9 system is the requirement of a protospa-

cer adjacent motif (PAM), a short stretch of nucleotides present in the genomic target region

immediately downstream of the gRNA binding site [9]. The nature of this PAM sequence

appears to be dictated by the Cas9 orthologue used, where the most commonly used Cas9

endonuclease from Streptococcus pyogenes requires an NGG motif for highest cleavage effi-

ciency. In the human genome this particular sequence is expected to statistically occur every

42 bases, which makes it likely that each gene can in principle be targeted by CRISPR/Cas9.

Among other methods, introduction of the CRISPR/Cas9 system into cells may be achieved

by transfection of plasmids encoding Cas9 and gRNA, or by transduction (TD) with viral par-

ticles containing both components. Viral TD is typically more efficient compared to transfec-

tion and applicable to many cell types including human primary cells, making it suitable for

screening drug targets in a relevant setup. Although lentiviruses (LVs) have been used in most

cases so far as viral vectors for CRISPR/Cas9 [10,11], other viruses like adenoviruses (AdVs)

may provide higher specificity and efficiency [12]. This is especially important for gene-modi-

fications introducing a DNA-sequence ("tag") or point mutation [13,14]. So far most of the

published work reporting on the CRISPR/Cas9 technology for genome editing has relied on
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the use of immortalized cells, which have the advantage of allowing for easy selection strategies

and cloning of edited cells. However, these cells are generally very different from their original

source (i.e. primary cells), due to their transformation status. So far only few studies have

applied CRISPR/Cas9 to human primary cells, most likely in part because of their limited life-

span, which is restrictive for selection and enrichment strategies. Nevertheless, successful gene

editing in human primary cells without drug selection has been reported in cell types such as

CD4+ T-lymphocytes, dermal fibroblasts, (pre)adipocytes, endothelial cells, and airway epithe-

lial cells [15–19]. It is likely that this can be extended to other human primary cell types as well.

However, for beneficial use of genomic editing in short-lived phenotypic assays for drug discov-

ery with primary cells, the method needs to be comparably fast, efficient and specific as RNAi.

To assess the use of an AdV-based CRISPR/Cas9 platform for target discovery and/or vali-

dation, we applied AdV TD of Cas9 and gRNA components in human primary cell models of

fibrosis, focusing on the transforming growth factor (TGF)-β signaling pathway. It is demon-

strated that AdV delivery of Cas9 endonuclease and gRNA lead to highly efficient editing of

the SMAD3 gene ("Mothers against decapentaplegic homolog 3") in both, normal human lung

fibroblasts (NHLFs) and human bronchial epithelial cells (HBECs). Delivery of Cas9 and

gRNA by two separate AdVs results in similar genomic editing efficiencies when compared

with a single all-in-one AdV particle containing both Cas9 and gRNA. CRISPR/Cas9-mediated

editing results in very effective SMAD3 protein KD and, as a consequence, inhibits fibroblast

to myofibroblast transition (FMT) and epithelial to mesenchymal transition (EMT) in NHLF

and HBEC primary cell phenotypic assays, respectively. This suggests that the AdV-based

CRISPR/Cas9 platform is a valuable tool to study gene function in human primary cells, which

may hold great promise for the identification of novel drug targets.

Materials and methods

Ethics statement

The research described here has been performed according to applicable Dutch national ethics

regulations and was conducted within Galapagos B.V. Galapagos’ scientists are qualified to

perform research with these human materials and Galapagos makes available appropriate facil-

ities and equipment to allow such scientists to comply with applicable laws, regulations and

internal rules applicable to the use, handling and storage of the material. The human material

was obtained from Epithelix Sàrl (Switzerland) and from Tissue Solutions Ltd (Scotland). Both

suppliers have confirmed to Galapagos that they received informed consent from the donors

to use the material for research purposes. The genetic modification of these cells as described

was conducted according to permits from the Dutch authorities (reference number IG-16-

019_IIk). The cells were used exclusively for target and drug discovery and were not used for

human experimentation or therapy. All material is and will remain anonymized at all times.

Cells and phenotypic assays

NHLFs were acquired from Epithelix Sàrl, Switzerland. HBECs were obtained from lung and

bronchial resection tissue of patients diagnosed with idiopathic pulmonary fibrosis undergo-

ing surgery for lung transplantation (Tissue Solutions Ltd, Scotland). HBECs were isolated by

protease digestion as previously described [20]. NHLF cells were cultured in Dulbecco’s Modi-

fied Eagle Medium (DMEM, Gibco) supplemented with 10% heat-inactivated fetal bovine

serum (FBS, Life Technologies), 100 units/mL of penicillin and 100 μg/mL of streptomycin

(“Pen-Strep”, Gibco). For the FMT assay, NHLFs were seeded in 96 well plates coated with

3 μg/mL PureCol (Advanced Biomatrix) at a density of 3,000 cells per well and kept in DMEM

supplemented with 2% FBS and Pen-Strep. Cells were transduced with AdV on day in vitro
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(DIV) 1 and refreshed on DIV 2. Cells were triggered with 2 ng/mL TGF-β1 (R&D Systems)

dissolved in DMEM supplemented with 0.2% FBS and Pen-Strep on DIV 6. For the EMT

assay, HBECs were cultured in Keratinocyte serum-free medium (KSFM) supplemented with

0.2 ng/mL epidermal growth factor (EGF) and 25 μg/mL bovine pituitary extract (BPE), 1 μM

isoproterenol and Pen-Strep (all from Gibco). During maintenance HBECs were grown on

surfaces coated with 10 μg/mL fibronectin 1 (Sigma-Aldrich), 30 μg/mL PureCol and 10 μg/

mL bovine serum albumin (BSA). For the assay HBECs were seeded in 96 well plates coated

with 30 μg/mL PureCol at a density of 2,500 cells per well and transduced with AdV on DIV 1,

followed by refreshment on DIV 2. Triggering was performed with 0.5 ng/mL TGF-β1 and 5

ng/mL TNFα (tumor necrosis factor alpha, R&D Systems) dissolved in KSFM growth medium

on DIV 6. NHLF cells and HBECs were maintained at 37˚C and 5% CO2 and refreshed twice

after thawing of the cells.

The E1- and E2A-complementing AdV packaging cell line PER.C6/E2A was cultured in

DMEM supplemented with 10% FBS, 10 mM MgCl2 and 250 mg/mL Geneticin (Life Technol-

ogies). Geneticin was only used during the first two passages to remove PER.C6 cells without

the E2A gene. PER.C6/E2A cells were sub-cultured every 3 to 4 days by seeding 107 cells in a

T175 flask containing 25 mL growth medium. Cells were maintained at 39˚C and 10% CO2

and were shifted to 34˚C during AdV production to ensure correct folding of their E2A-

encoded temperature-sensitive DNA-binding protein.

CRISPR/Cas9 construct design and AdV production

A human codon-optimized Cas9 based on the S. pyogenes wild-type Cas9 sequence was gener-

ated by gene synthesis (GeneArt). Guide RNA sequences were adapted from Jinek et al. 2012

[8]. The 19–20 bp target specific gRNA sequences were designed by Sigma-Aldrich. Comple-

mentary oligonucleotides containing the gRNA target sequence were ordered from Life Tech-

nologies and cloned into AdV adapter plasmids by SapI restriction enzyme digestion (Thermo

Scientific). This resulted in removal of a ccdB selection cassette and was followed by ligation

of the gRNA-encoding oligonucleotides using T4 DNA ligase (Thermo Scientific). Ligations

were transformed into either MultiShot StripWell Mach1 (gRNA only constructs) or MAX

Efficiency Stbl2 (“all-in-one” constructs) competent cells (both from Invitrogen). The AsRed

reporter-gene construct was adapted from the pAsRed2-C1 vector (Clontech). For nuclear

expression of the reporter a 3x NLS sequence (5’-GGAGATCCAAAAAAGAAGAGAAAGGTA
GATCCAAAAAAGAAGAGAAAGGTAGATCCAAAAAAGAAGAGAAAG-GTACTCGAG-3’)was

cloned directly downstream from the AsRed open reading frame. The AsRed-3xNLS sequence

was cloned into an AdV adapter plasmid containing a CMV promoter by standard restriction

enzyme digestion and ligation.

For the generation of AdVs, the pIPspAdapt-based constructs were transiently transfected

in a 96-well format together with AdV helper DNA into the producer cells PER.C6/E2A,

seeded at 25,000 cells per well [21,22]. The produced AdVs were propagated by reinfecting

PER.C6/E2A seeded at a density of 50,000 cells per well. During these steps PER.C6/E2A were

kept in DMEM supplemented with 10% FBS and 10 mM MgCl2. Titers of the crude lysates

were determined as described [23].

Adenoviral TD

Cells were transduced at a multiplicity of infection (MOI) between 2.5 and 80. The total viral

load between parallel samples was kept constant at all times to ensure comparable conditions.

Crude AdV lysates were diluted in the appropriate cellular growth medium, and 10–20 μL

were added to each well of a 96 well plate, or 100–200 μL to each T25 flask.

Adenoviral CRISPR/Cas9 gene inactivation in human primary cells
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Cell viability assay

NHLFs and HBECs were seeded in 96 well plates at a density of 3,000 or 2,500 cells per well,

respectively. Cells were transduced with AdV on DIV 1 and medium was refreshed on DIV 2.

NHLFs and HBECs were triggered on DIV 6 with 2 ng/mL TGF-β1 or 0.5 ng/mL TGF-β1 and

5 ng/mL TNFα, respectively. Cell viability was determined on DIV 9 by adding 20 μL per well

CellTiter-Blue1 Reagent and incubating the cells for 2 hours (HBECs) or 4 hours (NHLFs) at

37˚C and 5% CO2 prior to measuring fluorescence on an EnVision Multilabel Plate Reader

(Perkin Elmer).

Genomic DNA isolation and SURVEYOR® assay

Efficiency of CRISPR/Cas9-mediated target gene disruption was measured by using mis-

match-sensitive SURVEYOR1 nuclease. To this end, genomic DNA from up to 105 cells per

sample was isolated using the ZR-96 Quick-gDNA kit (Zymo Research), followed by PCR

amplification of a DNA fragment comprising the target site for the appropriate gRNA AdV

construct (for sequence information see S1 Table). PCR amplification was performed using a

high fidelity PCR enzyme mix (Thermo Scientific). PCR samples were cleaned up using the

ZR-96 DNA Clean-up Kit (Zymo Research) and DNA was quantified on an EnVision Multila-

bel Plate Reader (Perkin Elmer). 400 ng PCR product per sample were annealed in NEB2

buffer (New England Biolabs) in a thermocycler and treated with SURVEYOR1 nuclease

according to the instructions of the SURVEYOR1 Mutation Detection kit (Integrated DNA

Technologies). DNA fragments were resolved on 1.5% agarose gels, stained with ethidium bro-

mide and visualized with a GelDoc Universal Hood II system (BioRad). Indel percentages

were calculated by densitometry of the parental and cleaved DNA fragments using the LI-

COR Image Studio software as described [24].

Immunoblotting

Primary NHLFs and HBECs were seeded at a density of 1.0x105-1.5x105 cells per T25 flask.

Cells were transduced on DIV 1, refreshed 6–8 hours after TD and harvested on DIV 8 or DIV

12 by trypsinization. Cell pellets were lysed in lysis buffer (20 mM Tris-HCl pH 7.4, 137 mM

NaCl, 1% Triton X-100, 5 mM EDTA with freshly added Halt Protease and Phosphatase In-

hibitor [Thermo Scientific]) on ice for 30 minutes, followed by 10 minutes centrifugation at

20,000x g. The protein concentration of the supernatant was determined using the Pierce BCA

Protein Assay Kit (Thermo Scientific). Protein lysates were mixed with NuPAGE LDS Sample

Buffer (Life Technologies) and denatured at 70˚C for 10 minutes. 28–35 μg protein per sample

were separated on NuPAGE Novex 4–12% Bis-Tris gels (Life Technologies) according to man-

ufacturer’s instructions. Proteins were transferred onto 0.45 μm PVDF membranes (Millipore)

and blocked for 1 hour at room temperature (RT) in 5% non-fat dry milk, dissolved in Tris-

buffered saline (TBS) containing 0.1% Tween-20. Membranes were incubated overnight at

4˚C with primary antibody and for 1 hour at RT with secondary antibody the following day.

Membranes were scanned with an Odyssey CLX imager (LI-COR Biosciences) at 700 nm and

800 nm wavelength, and band signals were quantified using the LI-COR Image Studio soft-

ware. The band signal for β-actin was used to normalize for the expression of the target protein

(SMAD3). Primary antibodies: rabbit anti-SMAD3 (#9513 and #9523, Cell Signaling), mouse

anti-β-actin (#3700, Cell Signaling), and mouse anti-Cas9 (#C15200203, Diagenode); all anti-

bodies were diluted 1:1,000. Secondary antibodies: IRDye 680RD goat anti-mouse, IRDye

800CW goat anti-mouse, IRDye 680RD goat anti-rabbit and IRDye 800CW goat anti-rabbit

(LI-COR Biosciences) all diluted 1:10,000.
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Immunocytochemistry and high content analysis (HCA)

Cells were fixed on DIV 9 in 4% formaldehyde for 30 minutes at RT and blocked for 1 hour

at RT in blocking buffer (0.2% Triton X-100, 2% FBS, 3% BSA, and 1% milk in phosphate-

buffered saline [PBS]). After incubation with primary antibody at RT for 1 hour and several

washes with wash buffer (PBS with 0.2% Tween-20), cells were incubated with secondary

antibody at RT for 1 hour, repeatedly washed with wash buffer, and nuclei were stained with

40,6-diamidino-2-phenyindole (DAPI) solution (Sigma-Aldrich). Primary antibodies: rabbit

anti-SMAD3 (#9523, Cell Signaling) diluted 1:100, mouse anti-fibronectin 1 (#MAB1940,

Merck Millipore) diluted 1:200, and mouse anti-alpha smooth muscle actin (#ab7817, Abcam)

diluted 1:250. Secondary antibodies: donkey-anti-rabbit Alexa488 and donkey-anti-mouse

Alexa488 (Life Technologies) both diluted 1:250.

Assay plates were imaged using the IN Cell Analyzer 6000 with a solid state laser (405, 488

nm, 561 nm, 633 nm) and a 2048x2048 pixel sCMOS camera (GE Healthcare). Fluorescent

probes were imaged using the appropriate laser line and emission filter and with optimal expo-

sure times for the best signal to noise ratios. Images were analyzed using an algorithm devel-

oped in house with the GE Developer software package. Nuclear segmentation was based on

DAPI images and used for cell counting. The fibronectin 1 (FN1) or alpha smooth muscle

actin (ACTA2) signals were segmented in their respective channels and intensity x area was

calculated as a measure of protein expression. Target (SMAD3) protein levels were evaluated

using a cytoplasmic mask based on an expanded nuclei segmentation area and intensity x area

was determined. Nuclear AsRed signals were evaluated using the nuclear segmentation mask

to calculate the number of AsRed positive cells.

Results

TD of AdV-encoded CRISPR/Cas9 components results in highly efficient

genomic editing in human primary cells

To date most CRISPR/Cas9 studies have relied on the use of plasmid transfection or LV TD to

deliver the Cas9 and gRNA components into the host, in combination with selection of recom-

bined cell populations. Although transfection can be time-saving, it can be difficult to titrate

the amount of DNA copies entering each cell. Furthermore, the efficiency of DNA transfection

is often limited in primary cells and can lead to significant cell death. Delivery by LV TD may

overcome these issues, but LVs can have other unwanted characteristics such as random inte-

gration into the host genome. The use of AdV may be superior in this regard as AdV has a lin-

ear double stranded genome capped with protein at its 5’ ends, which has been reported to be

more specific for genome editing [12]. To test this approach, we generated AdV constructs

containing either the U6 promoter-driven gRNA or CMV promoter-driven S. pyogenes wild

type Cas9 endonuclease component (Fig 1A). Since both, gRNA and Cas9 protein are required

for the system to work, this requires simultaneous TD of cells with the gRNA and Cas9 AdV,

which may be inefficient. Therefore, we also designed an AdV construct encoding gRNA and

Cas9 for expression in the same viral particle (“all-in-one”), which allows delivery by a single

TD event. The constructs were designed to allow for easy exchange of the 19–20 bp target spe-

cific sequence of the gRNAs to simplify future cloning efforts for different genes of interest.

As proof of concept, the SMAD3 gene was targeted using our AdV CRISPR/Cas9 approach.

SMAD3 plays an important role in TGF-β dependent signaling from the stimulated receptor

(TGF-βR) at the cell surface to the nucleus, regulating transcription of various genes together

with other SMAD proteins and transcription factors [25]. Triggering of the TGF-βR pathway

results in increased production of extracellular matrix components as well as EMT of epithelial

Adenoviral CRISPR/Cas9 gene inactivation in human primary cells
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cells. These events are hallmarks of fibrosis. Guide RNA targeting sequences were chosen to be

specific for SMAD3 and aimed at all major SMAD3 isoforms (Fig 1B and S1 Table). These 19

bp sequences were cloned into AdV adapters using standard restriction enzyme digestion and

DNA ligation.

The CRISPR/Cas9 AdV constructs were tested in NHLFs and HBECs, two physiologically

relevant human primary cell types, which are implicated in fibrosis in vivo. Initially, co-TD of

these cell types with AdV encoding SMAD3-targeting or a non-targeting gRNA and Cas9 AdV

was carried out. After 4–7 days the genomic DNA was analyzed for the presence of NHEJ-

derived insertions or deletions (indels) in the target region, using the SURVEYOR1 nuclease

assay. Co-TD of NHLFs (S3A Fig) or HBECs (S3B Fig) with AdV Cas9 and three different

SMAD3 specific gRNAs (SMAD3_v39, _v40, _v41) led to significant levels of indel formation

in the targeted region of the SMAD3 open reading frame, with SMAD3_v39 consistently

showing higher mutagenesis rates compared to _v40 and _v41 in both cell types and repeat

experiments (not shown). Treatment with non-targeting gRNAs did not result in detectable

indels in the SMAD3 genomic region, thereby demonstrating the specificity of the system on

this target. Despite well-known variability in TD efficiencies between different cell types, the

Fig 1. AdV CRISPR/Cas9 constructs and gRNA targeting sequences. (A) Overview of the AdV Cas9 and gRNA constructs used in this study. CRISPR/

Cas9 AdV constructs were based on human codon optimized S. pyogenes wild type Cas9 and previously published gRNA sequences [8]. Cas9 and gRNA

components were either presented in separate AdVs or together in a single AdV construct (“all-in-one”). (B) Genomic structure of the human SMAD3 gene

with the indicated annotated transcripts. One of the gRNA sequences targeting the SMAD3 genomic DNA is underlined with the PAM in bold. NLS: nuclear

localization signal.

https://doi.org/10.1371/journal.pone.0182974.g001
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relative difference in indel frequency achieved with the three tested SMAD3-specific gRNAs

was comparable between HBECs and NHLFs, potentially suggesting a broad applicability of

the approach.

To study the effects of SMAD3 genomic editing on functional readouts in human primary

cells, we first needed to determine the optimal conditions for editing. To that end, NHLFs

were co-transduced with Cas9 and either SMAD3_v39 or non-targeting gRNA AdVs at vari-

ous MOIs ranging from 2.5–40 for each viral particle. In parallel, NHLFs were transduced with

a single all-in-one AdV containing Cas9 plus SMAD3_v39 or non-targeting gRNA at MOIs

ranging from 2.5–80. Following TD with the appropriate AdV construct(s) SMAD3 genomic

editing was analyzed with the use of the SURVEYOR1 assay as described earlier. In general,

up to the mid-MOI range tested the use of a higher MOI for TD of the NHLFs increased indel

formation in the SMAD3 target region (Fig 2A–2D). This was true for both the co-TD and all-

Fig 2. Titration of Cas9 and gRNA AdV effects on SMAD3 indel formation in NHLFs. (A) Primary NHLFs were co-transduced at DIV 1 with varying ratios

of Cas9 and gRNA AdVs at a maximal total MOI of 80. NHLFs were harvested at DIV 9 after which genomic DNA was used in PCR amplification of the

SMAD3 target region. Resulting PCR products were used for SURVEYOR® assay analysis and resolved by agarose gel electrophoresis. A single full-length

band at 933 bp (highlighted with white arrowheads) indicates the uncleaved PCR product, whereas appearance of two additional bands following treatment

with SURVEYOR® nuclease indicates the presence of indels (highlighted with black arrowheads). (B) Quantification of indel frequencies as determined by

densitometry of the DNA fragments depicted in panel A. (C) NHLFs were treated as in A, except that TD was performed with a single all-in-one AdV particle.

(D) Quantification of indel frequencies as determined by densitometry of the DNA fragments depicted in panel C. 39: gRNA targeting SMAD3; C1: gRNA

targeting control sequences.

https://doi.org/10.1371/journal.pone.0182974.g002

Adenoviral CRISPR/Cas9 gene inactivation in human primary cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0182974 August 11, 2017 8 / 20

https://doi.org/10.1371/journal.pone.0182974.g002
https://doi.org/10.1371/journal.pone.0182974


in-one approach. For the comparison of co-TD with the all-in-one AdV, it needs to be taken

into account that equal molarities of AdVs will result in higher molar ratios of Cas9 and

gRNA, due to the presence of both inserts in one particle. Thus co-TD MOIs of 5 + 5 would

carry molar equivalents of all-in-one AdV MOI 5 for both inserts. Interestingly, these two

approaches yielded similar levels of indel formation at equimolar levels of insert (S9A Fig).

Apart from genomic editing, toxicity was assessed by performing a cell viability assay to deter-

mine the AdV MOI which could be relevant for use in functional assays. Delivery of AdV con-

structs in NHLFs by co-TD or single TD resulted in similar amounts of cellular toxicity which

was limited to about 20% for the highest viral load tested (S4 Fig). The TD efficiency in NHLFs

was close to 100% already at MOI 10, according to titrations using an AsRed reporter-gene

AdV (S6A Fig). Therefore, the optimal MOI in NHLFs for Cas9 and gRNA AdVs is expected

to be in the range of MOI 10–20 each for functional studies.

Since the optimal condition may be different for each cell type, a similar AdV dose-re-

sponse curve was generated for the HBECs as well. Due to the higher toxicity in these cells, the

viral load range was lowered to MOI 2.5–20 for the co-TD and MOI 2.5–40 for TD with the

all-in-one AdV constructs (S5 Fig). Like in NHLF cells, NHEJ-derived indel formation in

the SMAD3 gene was increased with higher viral load used for delivery of Cas9 and gRNA

(Fig 3A–3D). A plateau was reached in the mid-MOI range for the co-TD approach, but was

less evident for the all-in-one system. Generally speaking, co-TD of HBECs with Cas9 and

SMAD3_v39 gRNA AdVs or TD with all-in-one SMAD3_v39 AdV resulted in comparable

genomic editing levels at equimolar levels of insert (S9B Fig). The all-in-one system may, how-

ever, perform somewhat better than the co-TD approach especially at the lower MOI range.

This advantage may be offset by slightly higher toxicity of the all-in-one system versus co-TD

though (see S4 and S5 Figs). Remarkably, the overall efficiency of indel formation in HBECs at

lower total MOI compared to NHLFs was similar, although TD-efficiencies appeared signifi-

cantly lower for HBECs when tested with AsRed reporter AdV (S6B Fig). Taking these data

into account, we predict the optimal MOI for Cas9 and gRNA AdVs in HBECs to be lower

than that used for the NHLFs to enable functional readouts. To summarize, these data demon-

strate that AdV delivery of CRISPR/Cas9 components results in very efficient gene interfer-

ence in human primary cells, without the need for selection or enrichment of edited cells.

AdV-delivered CRISPR/Cas9 components result in effective depletion of

SMAD3 protein in human primary cells

DNA double strand breaks generated by the wild type Cas9 protein complexed with non-cod-

ing gRNA are repaired by the error-prone NHEJ pathway in most cases. This will lead to indels

in the target region, which may or may not interfere with expression of the target gene. In gen-

eral, indels generated by the NHEJ repair pathway should result in a frameshift in the open

reading frame in two-thirds of the cases. Very often this will lead to KO of full-length protein

expression, as a premature stop codon is generated, causing either expression of a truncated,

non-functional protein or degradation of the mRNA by the nonsense-mediated decay pathway

[26]. Although high frequencies of indel formation were obtained in the targeted SMAD3

genomic region using AdV delivery of CRISPR/Cas9 components, this may not necessarily be

reflected on the protein level, which is most relevant for phenotypic assays. Therefore, the pro-

tein expression level of SMAD3 in NHLFs and HBECs was assessed following co-TD with

Cas9 and one of the SMAD3-specific gRNAs (v39), which was most effective in generating

indels. On DIV 12 after co-TD, cells were harvested for genomic DNA analysis as well as

protein analysis. As seen previously, efficient disruption of the targeted SMAD3 gene was

observed, given the level of indel formation in both cell types (Fig 4A). Analysis of protein
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lysates from these cells by immunoblotting revealed highly efficient depletion of SMAD3 pro-

tein after co-TD with Cas9 and SMAD3-targeting gRNA (Fig 4B). In contrast, TD of the cells

with Cas9 alone or in combination with control gRNA AdV did not lead to a specific reduction

in SMAD3 protein levels correlated with indel formation, although SMAD3 protein levels

appear to be non-specifically reduced by AdV TD in NHLFs, but not HBECs. This does not

seem to be related to Cas9 expression, but is a general effect caused by AdV TD (S7 Fig). The

specific effect on SMAD3 protein expression is reproducible in both cell types and has been

observed in two independent experiments. Detection of Cas9 and β-actin protein as loading

control on the immunoblots suggests equal loading of samples and strong presence of Cas9

when expressed. The efficient depletion of SMAD3 protein following AdV co-TD of Cas9 and

SMAD3-specific gRNA is reflected in quantification of the SMAD3 signals by densitometry

(Fig 4C). The effect was most noticeable in HBECs, where almost 90% reduction was seen.

Although less pronounced in NHLF cells, about 60% reduction in SMAD3 expression is

Fig 3. Titration of Cas9 and gRNA AdV effects on SMAD3 indel formation in HBECs. (A) Primary HBECs were co-transduced at DIV 1 with varying

ratios of Cas9 and gRNA AdV at a maximal total MOI of 40. HBECs were harvested at DIV 9 after which genomic DNA was analyzed for the presence of

indels by SURVEYOR® assay as described earlier. (B) Quantification of indel frequencies as determined by densitometry of the DNA fragments depicted in

panel A. (C) HBECs were treated as in A, except that TD was performed with a single all-in-one AdV particle. (D) Quantification of indel frequencies as

determined by densitometry of the DNA fragments depicted in panel C. White arrowheads indicate the positions of parental PCR fragments whereas black

arrowheads mark the SURVEYOR® nuclease digested fragments containing indels. 39: gRNA targeting SMAD3; C1: gRNA targeting control sequences.

https://doi.org/10.1371/journal.pone.0182974.g003
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observed compared to control gRNA. This suggests that AdV delivery of CRISPR/Cas9 com-

ponents in human primary cells can result in highly efficient and fast targeted depletion of pro-

tein expression without enrichment of edited cells.

Fig 4. CRISPR/Cas9-mediated depletion of SMAD3 protein in primary NHLFs and HBECs. (A) SMAD3 genomic editing in NHLFs and HBECs following

co-TD with Cas9 and SMAD3_v39 gRNA AdV. Primary NHLFs (left) and HBECs (right) were co-transduced with Cas9 and either SMAD3 or control gRNA

AdV at total MOI 30 (Cas9:gRNA ratio 1:2) after which genomic DNA was analyzed for the presence of indels at DIV 12 by SURVEYOR® assay as described

earlier. Indel frequencies are shown below each lane and were determined by densitometry of the full-length and cleaved PCR fragments. 39: gRNA targeting

SMAD3; C1: gRNA targeting control sequence; SA Ctrl: SURVEYOR® assay control. (B) AdV CRISPR/Cas9-mediated SMAD3 protein KD in NHLFs and

HBECs. Cells were harvested at DIV 12 for protein analysis by immunoblotting. A total of 35 μg or 28 μg protein per lane was loaded for the NHLFs and

HBECs, respectively. Immunoblots were stained with the indicated primary antibodies. (C) Quantification of SMAD3 protein levels in NHLFs and HBECs

treated with Cas9 and SMAD3-targeting AdV. SMAD3 protein expression was quantified by densitometry of the bands shown in panel B. Expression is blotted

relative to the control (co-TD with Cas9 and control gRNA C1). Data points are from biological duplicates (n = 2) and error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0182974.g004
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The AdV CRISPR/Cas9 platform is a valuable tool for application in

phenotypic assays

To explore its use for target identification and/or validation, the AdV CRISPR/Cas9 platform

was applied to phenotypic assays, which mimic some molecular aspects observed in fibrosis. In

the FMT assay, NHLFs were treated with the pro-fibrotic stimulus TGF-β1, resulting in differ-

entiation of the cells into myofibroblasts which are characterized by expression of ACTA2,

secretion of extracellular matrix (ECM) components, such as collagen I and III, and increased

migration and contractility (Fig 5A) [27]. Being one of the key players in the TGF-β signaling

Fig 5. Application of CRISPR/Cas9 to human primary cell phenotypic assays. (A) Overview of the FMT assay with indicated time points of treatment

in days. Upregulation of markers specific for myofibroblasts is indicated with upward arrows. At the end of the assay HCA is performed on ACTA2 and

SMAD3. (B-D) FMT phenotypic assay with HCA on ACTA2 and SMAD3. Primary NHLFs were co-transduced at DIV 1 with Cas9 and either SMAD3, ACTA2

or control gRNA AdV at total MOI 30 (Cas9:gRNA ratio 1:2), followed by addition of TGF-β1 at DIV 6. Cells were fixed for immunofluorescent labelling of

SMAD3 and ACTA2 followed by HCA at DIV 9. Graphs are representing HCA quantification of ACTA2 and SMAD3 immunofluorescent intensities in optimized

segmentation masks and are blotted relative to the control (C1). Data points are from triplicate wells (n = 3) and error bars represent standard deviation.

Exemplifying images of target protein and nuclear DAPI labelling are shown. (E) Overview of the EMT assay with indicated time points of treatment in days.

Change in expression of certain markers is shown, with arrows demonstrating up- or downregulation (upward and downward arrows, respectively). At the end

of the assay HCA is performed on FN1 and SMAD3. (F-G) EMT phenotypic assay with HCA on FN1 and SMAD3. Primary HBECs were co-transduced at DIV

1 with Cas9 and either SMAD3 or control gRNA AdV at total MOI 12 (Cas9:gRNA ratio 1:1), followed by addition of a cocktail containing TGF-β1 and TNFα at

DIV 6. Cells were fixed and stained as described in panel A, except that staining was performed for FN1 and SMAD3 in this case. Graphs are blotted relative

to the control (C1). Scale bars indicate 100 μm. 39, 40, 41: gRNAs targeting SMAD3; 7, 8, 9: gRNAs targeting ACTA2; C1: gRNA targeting control sequence.

https://doi.org/10.1371/journal.pone.0182974.g005
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pathway, SMAD3 is involved in inducing the expression of ACTA2 and ECM components

[28,29]. Prior to TGF-β1 stimulation on DIV 6 NHLFs were co-transduced with Cas9 and dif-

ferent gRNA AdV constructs on DIV 1, and ACTA2 and SMAD3 were monitored by HCA at

the end of the assay. The MOI used was based on the results shown in Fig 2. Treatment of

NHLFs with TGF-β1 alone led to a significant increase in the number of myofibroblasts which

is evident from the appearance of ACTA2 expression (S8A Fig). This increase in ACTA2 was

reduced to almost background level by SMAD3-specific gRNAs, but not the control gRNA

(Fig 5B). All three tested SMAD3 gRNAs had a suppressive effect on ACTA2 expression with

SMAD3_v39 being the most potent, in agreement with the effect on indel formation (S1A

Fig). Similar results were obtained in two independent experiments. These results suggest that

CRISPR/Cas9-mediated SMAD3 KD can inhibit fibroblast to myofibroblast transition in the

FMT assay. In addition, SMAD3 nuclear translocation was significantly reduced by SMAD3--

specific gRNA, but not the control gRNA (Fig 5C and S2 Fig). Since nuclear translocation of

SMAD3 is required for regulating expression of TGF-β1 target genes, this provides an explana-

tion for the effects seen on ACTA2 expression. As a positive control we also treated cells with

Cas9 and gRNAs targeting ACTA2. Two of three tested ACTA2 gRNAs effectively decreased

expression of ACTA2 protein in line with indel formation (Fig 5D and S1A Fig), supporting

the relevance of the approach.

Apart from the FMT assay we also applied the AdV CRISPR/Cas9 platform in an EMT

assay, using primary HBECs. The EMT assay is based on the transition of epithelial to mesen-

chymal cells, which is primarily induced by activation of the TGF-β pathway. During this pro-

cess epithelial cells lose their epithelial phenotype and acquire fibroblast-like properties, as well

as increased motility and reduced cell adhesion. Epithelial cells undergoing EMT display

decreased expression of epithelial markers (e.g. E-cadherin and ZO-1) and increased expres-

sion of mesenchymal markers, such as collagen I and III and FN1 (Fig 5E) [27]. For EMT

induction the experimental setup was similar to the FMT assay, except that the cells were stim-

ulated with a cocktail of TGF-β1 and TNFα (tumor necrosis factor alpha), instead of TGF-β1

alone. Treatment of HBECs with TGF-β1 and TNFα together led to an increase in the expres-

sion of FN1, a well-established mesenchymal marker downstream of SMAD3 (S8B Fig). Co-

TD of HBECs with Cas9 and SMAD3-targeting gRNA led to strong depletion of SMAD3 pro-

tein with SMAD3_v39 again being the most potent gRNA (Figs 5F and S1B). The MOI used

was based on the results shown in Fig 3. Parallel observations were made for FN1, where the

different SMAD3-specific gRNAs showed a similar trend in reducing FN1 expression (Fig 5G)

[27]. Comparable results were obtained in two independent experiments. These data indicate a

significant inhibition of EMT in HBECs treated with our AdV CRISPR/Cas9 constructs

through inactivation of SMAD3 and, as a result, the TGF-β pathway. Thus, AdV delivery of

the CRISPR/Cas9 system in human primary cells appears to be efficient and may be a valuable

tool for target discovery and/or target validation purposes, which may contribute substantially

to the drug discovery process.

Discussion

Drug discovery is in part dependent on the identification and validation of novel targets,

which until now has largely relied on the RNAi technology, using siRNA or shRNA to target

the mRNA of interest. Since its discovery in the late 1990s, application of this technology in

disease-relevant phenotypic assays has led to the identification of many interesting and valid

targets in several therapeutic areas. Although RNAi has been shown to be a powerful method,

its limitations have also increasingly surfaced. RNAi acts at the post-transcriptional level tar-

geting the mRNA, whereas CRISPR/Cas9 exerts its effects upstream at the genomic DNA level.
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As a consequence, CRISPR/Cas9 effects are heritable in dividing cells and may result in am-

plification of the initial impact, thereby obtaining potentially greater efficiencies when com-

pared to RNAi. While RNAi may have different effects on the transcript variants of its target,

CRISPR/Cas9 can lead to KD of all mRNA isoforms from the same gene. Since CRISPR/Cas9

is mechanistically different from RNAi it may also have other unwanted off-target effects. In

many cases these off-targets may not be relevant since the majority of the genome is not

expressed. Combining the results obtained by using CRISPR/Cas9 with those obtained by

RNAi may also assist in identifying specific effects of target KD/KO.

Since the recent first publications on the mechanism of DNA cleavage by the CRISPR/Cas9

system, the application of this RGEN has reached unprecedented levels [8,30,31]. The technol-

ogy is widely applicable, which is illustrated by multiple studies reporting on the generation of

genomic editing and KOs in cells, but also in different animal species, ranging from Caenor-
habditis elegans and Drosophila to mouse and primates [32–37], as well as plants. The main

advantage of the CRISPR/Cas9 system compared to other nucleases is the simplicity and low

cost of its application. For every different target of interest only the 19–20 nucleotide target

specific sequence of the gRNA has to be adjusted, making the CRISPR/Cas9 platform a partic-

ularly attractive system for high-throughput purposes. This is different from ZFNs or TALENs,

where completely new proteins have to be designed for each different target site.

As CRISPR/Cas9 is present in prokaryotes only, its application in eukaryotes requires intro-

duction of both Cas9 and gRNA into the host. Delivery of these components can be achieved by

different means, such as plasmid transfection or viral TD. The latter method clearly has the most

potential due to its use in many cell types, including dividing and non-dividing cells, its relatively

high delivery efficiency and its application in high-throughput screening. Successful delivery of

Cas9 and gRNA by different viral vectors has been reported, such as LVs [10,11], adeno-associ-

ated virus (AAV) [38] and AdV [39]. However, the AdV delivery method seems to outperform

the accuracy of the other available systems when it comes to HDR to establish gene editing [12].

The implementation of CRISPR/Cas9 in human differentiated primary cells has so far been lim-

ited to only a few different fully differentiated cell types, including CD4+ T-lymphocytes, dermal

fibroblasts, (pre)adipocytes, endothelial cells, and airway epithelial cells [15–19]. In many of

these cases, selection or sorting of edited cells was applied to increase efficiency [19,40]. Such

selection procedures are not always desirable, since they may affect the properties of the primary

cells and are time consuming. As target discovery and drug evaluation in such types of cells

appears to be most relevant, we were interested to determine whether AdV delivery of the

CRISPR/Cas9 system without selection of manipulated cells is of sufficient efficiency to study

phenotypic changes in human primary cells. Taking this into account, we have set up an AdV-

based CRISPR/Cas9 system to enable target identification and validation for drug discovery.

In this study we demonstrate the power of this system as a proof of principle by focusing on

SMAD3, a well-known player in the TGF-β signaling pathway. Our results show highly effi-

cient genomic editing of SMAD3 at the DNA level in two different human primary cell types

without enrichment or selection of the edited cell population. Genomic editing increased at

higher viral load, but reached a plateau around a total MOI 40 and 20 in the NHLFs and

HBECs, respectively. Under these conditions most of the cells should be transduced with AdV

and are therefore expected to express Cas9 and gRNA. One advantage of the co-TD system is

that it allows varying the ratio between Cas9 and gRNA expression within the cell. This is dif-

ferent from the all-in-one AdV where Cas9 and gRNA ratios are fixed. Direct comparison of

TD with a single all-in-one Cas9/gRNA AdV versus co-TD with separate Cas9 and gRNA

AdVs revealed, that both strategies work equally well when it comes to genomic editing.

These results suggest that the genomic disruption is mainly dependent on the overall concen-

tration of the Cas9-gRNA complex rather than a specific ratio of the endonuclease and gRNA
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components, which is in line with other reports [39]. The use of a single all-in-one AdV may,

however, elicit higher toxicity (S4 and S5 Figs), potentially due to technical aspects of AdV pro-

duction, and will have to be further improved, but may offer significant advantages over co-

TD approaches in the future, in particular for high-throughput screening. Genetic disruption

of SMAD3 using the AdV-based CRISPR/Cas9 system led to strongly reduced protein expres-

sion, suggesting that the majority of NHEJ-derived indels resulted in protein KO. The deple-

tion of SMAD3 protein inhibited downstream events in the TGF-β signaling cascade, where

ACTA2 and FN1 levels were significantly decreased in NHLFs and HBECs, respectively. These

results indicate suppression of SMAD3 expression by AdV CRISPR/Cas9 leading to the

desired phenotype, i.e. inhibition of FMT/EMT, both of which are processes contributing to

the development of fibrosis in vivo. Taken together, the AdV CRISPR/Cas9 platform can be

considered an elegant way to study the contribution of genes to the development of a certain

disease state and may, therefore, expand the current target discovery and validation toolbox.

As with RNAi, the CRISPR/Cas9 system is expected to have off-target effects, since the

guide sequence is only 19–20 nucleotides in length. Reports concerning Cas9 off-targeting

have been somewhat contradicting so far. While some studies mention significant off-target

mutagenesis, others demonstrate relatively low indel frequencies at unintended genomic

regions [41–43]. It appears that binding of Cas9 to a certain site does not necessarily result

in cleavage and, therefore, generation of a DSB. Although binding of Cas9 can be widespread

(i.e. varying from 10 to>1000 sites), the vast majority of off-target sites do not appear to be

mutated [44,45]. This is an important finding, since the incidence of off-target mutations

should be minimized if one aims at studying gene function or, more importantly, wishes to

correct a disease-causing mutation. In the current study we have not investigated off-target

effects, which will have to be carried out in future studies to fully evaluate the system.

The effects seen after CRISPR/Cas9-mediated editing of SMAD3 appeared robust in the

FMT phenotypic assay, whereas the outcome was less pronounced in the EMT assay. The latter

may be due to the relatively low MOI used for TD of the cells. The HBECs were treated with

MOI 12 in the actual EMT phenotypic assay to limit unspecific effects in the complex assay

and to keep the cells viable (Figs 5F and 5G, S1B and S5A). The lower MOI used in the EMT

assay may have yielded less protein KD. As a consequence, fibronectin 1 expression is only

moderately affected with about 40% reduction at most in case of treatment with SMAD3_v39

gRNA. Future optimization of the assay will have to address these issues, which could include

the use of an all-in-one AdV or the use of purified rather than crude AdV. The FMT pheno-

typic data appear to show a correlation with the observed SMAD3 indel levels and the resulting

effect on protein abundance. In general the SMAD3_v39 gRNA consistently yielded the high-

est efficiency, both in HBEC and NHLF primary cells. Since the targeted gene disruption leads

to prominent downstream inhibition of ACTA2 expression in the FMT assay, it can be con-

cluded that AdV CRISPR/Cas9 efficiently inactivates SMAD3. It should be emphasized again

that this effect was achieved without selection or enrichment of Cas9 and/or gRNA expressing

or edited cells, which is often performed to increase gene editing efficiency. Therefore, the

AdV CRISPR/Cas9 system is expected to offer significant opportunities beside of the current

available strategies in drug discovery. The combined use of RNAi and CRISPR/Cas9 for target

identification and validation may boost the drug discovery process further and open entire

new opportunities. It will be interesting to see what this strategy will bring in the future.

Supporting information

S1 Fig. Indel analysis of FMT and EMT derived material. (A) Genomic editing of the SMAD3

and ACTA2 genes in NHLFs co-transduced with Cas9 and SMAD3- or ACTA2-targeting
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gRNA AdV. Cells were co-transduced at DIV 1 at total MOI 30 (Cas9:gRNA ratio 1:2), followed

by addition of TGF-β1 at DIV 6. Genomic DNA was analyzed for the presence of indels at DIV

9 by SURVEYOR1 assay as described earlier. Black arrowheads mark the DNA fragments that

appear after successful gene editing. Indel frequencies are shown below each lane and were

determined by densitometry of the full-length and cleaved PCR fragments as described above.

(B) Genomic editing of the SMAD3 gene in HBECs co-transduced with Cas9 and SMAD3-tar-

geting gRNA AdV. Cells were co-transduced at total MOI 12 (Cas9:gRNA ratio 1:1) followed by

EMT induced by addition of a cocktail containing TGF-β1 and TNFα at DIV 6. Genomic DNA

was analyzed for the presence of indels at DIV 9 by SURVEYOR1 assay as described earlier. 39,

40, 41: gRNAs targeting SMAD3; 7, 8, 9: gRNAs targeting ACTA2; C1: gRNA targeting control

sequence; SA Ctrl: SURVEYOR1 assay control.

(TIFF)

S2 Fig. Inhibition of SMAD3 nuclear translocation. Visualization of SMAD3 nuclear trans-

location in NHLFs co-transduced with Cas9 and SMAD3-targeting gRNA AdV. Primary

NHLFs were co-transduced at DIV 1 at total MOI 30 (Cas9:gRNA ratio 1:2), followed by addi-

tion of TGF-β1 at DIV 6. Cells were fixed for immunofluorescent labelling of SMAD3 and

nuclear DAPI staining. Exemplifying images of SMAD3 and nuclear DAPI labelling are

shown. Translocated SMAD3 is highlighted with orange arrowheads. 39: gRNA targeting

SMAD3; C1: gRNA targeting control sequence.

(TIF)

S3 Fig. CRISPR/Cas9 AdV-mediated gene disruption in two human primary cell types. (A)

Genomic editing of the SMAD3 gene in NHLFs following co-TD with Cas9 and SMAD3-tar-

geting gRNA AdV. NHLFs were co-transduced at DIV 1 at total MOI 30 (Cas9:gRNA ratio

1:2) followed by genomic DNA isolation at DIV 7 and PCR amplification of the SMAD3 target

region. Resulting PCR products were used for SURVEYOR1 assay analysis and resolved by

agarose gel electrophoresis as described earlier. Indel frequencies are shown below each lane

determined by densitometry of the full-length and cleaved PCR fragments (black arrowheads).

(B) Genomic editing of the SMAD3 gene in HBECs co-transduced with Cas9 and SMAD3-tar-

geting gRNA AdV. Primary HBECs were co-transduced as above, but with a total MOI 14

(Cas9:gRNA ratio 1:2.5). Genomic DNA was analyzed for the presence of indels at DIV 4 by

SURVEYOR1 assay as described above. 39, 40, 41: gRNAs targeting SMAD3; C1, C2: gRNAs

targeting control sequences; SA Ctrl: SURVEYOR1 assay control.

(TIFF)

S4 Fig. AdV TD-mediated toxicity in NHLFs. Assessment of toxicity resulting from TD of

NHLFs with varying amounts of AdV. (A) Primary NHLFs were co-transduced at DIV 1 with

varying ratios of Cas9 and gRNA AdV or AsRed and gRNA AdV at a maximal total MOI of 80

followed by addition of TGF-β1 at DIV 6. Cell viability was determined at DIV 9 by using the

CellTiter-Blue1 Cell Viability Assay. Data are normalized to the untreated condition. (B)

NHLFs were treated as in A, except that cells were either co-transduced or transduced with the

single all-in-one AdV. For the co-TD approach only the data from Cas9:gRNA AdV ratio of

1:1 are utilized for comparison with the all-in-one system. (C) NHLFs were treated as in A,

except that cells were transduced with a single all-in-one Cas9/gRNA AdV or an AdV particle

without insert (“empty”). For the comparison of co-TD (ratio 1:1) with the all-in-one ap-

proach, it is important to note that equal MOIs will result in double molar amounts of Cas9

and gRNA with the all-in-one AdV, as the total MOI is kept constant. Data points are from

quadruplicate wells (n = 4) and error bars represent standard deviation.

(TIFF)
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S5 Fig. AdV TD-mediated toxicity in HBECs. Assessment of toxicity resulting from TD of

HBECs with varying amounts of AdV. (A) Primary HBECs were co-transduced at DIV 1 with

varying ratios of Cas9 and gRNA AdV or AsRed and gRNA AdV at a maximal total MOI of 40

followed by addition of a cocktail containing TGF-β1 and TNFα at DIV 6. Cell viability was

determined at DIV 9 by using the CellTiter-Blue1 Cell Viability Assay. Data are normalized to

the untreated condition. (B) HBECs were treated as in A, except that cells were either co-trans-

duced or transduced with the single all-in-one AdV. For the co-TD approach only the data

from Cas9:gRNA AdV ratio of 1:1 are utilized for comparison with the all-in-one system. (C)

HBECs were treated as in A, except that cells were transduced with a single all-in-one Cas9/

gRNA AdV or an AdV particle without insert (“empty”). For the comparison of co-TD (ratio

1:1) with the all-in-one approach, it is important to note that equal MOIs will result in double

molar amounts of Cas9 and gRNA with the all-in-one AdV, as the total MOI is kept constant.

Data points are from quadruplicate wells (n = 4) and error bars represent standard deviation.

(TIFF)

S6 Fig. Dose-response and TD efficiency in NHLFs and HBECs. Determination of TD effi-

ciencies using an AsRed reporter-gene AdV. (A) NHLFs were transduced at DIV 1 with an

AsRed AdV at various MOIs ranging from 2.5–40, after which cells were fixed and stained

with DAPI at DIV 9. Cells were imaged to determine the number of viable, AsRed-positive

cells by HCA (see Materials and Methods for details). (B) HBECs were transduced at DIV 1

with an AsRed AdV at various MOIs ranging from 2.5–20 at DIV 1, after which cells were

fixed and stained with DAPI at DIV 9. Cells were imaged to determine the number of viable,

AsRed-positive cells by HCA as above (see Materials and Methods for details). Data points are

from six biological replicates (n = 6 wells) and error bars represent standard deviation.

(TIFF)

S7 Fig. Specificity of SMAD3 downregulation by AdV TD in NHLFs. (A) SMAD3 genomic

editing in NHLFs following co-TD with Cas9 or AsRed and gRNA AdV or single TD with an

“empty” AdV particle (no insert). Primary NHLFs were transduced at total MOI 30 (Cas9:

gRNA ratio 1:2) after which genomic DNA was analyzed for the presence of indels at DIV 8 by

SURVEYOR1 assay as described earlier. (B) AdV CRISPR/Cas9-mediated SMAD3 protein

KD in NHLFs. Cells were harvested at DIV 8 for protein analysis by immunoblotting. A total

of 30–35 μg protein per lane was loaded. Immunoblots were stained with the indicated pri-

mary antibodies. (C) Quantification of SMAD3 protein levels by densitometry of the bands

depicted in panel B. Expression is blotted relative to the untreated condition and normalized

to the β-actin signal. Data points are from biological duplicate samples (n = 2) and error bars

represent standard deviation.

(TIFF)

S8 Fig. Induction of FMT and EMT. (A) NHLFs were triggered at DIV 6 with TGF-β1 to

induce FMT and fixed at DIV 9 followed by immunofluorescent labelling of ACTA2 and

DAPI nuclear staining. Representative images of the triggered (T+) and untriggered (T-) con-

ditions are shown. (B) HBECs were triggered at DIV 6 with a cocktail containing TGF-β1 and

TNFα to induce EMT and fixed at DIV 9 followed by immunofluorescent labelling of FN1 and

DAPI nuclear staining. Representative images of the triggered (T+) and untriggered (T-) con-

ditions are shown. Scale bars indicate 100 μm.

(TIFF)

S9 Fig. Comparison of SMAD3 indel formation achieved with co-TD and all-in-one AdV

approach in NHLFs and HBECs. (A) Primary NHLFs were either co-transduced or trans-

duced with an all-in-one AdV at DIV 1 at a maximal total MOI of 80. In case cells were co-
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transduced with Cas9 and gRNA AdV the ratio of Cas9:gRNA was 1:1 to allow for direct com-

parison with the all-in-one AdV. NHLFs were harvested at DIV 9 after which genomic DNA

was analyzed for the presence of indels by SURVEYOR1 assay as described earlier. Indel fre-

quencies were quantified as determined by densitometry of the DNA fragments depicted in

Fig 2A and 2C. (B) Primary HBECs were treated as in A, except that TD was performed at a

maximal total MOI of 40. Indel frequencies were quantified as determined by densitometry of

the DNA fragments depicted in Fig 3A and 3C. Cas9+39: co-TD with Cas9 and SMAD3 target-

ing gRNA; 39 all-in-one: TD with a SMAD3 targeting all-in-one AdV.

(TIFF)

S1 Table. Primer and gRNA targeting sequences used in this study. The expected PCR frag-

ments after successful genomic editing detected by SURVEYOR1 assay are shown. All gRNAs

are preceded by a guanine nucleotide (underlined) at the 5’ end to promote transcription

driven by the U6 promoter. NA: not applicable.
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