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Diverse cognitive processes set different demands on locally
segregated and globally integrated brain activity. However, it
remains an open question how resting brains configure their
functional organization to balance the demands on network seg-
regation and integration to best serve cognition. Here we use
an eigenmode-based approach to identify hierarchical modules
in functional brain networks and quantify the functional bal-
ance between network segregation and integration. In a large
sample of healthy young adults (n = 991), we combine the
whole-brain resting state functional magnetic resonance imaging
(fMRI) data with a mean-filed model on the structural network
derived from diffusion tensor imaging and demonstrate that rest-
ing brain networks are on average close to a balanced state.
This state allows for a balanced time dwelling at segregated and
integrated configurations and highly flexible switching between
them. Furthermore, we employ structural equation modeling
to estimate general and domain-specific cognitive phenotypes
from nine tasks and demonstrate that network segregation, inte-
gration, and their balance in resting brains predict individual
differences in diverse cognitive phenotypes. More specifically,
stronger integration is associated with better general cognitive
ability, stronger segregation fosters crystallized intelligence and
processing speed, and an individual’s tendency toward balance
supports better memory. Our findings provide a comprehensive
and deep understanding of the brain’s functioning principles in
supporting diverse functional demands and cognitive abilities
and advance modern network neuroscience theories of human
cognition.

functional brain network | hierarchical modules | segregation–integration
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The brain dynamically reconfigures its functional organization
to support diverse cognitive task performances (1, 2). Suc-

cessful reconfiguration underlying better task performance relies
not only on sufficiently independent processing in specialized
subsystems (i.e., segregation) but also on effective global cooper-
ation between different subsystems (i.e., integration) (1–6). It has
been observed that diverse cognitive tasks set different demands
on segregation and integration (3, 5, 7–12). Higher segregation
has been linked to simple motor tasks, and higher integration
seems to underlie performance on tasks with a heavy cognitive
load (8–12). However, it remains a great challenge to under-
stand how the brain’s functional organization is configured to
support heterogeneous demands on segregation and integration
for diverse cognitive processes.

Independently from specific task demands, the brain’s func-
tional organization at rest can mirror relevant task-induced
activity patterns and thus predict task performance (13, 14).
Emerging evidence suggests that smaller differences between

functional patterns at rest versus task states can facilitate
better cognitive performance (13–16). Since diverse cognitive
tasks differently demand on segregation and integration (3, 5,
7–12), the brain’s functional organization at rest is expected to
possess the intrinsic capability of supporting diverse cognitive
processes. Furthermore, previous studies suggest that healthy
resting brains operate near a critical state to render the capa-
bility of rapidly exploring and switching in the brain’s state
space with large operating repertoires (3, 13, 17–19). Resting
brains are thus supposed to balance the segregation and inte-
gration (17, 20), so as to satisfy competing cognitive demands.
However, this theory still lacks empirical evidence regarding
whether large-scale brain networks at rest entail a balance
between segregation and integration and whether the functional
balance is associated with individual differences in cognitive
abilities.

Significance

Mastering diverse cognitive tasks is crucial for humans. We
study how the brain’s functional organization at rest is con-
figured to support diverse cognitive phenotypes. Emphasizing
the multilevel, hierarchical modular structure of brain’s func-
tional connectivity to derive eigenmode-based measures, we
demonstrate that the resting brain’s functional organization
in healthy young adults is configured to maintain a balance
between network segregation and integration. This func-
tional balance is associated with better memory. Furthermore,
brains tending toward stronger segregation versus integra-
tion foster different cognitive abilities. Thus, the segregation–
integration balance empowers the brain to support diverse
cognitive abilities. These findings yield high potential to
understand the role of whole-brain resting state dynamics in
human cognition and to develop neural biomarkers of atypical
cognition.
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To date, most of the relationships between brain functional
configurations at rest and cognitive abilities are based on sin-
gle tasks (7–12) that assess only specific aspects of cognition.
General and domain-specific cognitive abilities are modeled at
the latent level based on multiple tasks in differential psychol-
ogy (21–24). These latent cognitive abilities are generalizations
across tasks of the same domain and account for measure-
ment error (25), and thus, they are much more suitable to
reveal the neural basis of individual differences in human cogni-
tion. Recently, a cross-disciplinary network neuroscience theory
(NNT) proposed a general framework to investigate the neural
basis of cognitive abilities relying on system-wide topology char-
acteristics and the dynamics of brain networks (26). According
to NNT, brain networks functioning in an easy-to-reach state
serve crystallized intelligence, whereas a difficult-to-reach state
is needed for fluid intelligence (26). General cognitive ability,
which is a statistical summary of fluid and crystallized intelli-
gence, is considered to be facilitated by the capacity to flexibly
switch between the above mentioned network states, i.e., an opti-
mal balance between local and global processing (26). These
predictions are still built upon a fragile empirical basis (27).
Elucidating the relationship between functional balance and dif-
ferent cognitive abilities is crucial for validating and reframing
NNT, particularly regarding the question of whether a functional
balance in the brain at the resting state is beneficial for general
cognitive ability of individuals.

Before these questions can be robustly answered, the bal-
ance between segregation and integration in the large-scale brain
must be explicitly defined and quantified. The modular struc-
ture of brain’s functional connectivity (FC) networks is known to
provide the basis for specialized information processing within
modules and the integration between them (8, 10, 15, 26, 28, 29).
Although many studies have applied measures based on modules

at a single level to study functional segregation and integration
(7, 8, 10, 15, 28, 30), empirical evidence for a balance in the
brain’s functional organization is still lacking. In fact, brain FC
networks are hierarchically organized (31–33). Such an organi-
zation potentially supports nested segregation and integration
across multiple levels. However, the classically applied modular
partition at a single level does not allow the detection of hierar-
chical modules across multiple levels (34, 35). This insufficiency
seems to be the main reason for the lack of a robust quantitative
definition of the balance between segregation and integration.

Here we explicitly identified the functional balance based on
hierarchical modules of resting brain FC networks and explored
associations with diverse cognitive abilities in a sample of 991
heathy young adults from the Washington University–University
of Minnesota Consortium (WU-Minn) Human Connectome
Project (HCP) (36). Using our previously published method
called nested-spectral partition (NSP) based on eigenmodes
(19), we first detected hierarchical modules in FC networks to
propose an explicit balance measure. Second, we combined real
data and a Gaussian linear model to demonstrate the functional
balance in the group-averaged brain at the resting state. Then,
we investigated individual differences in the balance and rela-
tionships to the temporal switching between segregated and inte-
grated states. Finally, we applied structural equation modeling
(SEM) to estimate latent factors of general and domain-specific
cognitive abilities and investigated how segregation, integration,
and their balance configure them.

Results
Hierarchical Modules in FC Networks. Since the length of functional
magnetic resonance imaging (fMRI) series affects the dynamic
properties of FC networks (29), we concatenated the fMRI data
across four scanning sessions and all individuals to obtain a stable
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Fig. 1. Hierarchical segregation and integration in FC networks. (A) The stable average FC network and its hierarchical modules. The black dashed lines
represent the boundaries of hierarchical modules suggested by the NSP method. (B) Hierarchical modular partition in the first four functional modes, where
modules in each level (gray and green) are detected according to the positivity or negativity of eigenvector components. (C) Spatial patterns corresponding
to the first four functional modes. (D) Pipeline of defining hierarchical segregation and integration. The combination of contribution Λ2 and module
number M provides hierarchical functional components Hi at different levels. Since the modular size may be heterogeneous even for the same module
number in each level (see an example of six nodes partitioned into two modules, where the modular sizes of 1 and 5 generate higher integration and lower
segregation than the sizes of 3 and 3), the hierarchical components Hi need to be corrected. Then, the first level contributes to the global integration, and
the 2nd to 360th levels contain the multilevel segregation components. A functional balance is defined when the global integration component equals the
total segregation component.
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average FC network comprising N = 360 regions (Fig. 1A). The
NSP method was applied to detect hierarchical modules in the
FC network according to the functional modes (i.e., eigenvalues
Λ and eigenvectors U ) which were sorted in descending order
of Λ (Materials and Methods). At the first level, corresponding
to the first eigenvector with the same sign for each region (Fig.
1B), the stable average FC network has the largest coactivation
mode, effectively involving the whole brain in a single module
(Fig. 1C). At the second level, brain regions are partitioned into
two large modules that correspond to positive and negative signs
in the second eigenvector (Fig. 1B). This functional partition
pattern nearly coincides with the division between the anterior
and posterior brain regions (Fig. 1C), suggesting that the sec-
ond mode reflects the modular division of the brain into anterior
and posterior functional systems. Furthermore, according to the
negativity and positivity of the third eigenvector, each module
at the second level was further subdivided into two modules at
the third level (Fig. 1B). Successively, with the increasing order
of functional modes, the FC network is modularly partitioned
into multiple levels. The hierarchically partitioned FC network
has higher average link weights within modules than between
modules across multiple levels (Fig. 1A), clearly manifesting the
hierarchical modules of the FC network.

Hierarchical Segregation and Integration in FC Networks. Hier-
archical modules of brain FC networks involve hierarchically
segregated and integrated interactions between regions. At a
specific level, regions with the same sign of eigenvector com-
ponents (e.g., negative or positive) within a module are jointly
activated to achieve functional integration, whereas the opposite
activation (e.g., negative and positive signs) of regions indicates
segregation between modules. The integration of smaller seg-
regated modules at a high-order level (e.g., i th mode) leads
to the formation of a larger module at the lower-order level

(i.e., (i − 1)th mode), which further generates segregation with
other large modules at this lower-order level. Thus, functional
segregation and integration are intricately interrelated and hier-
archically organized in a nested manner across multiple lev-
els. We defined a weighted module number Hi (Eq. 2) to
quantify the nested segregation and integration. The functional
component at the first level measures the degree of global
integration and is denoted as the integration component HIn

(Eq. 4). Functional components across all higher levels (i.e.,
2nd to 360th levels) quantify the hierarchical segregation and
are summed to obtain an overall measure of the segregation
component HSe (Eq. 5).

Aiming to confirm the validity of HIn and HSe , we imple-
mented a Gaussian linear process on structural connectivity
(SC) networks and produced simulated individual FC matrices
for sufficiently long time frames (19, 37) (Materials and Meth-
ods). At an intermediate coupling in the model (i.e., c = 70),
the simulated FC networks were most similar to the empiri-
cal FC network. This similarity is indicated by the same mean
correlation, a minimal distance between real and simulated
FC matrices, and the minimal difference in regional degrees,
the same characteristic path length, clustering coefficient, and
global efficiency (Fig. 2 C and D and SI Appendix, Fig. S1).
These results suggest that resting brains correspond to the
dynamic point at the critical coupling (c = 70) in the Gaussian
model.

For small couplings (e.g., c = 20), brain regions are relatively
independent and form sparse FC networks (Fig. 2A), as indi-
cated by correlation values approaching zero (Fig. 2B). This
state is only able to support segregated activity and is insufficient
for large-scale integration. Correspondingly, segregation compo-
nents Hi(i ≥ 2) have high values, while the global integration
component is small (Fig. 2B). In contrast, for strong couplings
(e.g., c = 120), brain regions are strongly and densely connected
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Fig. 2. Balance between hierarchical segregation and integration. (A) Simulated and real stable FC networks visualized using BrainNet Viewer (38). The
binarizing threshold was 0.65. (B) Probability density function (pdf) of correlation values in brain FC matrices and the hierarchical components Hi in each
level. (C and D) Mean correlation coefficients of simulated FC matrices and the Euclidean distance between the real stable FC matrix and simulated individual
FC matrices at different c. (E and F) Modularity Q and participation coefficient PC based on the seven functional subsystems (SI Appendix, Fig. S2) at a single
level (39). (G and H) The integration component HIn, segregation component HSe, and balance predictor HB vary with c. Here the shadows indicate the
standard deviation across individuals, the horizontal green lines represent the corresponding values in the real stable FC network, and the vertical dashed
lines mark the critical coupling (c = 70).
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to form globally synchronized patterns (Fig. 2A), as indicated by
correlation values distributed toward 1 (Fig. 2B). This large-scale
synchronization recruits the whole brain, exhibiting a high inte-
gration component H1 and small segregation components (Fig.
2B). This state does not allow specialized activity. Thus, during
the dynamic transition from asynchronous to synchronous states,
global integration increases and segregation decreases, which
is consistent with classical graph-based measures of decreased
modularity and increased participation coefficient (Fig. 2 E and
F). Crucially, this dynamic transition could be well described by
an increased HIn and a decreased HSe (Fig. 2G), indicating the
effectiveness of HIn and HSe in characterizing segregated and
integrated activity, respectively.

Segregation–Integration Balance in Large-Scale Resting Brains.
Interestingly, the curves of HIn and HSe in the Gaussian model
intersect at the critical coupling c = 70 (Fig. 2G). Thus, the com-
petition between integration and segregation HB=HIn −HSe

increases from negative values to positive values and crosses zero
at c = 70 (Fig. 2H), indicating a theoretical balance between seg-
regation and integration in the Gaussian model. This balanced
state is not revealed by the monotonically changed modular-
ity and participation coefficient based on single-level modules
(Fig. 2 E and F). Most importantly, resting brains of heathy
young adults are close to the balanced state with HB in the
real stable FC network approaching zero (HB =−0.106; Fig.
2H). Indeed, the fMRI signals inevitably contain measure-
ment noise originating from various sources other than neural
activity, which would artificially bring more segregation com-
ponents into the real FC network. However, resting brains
correspond to the critical coupling (c = 70) in the Gaussian
model wherein the balance between segregation and integra-
tion theoretically exists. Thus, our results provide theoretical and
empirical evidence that at the population level, healthy young
brains at rest tend to maintain a balance between segregation and
integration.

Individual Differences in the Segregation–Integration Balance. To
study individual differences in the segregation–integration bal-
ance, we constructed individual static FC networks from four
concatenated fMRI sessions. The segregation and integration
components in individual FC networks were calibrated to over-
come the effects of a shorter fMRI series on segregation,
integration, and their balance (Materials and Methods and SI
Appendix, Fig. S3). This calibration restores the balance at the
between-person level and is appropriate to investigate the intrin-
sic relationship between brain measures and cognitive abilities
(SI Appendix, Table S1).

In an individual with a sparse FC network, brain regions are
relatively separated with respect to their functional activation,
and thus, they generate a strong segregation component (large
negative HB ; Fig. 3 A–C). In contrast, an individual brain with a
dense FC network is highly integrated, corresponding to a strong
integration component and large positive HB . Put differently,
individual brains with overly sparse or overly dense FC networks
do not display a balance between segregation and integration.
However, an individual brain with an intermediate density of FC
network is in a balanced state, with HB ≈ 0 (Fig. 3 A–C). Across
individuals, the modularity and participation coefficient relate to
HB in a nonlinear manner (Fig. 3 D and E and SI Appendix,
Fig. S4). Importantly, these coefficients vary substantially for a
specific HB value, particularly in segregated brains with large
negative HB , indicating that HB based on hierarchical modules
more precisely identifies the balanced state and individual dif-
ferences therein than the single-level measures. Thus, HB may
offer a more effective representation of an individual’s tendency
toward segregation vs. integration, with greater potential to be
associated with cognitive abilities.

D

E

C

BHB=-0.277A

HB=-0.026

HB=0.344

Fig. 3. Individual differences in the segregation–integration balance. (A)
Brain FC networks visualized for three individuals with a tendency toward
segregation (HB =−0.277), balance (HB =−0.026), and integration (HB =

0.344). The binarizing threshold was 0.65. The corresponding hierarchical
components Hi are also displayed. (B and C) Calibrated segregation compo-
nent HSe and integration component HIn, as well as the balance indicator HB

for all individuals who were sorted according to increasing values of HB. (D
and E) Corresponding individual modularity and participation coefficient.

Balance Supports Flexible Dynamic Transition between Segregated
and Integrated States. To investigate the temporal switching
between segregated and integrated states, we computed tempo-
rally dynamic FC networks. The mean segregation and integra-
tion components in dynamic FC networks for each individual
were also calibrated to the corresponding individual static values
(Materials and Methods), such that the data length-independent
measure of flexible transition between different states were
obtained.

The patterns of switching between segregated and integrated
states differ significantly between individuals (Fig. 4). For an
individual brain with static HB < 0, most dynamic processes
occur in the segregated state (i.e., HB (t)< 0; Fig. 4A), accom-
panied by a long dwell time TSe (Eq. 9 and Fig. 4B). In
contrast, an individual brain with static HB > 0 has a long
dwell time TIn in the integrated state (i.e., HB (t)> 0; Fig. 4
A and B). The static HB values across individuals range from
negative to positive values. As such, the brain exhibits a com-
petition of dwell times between increased TIn and decreased
TSe , as marked by TB =TIn −TSe comprising a range of neg-
ative to positive values. Crucially, for an individual brain with
static HB ≈ 0, the dwell times in the integrated and segre-
gated states are nearly equal, with a strong linear correlation
between TB and HB across individuals (r = 0.973), where TB ≈
0 matches HB ≈ 0 (Fig. 4C). These findings indicate the coexis-
tence of a static and dynamic balance between segregated and
integrated states.

Individual brains with high segregation or integration do not
readily switch between segregated and integrated states (Fig.
4A). Contrarily, an individual brain with static HB ≈ 0 exhibits
apparently more frequent state transitions, as characterized by
the highest switching frequency fIS (Eq. 10), and brains tending
toward segregation or integration exhibit reduced fIS (Fig. 4D).
Thus, a balanced brain is most flexible in its dynamic transitions
between segregated and integrated states.

Furthermore, brains with higher segregation or integration
substantially deviate from the balanced state during the switch-
ing process, whereas the deviation for the brain with static
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Fig. 4. Functional balance supports more frequent state transitions. (A) The activation patterns, temporal modularity Q (t)(black line), and HB (t)(red line)
of dynamic FC networks for three individuals (Fig. 3A) tending toward segregation (Upper; HB =−0.277), balance (Middle; HB =−0.026), and integration
(Lower; HB = 0.344). Here the activation of a region is measured by the node degree. The blue lines mark the transition between segregated and integrated
states. (B and C) Dwell time in the integrated state (TIn) and segregated state (TSe), as well as the time difference TB which is positively correlated to HB across
individuals. (D) Switching frequency fIS between segregated and integrated states. (E) Distributions of HB (t) for the three individuals. (F and G) Deviation
degree from the balance to segregated state (DSe) and integrated state (DIn), as well as the total deviation DIS.

HB ≈ 0 is relatively small (Fig. 4A). With increasing static HB ,
the distribution of HB (t)shifts from large negative to large pos-
itive values (Fig. 4E), and it is approximately zero for HB = 0,
reflecting the minimal deviation from the balanced state. To
further confirm these results, we defined a degree of deviation
from the balance to segregated or integrated states (DSe and
DIn ; Eq. 11). An individual brain with a strong tendency toward
segregation (static HB < 0) more strongly deviates toward a seg-
regated state, with large DSe . A brain with static HB > 0 deviates
toward integrated states, with large DIn (Fig. 4F). For the brain
with HB ≈ 0, DIn and DSe are approximately equal (Fig. 4F),
indicating equal deviation from balance toward segregated and
integrated states. More importantly, the smallest total devia-
tion DIS =DIn +DSe is observed for brains with static HB ≈ 0,
whereas the total deviation is increased for brains with a ten-
dency toward segregation or integration (Fig. 4G). This deviation
reflects a balanced competition between segregated and inte-
grated states during dynamic reconfiguration to obtain an overall
balanced brain.

Segregation, Integration, and Their Balance Predict Different Cog-
nitive Abilities. To study how segregation, integration and their
balance are associated with different cognitive abilities across
individuals, we used SEM. We estimated the latent factors of
general and three domain-specific cognitive abilities from nine
specific task performance indicators, spanning reasoning, crystal-
lized intelligence, processing speed and memory (Materials and
Methods).

We first separately tested linear relationships between dif-
ferent network measures (i.e., HB , HSe , and DSe ; SI Appendix,
Table S1, for further associations) and cognitive ability factors
in the entire sample (Fig. 5 and SI Appendix, Fig. S5). Three
cognitive abilities (i.e., general cognitive ability, crystallized intel-
ligence, and processing speed) are significantly associated with
the brain measures (Fig. 5B). First, the general cognitive ability
factor is positively associated with HB (standardized coefficient

estimate β= 0.087, P = 0.037) and negatively associated with
HSe (β=−0.113, P = 0.007) and DSe (β=−0.155, P < 0.001).
Second, the crystallized intelligence factor is negatively related
to HB (β=−0.125, P = 0.016) and positively related to HSe

(β= 0.148, P = 0.005) and DSe (β= 0.166, P = 0.002). Third,
the processing speed factor is negatively associated with HB

(β=−0.097, P = 0.016) and positively associated with HSe (β=
0.093, P = 0.022) and DSe (β= 0.089, P = 0.029). Thus, a higher
general cognitive ability relates to stronger integration, whereas
greater segregation supports better crystallized intelligence and
processing speed. Importantly, equivalent brain–behavior asso-
ciations are not obtained using graph-based network measures
at a single level (SI Appendix, Table S1). Our results empha-
size the advantages of hierarchical module analysis for under-
standing the neural basis of individual differences in cognitive
abilities.

Notably, the memory factor is not linearly associated with any
of the considered brain measures (Fig. 5A and SI Appendix, Fig.
S5). However, a nonlinear relationship may exist such that mem-
ory may be most strongly facilitated by the functional balance.
To test such nonlinearity, we partitioned the entire sample into
groups of segregated (SG), balanced (BG), and integrated (IG)
individuals and investigated latent ability differences between
them by multiple group SEM (Materials and Methods). For a
specific partition (Fig. 5C), the latent means of cognitive abil-
ities in the three groups are significantly different (P = 0.048).
In detail, the latent mean of general cognitive ability mono-
tonically increases from the SG to IG. The latent differences
between the SG and BG and between the BG and IG have small
effect sizes (Cohen’s d = 0.25 and 0.38), suggesting the high-
est general cognitive ability in the IG. In contrast, the latent
mean of crystallized intelligence decreases from the SG to IG.
The difference between the SG and BG reveals a medium effect
size (d = 0.48), and the difference between the BG and IG is
small (d = 0.27), indicating the better crystallized intelligence
in the SG. The same trend of a monotonic decrease occurs for
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Fig. 5. Brain–behavior relationship in SEMs. (A) Schematic representation of the SEM testing the linear relationship between HB and cognitive abilities. Here
nine cognitive performance indicators (Materials and Methods) were included in the model to estimate general cognitive ability (g), crystallized intelligence
(cry), processing speed (spd), and memory (mem). Standardized factor loadings are displayed on the loading paths. Regression weights of latent factors
onto HB are indicated as standardized estimates (β). (B) β coefficients estimated in SEMs using HB, HSe, and DSe. The models fit the data well: CFI> 0.95,
SRMR< 0.08, and RMSEA< 0.08 (SI Appendix, Fig. S5). ∗P< 0.05 and ∗∗P< 0.01. (C) Distribution of individual static HB. The blue lines (HB =−0.117 and
0.123) represent the cutoff values for a specific partition. The group sizes are also provided (red text). This SEM fits well with CFI = 0.974, SRMR = 0.036,
and RMSEA = 0.049. (D) Estimated group-specific latent means for the four cognitive abilities. Cohen’s d effect size estimates indicating group differences
in cognitive abilities are displayed in red.

processing speed from the SG to IG. Latent differences between
the SG and BG, as well as between the BG and IG, reveal small
effect sizes (d = 0.26 and 0.21), indicating the highest processing
speed in the SG. These group differences are consistent with the
linear associations estimated in the entire sample (Fig. 5B). Most
importantly, the largest latent mean of memory was observed
in the BG, whereas memory performance is smaller in both the
SG and IG. The differences between the SG and BG, as well as
between the BG and IG, indicate medium effects (d = 0.46 and
0.46), supporting the highest memory in the BG.

Importantly, the above reported group differences are robust
for different partitions into three groups (SI Appendix, Fig. S6).
Further partitioning the BG into two subgroups (i.e., result-
ing in four groups) also led to equivalent results (SI Appendix,
Fig. S7). These findings provide robust evidence that higher
general cognitive ability is associated with stronger integration,
that higher crystallized intelligence and processing speed rely
on stronger segregation, and that memory is the strongest in
individuals at the balance between segregation and integration
during rest.

Discussion
By proposing a hierarchical module approach to brain FC net-
works, we explicitly identified the functional balance between
segregation and integration. Using the large-scale WU-Minn
HCP dataset and a Gaussian linear model, we provided theo-
retical and empirical evidence that healthy young brains at rest
are on average close to the balanced state. This state allows the
brain to frequently switch between segregated and integrated
configurations. Compared with graph-based network measures
at a single level, our approach is more effective for revealing
the intricate role of segregation, integration, and their balance in
different cognitive abilities across individuals. General cognitive
ability is facilitated by higher global integration, better crystal-
lized intelligence and processing speed are associated with higher
segregation, and memory profits from the tendency toward the
balance. Our results not only provide an effective analysis of
hierarchical modules in brain FC networks but also reveal the
functioning principles of resting brains to support diverse cog-
nitive demands by configuring the functional organization to
segregation, integration, or balance.
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Network Segregation–Integration Balance of Healthy Young Brains
at Rest. The appealing hypothesis of resting brain at a bal-
ance between segregation and integration has been accepted by
many researchers (3, 4, 13, 17, 18, 27, 40, 41). Although sev-
eral methods have been proposed to identify segregated and
integrated brain states and the competition within and between
modules is expected to capture the balance (10, 18, 42–44),
developing a quantitative definition of the balance was still
considered a great challenge. We argued that segregated and
integrated brain activities are hierarchically organized across
pronounced modules in FC networks (31, 32) and found that
eigenmodes can reflect the hierarchical modular partition. By
characterizing the competition between hierarchical segregation
and integration based on eigenmodes, we identified the explicit
balance and provided theoretical and empirical evidence that
brain functional organizations at rest are on average config-
ured to a balanced state, but there are also significant individual
variations in segregation, integration, and balance. This study
provides quantitative evidence for the segregation–integration
balance in large-scale resting brains of heathy young adults,
although the hypothesis has been investigated for many years
(3, 4, 13, 17, 18, 27, 40, 41).

Balance Supports Fast Reconfiguration of Brain’s Functional Orga-
nizations. Dynamical reconfiguration of brain functional orga-
nization between segregated and integrated states associates
with diverse cognitive abilities and neurological disorders (13,
15, 43–46). For example, Parkinson’s disease is associated with
a longer dwell time in segregated states and a lower number
of transitions between segregated and integrated states (43–
45), and individuals with higher intelligence dwells less often
transition into states of particularly high network segregation
(13). However, previous studies used single-level methods (e.g.,
k -means clustering) to detect different brain states (15, 43,
45), which are unable to quantify a clear borderline for seg-
regated and integrated states. Recently, Hilger et al. theoret-
ically assumed a functional balance in a group of individuals
(Mage = 47.19 years old) and regarded the group mean modu-
larity as the borderline for identifying segregated and integrated
states (13). Beyond the theoretical assumptions, we provided
a complete quantitative framework for identifying segregated
and integrated states. We found that balanced brains work
with a balanced time in segregated and integrated states and
a highly frequent state switching. Thus, the functional bal-
ance allows for more flexible reconfiguration in brain functional
organization (2), which is assumed to be necessary for the
brain to transit from resting to task states in a timely man-
ner. Our approach has great potential for future investigations
of brain’s dynamic reconfigurations and their relationships with
cognitive abilities during aging, cognitive training, and mental
disorders.

Network Segregation, Integration, and Their Balance Predict Differ-
ent Cognitive Abilities. Our work demonstrated that segregation,
integration, and their balance predict different cognitive abili-
ties. Even if general cognitive ability is supposed to be facilitated
by the balance in NNT, system-wide evidence for such an asso-
ciation remains controversial (21–24). For example, previous
studies reported a relationship between the general cognitive
ability and global efficiency of resting FC networks (22, 23),
but a recent replication study with WU-Minn HCP data did not
observe the relationship (24). Our results further confirmed that
the single-level network analysis cannot capture the relation-
ship between network characterizations and general cognitive
ability (SI Appendix, Table S1), but the hierarchical module anal-
ysis effectively revealed that general cognitive ability is robustly
predicted by higher global integration. Since general cogni-
tive ability in the present SEM is marked by reasoning tasks

(fluid intelligence) (Materials and Methods), our result is consis-
tent with the NNT assumption that weak network connections
between regions facilitate a difficult-to-reach state, needed for
fluid intelligence (26). Thus, when an individual’s functional
organizations are configured to integration, resting brains more
strongly exhibit global cooperative activity and flexibly switch
to a difficult-to-reach state, supporting better fluid and general
intelligence.

Crystallized intelligence is presumed to be facilitated by an
easy-to-reach state in NNT (26). Two studies with small sam-
ple sizes reported an association between global efficiency in FC
networks and crystallized intelligence (22, 23). However, while
using the NIH Toolbox Cognition Battery to assess crystallized
intelligence, a recent replication study based on the WU-Minn
HCP data found that crystallized intelligence was not associ-
ated with global efficiency, characteristic path length, and global
clustering coefficient (24). Here we used SEM to estimate crys-
tallized intelligence as a latent variable and observed a small
but robust association between it and network properties. These
associations were present for traditional single-level network
measures and our multiple-level measures (SI Appendix, Table
S1). Our results indicate a positive association between segre-
gation and crystallized intelligence, providing further support
for NNT (26). Thus, an individual’s tendency to exhibit more
independent activity in specialized subsystems allows the net-
work to function with an easy-to-reach state which predicts better
crystallized intelligence.

Currently, NNT does not make any clear prediction for mem-
ory. Memory is itself a complex ability. The main dimensional
distinction is being made between working, primary (short-term),
and secondary (long-term) memory (26, 47). Indeed, specific
memory task performances were shown in the literature to be
facilitated by different segregated and integrated processes (48–
50), such as the vivid memory requiring higher global integration
than dim memory (50), implying that general memory may be
facilitated by a balance between segregation and integration.
Here we showed that memory is higher in individuals tending
toward balance in resting brains. In cognitive and differential
psychology, an influential perspective on working memory—
taken to be the cognitive mechanism underlying general cog-
nitive ability (51)—assumes it to be a system responsible for
building relational representations through temporary bindings
between mental chunks (52). We here revoke to see general cog-
nitive ability merely as a statistical summary of domain-specific
cognitive abilities. The general cognitive ability in our model
was modeled as a factor marked by reasoning tasks (fluid intel-
ligence), and a memory was nested under this general factor.
The memory tasks in the WU-Minn HCP arguably capture the
ability of building, maintaining, and updating arbitrary bindings
(52, 53), which we view as the basic cognitive mechanism under-
lying general cognitive ability. Thus, this ability is expected to
be associated with a pronounced small-world topology, tend-
ing to display a balance between segregation and integration,
as predicted in NNT (26). Therefore, this study substantially
validates and enriches the hitherto proposed NNT of human
cognition.

Processing speed is another domain-specific ability that is not
explicitly considered in NNT (26). In terms of brain network
characteristics facilitating processing speed, theoretically well-
justified predictions are difficult to propose (53, 54). Thus, the
results and their interpretation from previous studies mainly
rely on motor performance. Here we demonstrated that faster
processing speed is associated with the tendency toward segre-
gated activity in resting brains. This finding is consistent with
theories aiming to understand the lifespan development of mod-
ularity (12). More modular neural architectures are associated
with better performance when short response deadlines are
required in cognitive tasks of low difficulty. Thus, processing
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speed is expected to relate to stronger modularity, i.e., higher
segregation. Furthermore, at the level of specific cognitive tasks,
higher segregation was shown to be related to successful motor
execution (8). These theoretical claims and few empirical find-
ings are consistent with our results showing that quicker pro-
cessing speed is predicted by higher segregation. Our findings
complement missing constituents of NNT that aim to provide
a network neuroscience view on general and domain-specific
cognitive abilities, to which processing speed arguably belongs.

Outlooks. This work also has several valuable outlooks. First, we
demonstrate that resting brains are close to a balanced state and
that the functional balance is not simply beneficial for all cog-
nitive abilities as sometimes assumed. Since resting brains were
found to function around a critical state (19, 55–57), the func-
tional balance theoretically matches the criticality characterizing
individuals on average. Thus, our results are in line with a recent
finding in a local neural circuit that criticality is not optimal for
easy tasks but can facilitate the processing of difficult tasks (58).
However, the relationship between the balance and criticality
across individuals was not yet clearly understood, mainly due
to lack of explicit identification of the functional balance. Our
work thus provides a powerful tool to solve this pending issue in
physics and network neuroscience.

Second, the functional balance is expected to provide poten-
tial for the brain to flexibly switch to task states so as to match
the variable task demands. This hypothesis is consistent with
emerging evidence that individual brains characterized by more
efficient switching from resting to task states perform better on
specific cognitive tasks (15, 16, 27). We here found that the func-
tional balance is not beneficial for all cognitive abilities, except
for memory. Thus, resting brains tending toward segregation (or
integration) may be more efficient to switch to task states that
need higher segregation (or integration). From this viewpoint,
the tendency of an individual brain toward balance may not nec-
essarily enhance the specific switching efficiency from resting to
any particular task state but may enhance the overall switching
efficiency among many tasks. An analysis of fMRI data during
a working memory task provides a preliminary support to this
assumption (SI Appendix, Fig. S8). However, task fMRI data
systematically covering a broad range of tasks are needed to
comprehensively test this assumption.

Conclusion
Altogether, we found that resting brains maintain a segregation–
integration balance to support the heterogeneous demands of
diverse cognitive abilities, and across individuals, segregation,
integration, and their balance predict different cognitive abili-
ties. The functional balance supports the best memory, higher
segregation corresponds to better crystallized intelligence and
processing speed, and higher integration is associated with better
general cognitive abilities. This study not only contributes to test-
ing current NNT claims but also reframes this theory by including
additional domain-specific abilities and a general cognitive abil-
ity factor with a straightforward psychological interpretation.
Furthermore, the concepts proposed here are helpful to refine
the methodology proposed for parameterizing the functional
organization of the brain’s dynamic activity, which has poten-
tial utility in the rapidly growing field of network neuroscience
focusing on aging, cognitive training, and mental disorders.

Materials and Methods
Dataset. The WU-Minn HCP dataset contains structural MRI, diffusion ten-
sor imaging (DTI), resting state fMRI, and behavioral measures on multiple
cognitive tasks for 1,200 healthy young adults (36). Each participant com-
pleted a 2-d measurement involving four high-resolution scanning sessions
(time of repetition [TR] = 0.72 s), with each session lasting for 864 s (1,200
frames). In this study, 991 subjects (female = 528, age range = 22 to 36 y)

with the full time length of four sessions and corresponding DTI data were
selected.

Human Brain Connectomes. Brain was parcellated into 360 regions accord-
ing to the multimodal parcellation (MMP) atlas (59). The blood oxygen
level-dependent (BOLD) time series for each region was extracted with the
standard procedure (SI Appendix, SI Methods) (36). The Pearson correlation
coefficient between BOLD series of two regions was calculated to indicate
the FC. For the stable average FC matrix, the BOLD series for four sessions
were concatenated in all individuals so that we obtained the stable FC across
long enough time scales, as has been done previously (29). For the individ-
ual static FC matrices, the BOLD series for four sessions in each individual
were concatenated. This operation greatly improved the reliability of FC (SI
Appendix, Fig. S9). For the dynamic FC matrices, the BOLD series for four
sessions in each individual were first orderly concatenated, and then a slid-
ing time window method was applied. With a window width of 59.76 s (83
points) and a sliding step of 0.72 s (1 point), the concatenated long BOLD
series was divided into 4,717 small pieces to construct the temporal FC matri-
ces. We set negative correlations to zero and applied no other operations to
the FC matrices.

The brain regions in the cortex are physically interconnected by white
matter fibers. DTI provides diffusion gradients of all of the voxels in the
white matter. We performed probabilistic tractography on the DTI data to
trace the white matter fibers and thus to quantify the connection probabil-
ity pij from region i to j (59–61) (SI Appendix, SI Methods). The SC between
regions was computed as wij = (pij + pji)/2, and the SC matrix thus is

Aij =

{
wij for i 6= j

0 for i = j
. [1]

Brain Functional Modes. The FC matrix C can be decomposed as C = UΛUT

with eigenvectors U and eigenvalues Λ. In the spectral space, the eigen-
values Λ are usually described as the contribution of functional modes to
FC networks, and the total contribution

∑N
i=1 Λi ≡N is independent of

the dynamical synchronizing process. However, as synchronization increases,
cortical regions exchange more information, leading to stronger connec-
tivity, accompanied by a higher degree for the regions. In this case, the
contribution of functional modes to FC networks needs to grow as well.
Thus, we used Λ2 to measure the contribution of functional modes to FC
networks (19). Few eigenvalues had negative values and were set to zero.

Hierarchical Modular Partition of FC Networks. Eigenmode-based analysis has
been successfully applied to complex networks (34, 62). Here we applied
the NSP method to detect the hierarchical modules in FC networks. This
hierarchical modular partition at multiple levels is not equivalent with the
clustering method and the modularity-maximization method (34). Rather,
it is motivated by a principle of physics according to which the regions
with the same eigenvector sign are assumed to be cooperatively activated
and the regions with different signs oppositely activated. Thus, in the
first mode, the elements in the eigenvector for all regions have the same
sign, which was referred to as the first level with one functional module
(i.e., whole-brain network). In the second mode, the regions with positive
signs in the eigenvectors were assigned as a module, and the remaining
regions with negative signs were assigned as the second module, which was
regarded as the second level distinguishing two functional modules. Each
module in the second level could be further partitioned into two submod-
ules based on the positive or negative sign of regions in the third mode,
constructing the third level. Successively, the FC network can be modularly
partitioned into multiple levels with the order of functional modes increas-
ing until a given level where each module involves a single region only.
After each partitioning step, the regions were reordered, and the order
within modules remained random. During this nested partitioning process,
we obtained the module number Mi(i = 1, . . . , N) and the modular size
mj(j = 1, . . . , Mi) in each level. Notably, because of the intrinsic differences
between the NSP method and classical graph theory method, the hierarchi-
cal modules are not matched with the known functional networks [e.g.,
Yeo et al.’s functional subsystems (39)]. However, a functional subsystem
can be reproduced by the combination of several significant modes (62)
(SI Appendix, Fig. S2).

Hierarchical Segregation and Integration Components. Functional segrega-
tion and integration are intricately interrelated and hierarchically organized
in a nested manner across multiple levels. This hierarchically segregated
and integrated activity reflected by eigenmodes has the contribution Λ2

to the functional organization (Fig. 1D). The first level in the FC network
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has only a single large module (Fig. 1 B and C), reflecting global integra-
tion to allow effective communication across the whole brain and requiring
the largest contribution (Fig. 1D). The second level generates integration
within the anterior or posterior module and segregation between them (Fig.
1 A–C). This modular organization supports the strong communication and
specialized processing within the anterior or posterior regions and weaker
cooperation between them and thus requires less contribution than the first
global mode (Fig. 1D). Consequently, higher-order modes with more mod-
ules and smaller modular sizes relate to deeper levels of finer segregated
processes that generate more localized information flow and coordination,
accompanied by lower contributions Λ2 of the corresponding modes (Fig.
1D and SI Appendix, Fig. S10). Specifically, the levels with the highest mod-
ule number (i.e., M = N), allowing independent activation of each region,
indicate completely segregated activity and are associated with very small
contributions (Fig. 1D and SI Appendix, Fig. S10). Thus, the functional modes
with larger module numbers generate stronger segregation and smaller-
scale local integration, producing weaker contributions to the functional
organization.

Consistent with the graph-based modularity (15, 28, 35), modules at a
given level support the segregation between them and integration within
them. A larger module number Mi reflects higher segregation at this level.
Since this segregated and integrated activity makes the contribution of
Λ2

i to the functional organization, the weighted module number in each
level can be defined to reflect the hierarchical segregated and integrated
interactions:

Hi =
Λ2

i Mi

N
, [2]

where N normalizes the module number M to the range [0, 1]. At low-order
levels, the module number Mi is small and the contribution Λ2

i is large, cor-
responding to strong integration of smaller modules at higher-order levels
into large modules at low-order levels. Meanwhile, the large modules are
further integrated into even larger modules at lower-order levels, allowing
us to quantify hierarchically nested segregation and integration. Thus, Hi

describes the nested segregation and integration across multiple levels.
However, the number of modules alone may not properly describe the

picture of nested segregation and integration because the size of modules
may be heterogeneous (Fig. 1D). Given an extreme case at the second level,
for example, having two modules with a size comprising one region and
N− 1 regions, this level would produce very weak segregation and nearly
global integration. The segregation becomes stronger if the modules have a
more homogeneous size mj = N/Mi . Thus, the segregation and integration
component in each level needs to be corrected for heterogeneous modular
sizes. The correction factor was calculated as pi =

∑
j

∣∣mj −N/Mi
∣∣/N, which

reflects the deviation from the optimized modular size in the ith level. Then,
Hi was corrected as

Hi =
Λ2

i Mi (1− pi)

N
. [3]

This correction aims to reflect the influence of modular size. If modules are
dominant with respect to their size at a given level, the integration within
this level will become stronger and the segregation weaker, corresponding
to smaller Hi . Should the deviation of modular size from homogeneity be
large, the correction effect is stronger (Fig. 1D).

At the first level, there is only a single module for the whole FC network,
and this level was taken to calculate the global integration component:

HIn =
H1

N
=

Λ1
2M1(1− p1)

N2
. [4]

Further normalization by the node number of N results in a measure that
is independent of the network size. Since the first level contains only one
module, p1 = 0, and the global integration component does not need to be
corrected.

The total segregation component unfolds from the multiple segregated
levels (2nd to Nth levels):

HSe =

N∑
i=2

Hi

N
=

N∑
i=2

Λi
2Mi

N2
(1− pi). [5]

These definitions of the global integration and segregation components in
the FC network are illustrated in Fig. 1D.

Gaussian Linear Diffusion Model. In order to identify the theoretical balance
of the brain, a Gaussian linear diffusion model was adopted. Let xi represent

the neural activities of cortical regions that follow a Gaussian linear pro-
cess (19, 37, 63). The time evolution of neural population activities satisfies
(SI Appendix, SI Methods)

dxi

dt
=−xi + c

N∑
j=1

Aij
(
xj − xi

)
+
√

2ξi , [6]

where c is the coupling strength between cortex region and A is the brain
SC matrix defined in Eq. 1. By averaging over the states produced by an
ensemble of noise and defining the Q=(1+cH)−1, where H is the Laplace
matrix of the SC matrix, the covariance of this model can be analytically
estimated as (41, 64)

Cov =
〈

XXT
〉

= 2
〈

QξξT QT
〉

= 2Q
〈
ξξ

T
〉

QT
= 2QQT

. [7]

The simulated FC matrix C can be calculated as

Cij =
Covij√

CoviiCovjj
. [8]

Thus, built upon the Gaussian linear process of the fluctuating resting brain
state, the simulated stable FC networks over a sufficiently long time can
theoretically be obtained. These FC networks are robust to noise associ-
ated with the SC measurement which is inevitable in DTI data processing
(SI Appendix, Fig. S11). The stable FCs will be compared with FC from real
fMRI data by tuning the coupling parameter c.

Calibration Process. We provided theoretical and numerical evidence for the
resting brain to close to the balance between segregation and integra-
tion given a sufficiently long fMRI time series. However, a previous study
found that shorter fMRI series resulted in apparently higher segregation
estimates in terms of larger modularity in FC networks (29), and we also
observed stronger segregation in the case of shorter fMRI series lengths (SI
Appendix, Fig. S3). If this artifact was not taken into account, deviation mea-
sures from the dynamical balanced state would be biased toward more but
artificial segregation. To address this limitation, the segregation and inte-
gration components in individual static FC networks need to be calibrated.
Considering that the length of fMRI time series would mainly affect the seg-
regation component in static FC networks (SI Appendix, Fig. S3), the group
segregation component HSe and integration component HIn were calibrated
to the integration component HS

In = 0.18 of the stable average FC network.
This is equivalent to the mean integration component of simulated FC net-
works at the balanced state (i.e., c = 70) (Fig. 2 G and H). The segregation
components in brains with HB < 0 are more sensitive to the fMRI length
(SI Appendix, Fig. S3), and thus, a proportional calibration scheme was
adopted. For individual static FC networks (obtained from four sessions), the
vectors of segregation (or integration) components for 991 individuals are

HIn=
[
H1

In, H2
In, . . . , H991

In

]
and HSe=

[
H1

Se, H2
Se, . . . , H991

Se

]
, and the calibrated

results for each individual are Hi′
Se = Hi

Se
HS

In
〈HSe〉

and Hi′
In = Hi

In
HS

In
〈HIn〉

. Here 〈〉

represents the group average across 991 individuals. After this calibration,
the group average values of the segregation and integration components
will be equal (i.e., HB = 0), and the individual ranking of segregation and
integration will be fixed.

For dynamic FC networks, the temporal segregation and integration
components for each individual were calibrated to its static segregation
component Hi′

Se and integration component Hi′
In, respectively, to maintain

the individual ranking (SI Appendix, Fig. S3). The vectors of segregation
(or integration) components for the ith individual across 4,717 windows

are hi
Se=
[
h1

Se, h2
Se, . . . , h4717

Se

]
and hi

In=
[
h1

In, h2
In, . . . , h4717

In

]
, and the calibrated

results are ht′
Se = ht

Se
Hi′

Se〈
hi

Se

〉 and ht′
In = ht

In
Hi′

In〈
hi

In

〉 . Here 〈〉 represents the average

across 4,717 windows. This calibration maintains the individual ranking of
static segregation and integration components, and the calibrated results
are independent of the length of fMRI series (SI Appendix, Fig. S3). This indi-
vidual calibration does not affect the dynamic results according to which the
balanced brain is characterized by a balanced dwell time and the maximum
transition frequency (SI Appendix, Fig. S12).

Dynamic Measures. In order to characterize the dynamic properties in detail,
the dwell time in segregated and integrated states was first defined as

TIn =
tHB(t)≥0

tall
and TSe =

tHB(t)<0

tall
. [9]
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Here tHB(t)≥0 and tHB(t)<0 measure the duration of the dynamic process at
HB (t)≥ 0 and HB (t)< 0, and tall = 3,396.24 s is the total time.

Second, the switching frequency was used to measure the transition
speed between segregated and integrated states, which was defined as

fIS =
nHB(t)HB(t+1)≤0

tall
, [10]

where n is the total number for time t satisfying HB (t)HB (t + 1)≤ 0.
Third, the competition between dynamic segregated and integrated

states across long time periods may be balanced, but the fluctuations can
vary much at temporal windows. The amplitude of dynamic deviation from
the balanced state to the integrated state or segregated state was thus
calculated as

DIn =

∑
HB (t)

∣∣≥0

tHB≥0
and DSe =

∣∣∣∣∣
∑

HB (t)|<0

tHB<0

∣∣∣∣∣. [11]

Here HB (t)
∣∣≥0 and HB (t)|<0 represent the positive and negative HB during

the dynamic process. A smaller DIn (or larger DSe) indicates that the brain
deviates toward a segregated state with a higher amplitude.

SEM. Cognitive behavioral measures were collected from nine specific tasks
(SI Appendix, Table S2): picture sequence memory (PSM), Penn word mem-
ory test (PWMT), Penn progressive matrices (PPM), variable short Penn line
orientation test (VSPLOT), picture vocabulary (PV), oral reading recognition
(ORR), dimensional change card sort (DCCS), flanker task (FT), and pattern
completion processing speed (PCPS). To obtain estimates of general and
domain-specific cognitive abilities, we applied a bifactor minus-1 SEM to
extract latent factors of common phenotypes that explain the variability
across the above listed tasks (65, 66). According to ref. 65, we modeled crys-
tallized intelligence by including ORR and PV as indicators; memory ability
based on PWMT and PSM; and processing speed based on DCCS, FT, and
PCPS. In particular, general cognitive ability (g) was modeled as the shared
variance across the broad set of all task performance scores shared with
PPM and VSPLOT. The covariance matrix as well as the mean and standard
deviation of all task performance indicators across individuals are provided
(SI Appendix, Dataset S1).

The bifactor minus-1 SEM is only partly in line with the theoretical
elaborations in NNT that build upon a higher-order structure of human
intelligence (26, 67). In NNT, task-specific performance within domains is
taken to reflect domain-specific broad mental abilities, such as crystallized
and fluid intelligence, to be further subsumed into a higher-order factor
called general intelligence (g). This higher-order factor model diverges from
the so-called hierarchical (or bifactor) model with respect to how g is esti-
mated. Whereas g in the higher-order model exerts its influence on task
performance scores indirectly through domain specific factors, g represents
the shared variance across a broad set of task performance scores in the
hierarchical model. However, by imposing proportionality constraints on
loadings, these two models can be translated to be statistically equivalent
(68). More importantly, the controversy around the higher-order model is
associated with the resulting cumbersome psychological interpretation of
g. Because in the higher-order model, g exerts its influence on measured
variables indirectly through domain specific factors, the ratios of the vari-
ance in the measured variables comprising domain factors to the indicator
variance explained by the higher-order factor are the same. This constraint
makes little sense psychologically because no psychological theory stresses
such proportionality. Thus, we adhered to bifactor modeling approaches
of cognitive abilities including a reference ability for g, which is reason-
ing ability (66). Because the bifactor model has yet also been shown to
have a series of statistical disadvantages (66) and because a clear inter-
pretation of g should be warranted, omitting one of the domain-specific
factors to avoid anomalous estimation results has been proposed as solu-
tion in the psychometric literature (66). In our application, PPM and VSPLOT
were only loaded onto g which can then be interpreted as reasoning (fluid
intelligence)-related variance, required by domain-specific tasks to a dif-
ferent degree. This interpretation is consistent with the well-established
finding that g and fluid intelligence are correlated above 0.93 (51). Addi-
tionally, three domain-specific factors of crystallized intelligence, memory,
and speed are nested under g (Fig. 5A). This modeling choice is different
from the higher-order g in NNT but is in line with psychologically better
interpretable representations of the cognitive ability structure (67).

To empirically test potential nonlinear associations, we further applied
the same SEM model of cognitive abilities in a multiple-group modeling
framework with different group of individuals best characterized by seg-

regation, balance, and integration. Multiple group models allow fitting
the SEM to describe individual differences in cognitive abilities simultane-
ously across groups. We first partitioned 991 individuals into SG, BG, and IG
according to a set of thresholds in sorted individuals according to their HB.
In Fig. 3C, we orderly selected the individuals starting from the largest HB.
The group size of IG was first selected with NIG individuals. Then, starting
with the (NIG + 1)th person, we selected the individuals for the BG. By con-
straining the average HB = 0 in the BG, we could fix the group size of IG with
NBG. Individuals at the left were assigned to the SG. After the partition, the
model parameters such as the latent mean and the cognitive abilities vari-
ance across individuals were specifically estimated for each group, and thus,
group differences could be identified by statistical inferences on group-
specific model parameter comparisons. Different partitions were explored
by a scanning step of 10 persons in the IG to assess the robustness of results
across different partitioning thresholds (SI Appendix, Figs. S6 and S7).

SEM analysis was performed using the lavaan package in R (69). The
maximum likelihood estimator has been used, and latent variables were
identified by reference indicators. The comparative fit index (CFI), root
mean square error of approximation (RMSEA), and standardized root mean-
square residual (SRMR) were used to evaluate the fit of the estimated
models (60, 70). Specifically, the model was considered to fit well for CFI
> 0.95, SRMR < 0.08, and RMSEA < 0.08 (70). In multigroup SEMs, we com-
pared the goodness of fit of the model with freely estimated average latent
ability with a model introducing equality constraints on the latent means
across the groups. The χ2 difference test was used for model comparison.
The resulting p value of the test statistic indicates whether the uncon-
strained model was a significantly better fit than the constrained model.
Group comparisons were based on Cohen’s d (d≥ 0.2 reflects a small effect
size, d≥ 0.5 represents a medium effect size, and d≥ 0.8 indicates a large
effect size).

Graph-Based Network Measures. To compare the results between graph-
based network measures and hierarchical measures of functional segre-
gation and integration in FC networks, the modularity and participation
coefficient were also computed. The modularity Q in undirected weighted
networks is (35)

Q =
1

l

∑
i,j∈N

[
wij −

kikj

l

]
δmi ,mj . [12]

Here wij is the connectivity between nodes i and j, ki =
∑

wij is the degree
of node i, and l is the sum of all weights in the network. δmi ,mj =1 if nodes i
and j are in the same module; otherwise, δmi ,mj =0. The modularity Q quan-
tifies the degree to which a network is decomposed into densely connected
modules, and a larger Q reflects higher segregation.

The participation coefficient quantifies the degree to which a node is
connected to other nodes across diverse modules. Its definition for a node is

PCi = 1−
M∑

m=1

(
ki (m)

ki

)2

, [13]

where M is the module number and ki (m) is the connectivity strength
of node i within module m. The participation coefficient PCi of a net-
work is the average of PCi in all nodes. Here the modules were previ-
ously defined according to the seven functional subsystems (39). These
network measures were calculated with the Brain Connectivity Toolbox
(https://www.nitrc.org/projects/bct).

Data and Code Availability. fMRI, DTI, and behavioral measures have been
deposited in the WU-Minn HCP (www.humanconnectome.org/study/hcp-
young-adult).

The codes used in this study are available in GitHub at https://github.com/
TobousRong/Hierarchical-module-analysis.
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