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Abstract

Prostate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent
chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG) was discovered in
prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer
progression. However, the unveiling of more specific pathways in which TMPRSS2/ERG takes part, requires further
investigation. Using immortalized prostate epithelial cells we were able to show that TMPRSS2/ERG over-expressing cells
undergo an Epithelial to Mesenchymal Transition (EMT), manifested by acquisition of mesenchymal morphology and
markers as well as migration and invasion capabilities. These findings were corroborated in vivo, where the control cells
gave rise to discrete nodules while the TMPRSS2/ERG-expressing cells formed malignant tumors, which expressed EMT
markers. To further investigate the general transcription scheme induced by TMPRSS2/ERG, cells were subjected to a
microarray analysis that revealed a distinct EMT expression program, including up-regulation of the EMT facilitators, ZEB1
and ZEB2, and down-regulation of the epithelial marker CDH1(E-Cadherin). A chromatin immunoprecipitation assay revealed
direct binding of TMPRSS2/ERG to the promoter of ZEB1 but not ZEB2. However, TMPRSS2/ERG was able to bind the
promoters of the ZEB2 modulators, IL1R2 and SPINT1. This set of experiments further illuminates the mechanism by which
the TMPRSS2/ERG fusion affects prostate cancer progression and might assist in targeting TMPRSS2/ERG and its downstream
targets in future drug design efforts.
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Introduction

Prostate cancer is one of the most frequent cancers in Men. Close to

30,000 patients are expected to die from the disease in the USA each

year. A major advance in this research field is a recent discovery that

frequent over-expression of E Twenty Six (ETS)-related proto-

oncogenes may be driven by androgen receptor as a consequence of

common genomic rearrangements. The predominant form of the

aforementioned fusions with a frequency of ,85% [1], is the fusion

between exon 1 from TMPRSS2 and exons 4–9 from the ERG gene,

which occurs either by a deletion of 3 mega bases region separating

these genes [2], or via an interchromosomal translocation [3,4]. As this

fusion is already evident in Prostatic Intraepithelial Neoplasia (PIN) [5],

investigating this fusion may hold the key towards understanding the

mechanisms involved in early phases of prostate cancer.

Since its discovery [6], the TMPRSS2/ERG fusion has been

extensively studied in several aspects, including early diagnosis,

prognosis, contribution to cancer progression and even as a target

for cancer therapy [7]. According to long term clinical studies

performed on a large cohort of patients, it seems that TMPRSS2/

ERG expression is associated with a more aggressive form of prostate

cancer [8,9]. Further studies have shown a role for TMPRSS2/ERG

fusion in tumorigenesis in terms of proliferation, invasion and

cancer initiation and progression [10,11,12,13]. In general, it

appears that cell proliferation is not necessarily promoted via

TMPRSS2/ERG expression. As for tumorigenesis, the data is

inconclusive. While knocking-down endogenous TMPRSS2/ERG

in the VCaP prostate-derived cancer cells resulted in a reduction of

both tumor uptake and volume [13,14], transgenic mice harboring

TMPRSS2/ERG in their genome either developed PIN [10,15] or
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reveal no histological evidence of PIN or invasive cancer [11,16];

depending on the specific model used in the study and the

interpretation of the data. Despite the disagreement concerning the

role of TMPRSS2/ERG in cancer initiation, cell invasion was

suggested to be a consequence of TMPRSS2/ERG fusion both in vitro

and in vivo [10,13,15]. Interestingly, an in silico study revealed that

TMPRSS2/ERG co-expressed with histone deacetylase 1 (HDAC1)

is coupled with down regulation of its known target [17]. This

finding implies that TMPRSS2/ERG is associated with epigenetic

reprogramming. Accordingly, in a follow-up study performed by the

same group, HDACi, and HDAC specific inhibitors, compromised

TMPRSS2/ERG expression or activity in ERG positive cells, in vitro

[17,18]. In addition, recent findings demonstrated a cooperation

between TMPRSS2/ERG fusion and deregulated activity of

cancer-related pathways, such as PTEN [19], PI3-Kinase [16],

and AKT or AR [20]. More recently, TMPRSS2/ERG was shown

to mediate Epithelial to Mesenchymal Transition (EMT) through

the induction of WNT signaling components [21]. Taken together,

it could be surmised that other TMPRSS2/ERG-mediated path-

ways, might be converged at the same endpoint, namely, EMT and

invasion; and therefore discovering new pathways through which

TMPRSS2/ERG exert this effect is of great importance. The main

motivation of this study is therefore to unravel such TMPRSS2/ERG

related pathways in the context of prostate cancer. In a previous

work we established immortalized and tumorigenic human prostate

epithelial cells (PrECs) lines of defined genetic constitution [22].

Similarly, in the presented study, we generated genetically modified

PrECs to serve as a background on which the effects of the

TMPRSS2/ERG fusion could be genuinely studied. We found that

TMPRSS2/ERG executes a distinct EMT expression program

which is mainly governed by a direct activation of ZEB1 and an

indirect induction of ZEB2 through SPINT1 and IL1R2 modulation,

leading to an EMT phenotype in vitro and in vivo.

Results

Establishment of immortalized PrECs cultures
In order to investigate the impact of TMPRSS2/ERG in a

genetically modified environment we sought to establish an

immortalized PrECs culture. Normal prostate epithelial cells were

produced from a human prostatectomy specimen and were

subsequently grown in culture. To induce immortalization, cells

were introduced with the telomerase catalytic subunit hTERT,

and both the p53 and pRB pathways were perturbed by p53

knockdown and over-expression of CyclinD/CDK4 chimera,

respectively, giving rise to an immortal cell line designated as EP

(Figure 1A and B). Next, the immortalized cells were infected with

retroviruses encoding either TMPRSS2/ERG or empty-vector

control (Figure 1C). ERG protein level was comparable with its

previously reported expression level in cell lines and cancer

samples [23,24]. Notably, TMPRSS2/ERG alone or in combina-

tion with hTERT and/or p53 knockdown was not sufficient to

Figure 1. Prostate epithelial cells immortalization. To induce immortalization, cells were introduced with the telomerase catalytic subunit
hTERT, and both the p53 and pRB pathways were perturbed using p53 knockdown and over-expression of cyclinD/CDK4, respectively. (B) Primary
PrECs, as well as hTERT/shp53/CyclinD-CDK4 – overexpressing cells (EP cells), were sequentially passaged and counted. Population Doublings (PDLs)
were calculated using the formula: PDLs = log(cell output/cellinput)/log2. (C) EP cells were introduced with AR and either TMPRSS2/ERG (EP-AR
TMPRSS2/ERG) or an empty vector (EP-AR). AR and ERG protein levels were measured by Western blot. Actin was used as a loading control.
doi:10.1371/journal.pone.0021650.g001
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induce immortalization (data not shown). Finally, following a

previous report that the combination of Androgen Receptor (AR)

and high levels of ERG promotes the development of a more

poorly differentiated, invasive adenocarcinoma than either gene

alone [20]; AR was introduced into the TMPRSS2/ERG-

expressing cells as well as into their empty-vector controls

(Figure 1C).

A role for TMPRSS2/ERG in epithelial to mesenchymal
transition in vitro

Comparing the morphology of EP-AR and EP-AR TMPRSS2/

ERG cell lines under a light microscope, we observed that EP-AR

TMPRSS2/ERG cells acquired fibroblastic-like characteristics, as

they demonstrated a more elongated morphology and a scattered

density compared to their isogenic controls, which exhibited

higher degree of adherence between neighboring cells (Figure 2A).

The observed alterations, which are characteristic features of

EMT [25,26], coupled with previous reports associating

TMPRSS2/ERG with EMT and invasion [10,21], prompted us

to examine whether in addition to the morphological changes,

cells were also granted with motility and invasion capacities. To

this end, cells were seeded in transwells with serum-free media and

their migration towards serum-supplemented media was assessed.

As shown in Figure 2B, TMPRSS2/ERG-expressing cells exhibited

an enhanced migratory capacity. The same experiment was

repeated using matrigel-coated wells in order to examine the cells

ability to penetrate and invade a dense surface. Once again,

invasion ability was significantly more discernible in the

TMPRSS2/ERG expressing cells (Figure 2C). The loss of CDH1

(E-Cadherin) is considered to be the most fundamental event

during EMT [27]. We therefore measured the levels of CDH1

mRNA and protein using QRT-PCR and immunofluorescence

staining, respectively. Indeed, EP-AR TMPRSS2/ERG cells

demonstrated a marked reduction in the levels of CDH1 mRNA

(Figure 2D) and protein (Figure 2E). Additionally, VIM (Vimentin),

a known mesenchymal marker was found to be elevated in the

TMPRSS2/ERG-expressing cells (Figure 2E). In sum, our data

suggest that TMPRSS2/ERG overexpression provokes an epithelial

to mesenchymal transition in vitro.

The effect of TMPRSS2/ERG on tumorigenesis
In an attempt to extend the previous observation to an in vivo

model; we either injected the genetically-modified cell lines

subcutaneously or implanted them orthotopically into the prostate

of nude mice. Sixty eight days following the implantation, tumors

were removed, sectioned and stained for EMT markers.

Comparing the orthotopic implantation sites of the distinct cell

lines revealed that hTERT/shp53/CDK4-immortalized PrECs

(EP cells) did not form tumors (Data not shown), while EP-AR

formed discrete nodules interspersed throughout the murine

prostate (Figure 2F, indicated by blue arrows). Notably, EP-AR

TMPRSS2/ERG cells formed large malignant tumors, which

surrounded the normal murine prostate nodules (Figure 2F, black

arrowheads). Moreover, EP-AR-derived nodules demonstrated

positive staining for the epithelial marker CDH1, and failed to

stain for the mesenchymal marker VIM (Figure 2F, blue arrows).

A mirror image was evident in EP-AR TMPRSS2/ERG-derived

tumors, which expressed high levels of VIM and were negative for

CDH1, further corroborating the in vitro observation that

TMPRSS2/ERG induces EMT. Staining for MKI67 (Ki-67), a

known proliferation marker, revealed an extensive expression in

the EP-AR TMPRSS2/ERG tumors (37% 62 positive cells)

compared to the EP-AR-derived nodules (8% 62). This indicates

that the EP-AR-derived nodules are less proliferative and may

account for their latent nature.

The results described thus far suggest that TMPRSS2/ERG

facilitates EMT and, consequently, the formation of more

aggressive and proliferative tumors. Several studies demonstrated

that compared to PIN lesions, TMPRSS2/ERG rearrangement

frequency in localized invasive prostate cancers, is doubled

[5,28,29,30]. This observation implies that TMPRSS2/ERG

requires additional modifications in order to be positively selected

as the disease progresses. To test this hypothesis, we utilized a

previously generated, Ras-transformed PrECs culture [22]. These

cells harbor ectopically-expressed hTERT, the viral oncogenes

SV40 small and large T antigens, oncogenic H-RasV12 and

Androgen Receptor. An empty vector or a TMPRSS2/ERG-

encoding vectors were introduced into these cells, to generate two

distinct cell lines, LHSR and LHSR TMPRSS2/ERG, respectively

(Figure 3A). In agreement with the results obtained with EP-AR

cells, CDH1 was down-regulated in LHSR cells expressing

TMPRSS2/ERG (Figure 3B). Next, cells were orthotopically

injected into nude mice prostates, as well as sub-cutaneously. As

expected, following merely 28 days, both cell lines gave rise to

tumors with no significant differences in size (Tumor incidence is

presented in Table S1). Accordingly, MKI67 staining revealed no

differences between the cell lines in regards to proliferation rate

(Data not shown). Interestingly, the TMPRSS2/ERG-expressing

tumors demonstrated a marked up-regulation of VIM and a

noticeable down-regulation of CDH1 compared to the control

tumors (Figure 3C), further validating the facilitation of EMT by

the TMPRSS2/ERG in an additional, and a more aggressive, in vivo

model. Since the LHSR cell lines are highly aggressive, they are

not suitable to study the effect of TMPRSS2/ERG on metastases

formation, as the mice had to be sacrificed within a short period

following the injections. Nevertheless, in one case, TMPRSS2/

ERG-expressing tumor metastasized into the murine lung. As

shown in Figure S1, this metastasis originated from the LHSR

TMPRSS2/ERG primary tumor, as it stained positive with human-

specific anti-AR antibody. It is tempting to speculate that EMT

induced by the TMPRSS2/ERG granted cells with migratory and

invasive capacities and eventually enabled them to home and

proliferate at a distant site. Thus, given a highly transformed

genetic background, TMPRSS2/ERG-induced EMT might facili-

tate invasion and metastasis.

EP-AR and LHSR expressing TMPRSS2/ERG are not
contaminated with cells of mesenchymal lineage

To exclude the possibility that the reported EMT stems from a

cross contamination of mesenchymal cell cultures we performed

Short Tandem Repeat (STR) based fingerprinting. STR loci are

repetitive sequence elements, 3 to 7 base pairs in length, which are

abundantly distributed throughout the human genome. PCR

based STR analysis is increasingly being used as a means for

human identification for forensic and linkage studies [31,32,

33,34]. We analyzed both EP and LHSR cultures based on allele

assignment for each of the STR loci tested. EP-AR and EP-AR

TMPRSS2/ERG were found to be identical with respect to the 16

STR loci (Table 1). LHSR and LHSR TMPRSS2/ERG were also

found to be identical to each other, however not to EP-AR or EP-

AR TMPRSS2/ERG. To corroborate this observation we also

performed spectral Karyotying (SKY) analysis, in order to detect

unique recurrent chromosomal features, specifically appearing in

the two isogenic cell cultures. As shown in Figure S2, EP-AR and

EP-AR TMPRSS2/ERG have additional material in chromo-

some 11, while the LHSR and LHSR TMPRSS2/ERG exhibit 3

specific chromosomal translocations, again indicating that each

TMPRSS2/ERG Promotes EMT via ZEB1/2

PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e21650



Figure 2. TMPRSS2/ERG promotes EMT in prostate epithelial cells. (A) For morphological comparison, cells were photographed using a light
microscope. (B) Cells were seeded in transwells and their migratory capacity towards FCS was measured by counting the migrating cells. (C) The same
setup as in (B) was used with matrigel-coated transwells in order to compare cell invasiveness. (D) Cells were analyzed for CDH1 (E-Cadhein)
expression using QRT-PCR. The results are presented as mean 6SD of a triplicate from a representative experiment. * denotes a significant differential
expression of the gene compared to the control. (E) Cells were plated on slides and stained for CDH1 and Vimentin. DAPI was used to visualize nuclei.
(F) Cells were implanted into murine prostate glands. Glands were removed 68 days after implantation, sectioned and either stained with Hematoxilin
and Eosin (H&E) or with antibodies against human AR, CDH1 and Vimentin. (X400 Magnifications). Note that EP-AR (Control) cells formed discrete
prostate nodules (Blue arrows), which are positively stained with the human specific anti-AR antibody (a-hAR). In contrast, EP-AR TMPRSS2/ERG-
derived tumors, which are positively stained with a-hAR antibody, engulfed the a-hAR-negative murine nodules (Black arrowheads).
doi:10.1371/journal.pone.0021650.g002

TMPRSS2/ERG Promotes EMT via ZEB1/2

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e21650



type of culture, stems from the same origin. These results suggest

that the EMT reported herein is a genuinely induced by

TMPRSS2/ERG rather than by cross-contamination.

TMPRSS2/ERG-induced EMT is mediated by the ZEB1/ZEB2
axis

Numerous pathways are known to converge in CDH1 repression

during epithelial to mesenchymal transition [27]. Thus, we sought

to measure the expression levels of several transcription factors

which were reported to facilitate EMT by either direct or an

indirect repression of CDH1 [27]. The expression levels of SNAI1

(Snail), SNAI2 (Slug), FOXC2, GSC (Goosecoid), TWIST1, TCF4

(E2.2), TCF3 (E47) and KLF8 were measured and found to be

either low or equally expressed in both EP-AR and EP-AR

TMPRSS2/ERG cell lines (Figure 4A). Remarkably, the expression

of ZEB1 and ZEB2, two known direct repressors of CDH1 [27],

were dramatically up-regulated in the TMPRSS2/ERG-expressing

cells (Figure 4A). ZEB1 induction by TMPRSS2/ERG was further

validated at the protein level by immunostaining (Figure 4B). To

test whether ZEB1 has an effective role in promoting the EMT

process in our model, its expression was stably knocked-down

using short-hairpin RNA (shRNA) and migration assay was

performed. As shown in Figure 4C, ZEB1 levels declined

dramatically following ZEB1 knockdown, resulting in a significant

attenuation of the migratory capacity of the TMPRSS2/ERG-

expressing cells (Figure 4C, lower panel).

Both ZEB1 and ZEB2 promoter regions consist of putative

TMPRSS2/ERG binding motifs (Figure S3), implying that

TMPRSS2/ERG might directly bind their promoters and augment

their expression. To test this hypothesis, we conducted a

Chromatin Immuno-Precipitation (ChIP) assay using an a-ERG

antibody. Interestingly, as depicted in figure 5A, TMPRSS2/ERG

seems to directly bind ZEB1 promoter, but not ZEB2. As a

negative control we used a promoter region from CDH1, which is

a part of the ZEB1/ZEB2 axis, but does not harbor an ERG

binding site. This result implies that TMPRSS2/ERG might

indirectly induce ZEB2 via the mediation of ZEB2 up-stream

effectors. To investigate this conjecture, and to better understand

the mechanism by which TMPRSS2/ERG executes the EMT

program at large; we undertook a genome-wide approach and

Figure 3. TMPRSS2/ERG modulates EMT markers in Ras-transformed prostate cells. (A) PrECs ectopically expressing hTERT as well as SV40
small and large T antigens were introduced with H-RasV12 and AR. The resulting line, LHSR (Control), was introduced with TMPRSS2/ERG to form the
LHSR TMPRSS2/ERG line. A Western blot depicts the protein levels of the ectopically-expressed genes. (B) Cells were analyzed for CDH1 expression
using QRT-PCR. The results are presented as mean 6SD of a triplicate from a representative experiment. (C) Cells were orthotopically implanted into
mice prostate glands. Glands were removed one month after implantation, sectioned and stained with H&E or antibodies against AR, CDH1, and
Vimentin. Black arrows denote mouse nodules with a negative staining for AR. (X400 Magnification).
doi:10.1371/journal.pone.0021650.g003
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conducted an expression micro-array-based comparison between

EP-AR and EP-AR TMPRSS2/ERG cells. A total of 1215

annotated genes were differentially expressed between the two

cell lines (813 up-regulated and 402 down-regulated), from which

we retrieved the ones that were both associated with ZEB1 or

ZEB2, and implicated in EMT in the literature (For the detailed

filtering method refer to legend of figure 5B). To verify the

authenticity of this set of genes we also validated their

microarray-derived differential expression patterns using QRT-

PCR (Data not shown). As depicted in figure 5B, seven genes

matched the filtering criteria. Two of them, IL1R2 and SPINT1

(Figure 5C, validated by QRT-PCR), were reported to encode

upstream effectors of ZEB2 expression; the former was shown to

elevate ZEB2 expression levels [35], while the latter attenuates its

expression [36], suggesting that they might be the mediators of

TMPRSS2/ERG dependent ZEB2 elevation. Both IL1R2 and

SPINT1 promoter regions consist of putative TMPRSS2/ERG

binding motifs (Figure S2), and indeed TMPRSS2/ERG exhibited

a significant binding to their promoters in a ChIP assay

(Figure 5D). To further corroborate SPINT1 and IL1R2 effect

on ZEB2 expression in our system, we knocked-down their

expression using small-interfering RNA (siRNA). As shown in

figure 5E, SPINT1 and IL1R2 levels were effectively reduced

upon siRNA transfection, resulting in ZEB2 elevation and

reduction, respectively. In sum, TMPRSS2/ERG seems to directly

bind and trans-activate ZEB1 while indirectly inducing ZEB2 via

trans-activation and trans-repression of its effectors, SPINT1 and

IL1R2.

Discussion

In this study we provide substantial evidence to support the

notion that TMPRSS2/ERG assumes an active role in epithelial to

mesenchymal transition via the activation of the ZEB/CDH1

pathway, both in vitro and in vivo. These findings shed light on the

mechanism by which the TMPRSS2/ERG fusion exerts its

oncogenic effect.

EMT and invasion capabilities were reported to be a

consequence of TMPRSS2/ERG expression in several studies

[10,13,15,21]. Hence, it appears that EMT and invasion are

general processes which are executed by TMPRSS2/ERG in

prostate cancer, and which are achieved by diverse mechanisms.

Consistently, WNT signaling components such as WNT7A, were

evident in our model as well. EMT is induced by several signaling

pathways, all funneled into the down-regulation of CDH1. These

pathways are governed by approximately 10 major transcription

factors, which repress CDH1 expression in either a direct or an

indirect fashion [27]. One such pathway is the SNAI1/2, which

regulate ZEB1/2 expression and have been implicated in prostate

cancer [37,38,39]. No differential expression of SNAI1 or SNAI2

was evident in our system. However, as previously reported [40],

ZEB genes may promote EMT independently of Snail1/2

expression, which alludes to alternative, upstream activator of

this particular pathway. In our system, TMPRSS2/ERG seems to

meet the criteria required for this upstream activator.

AR plays a crucial role in prostate cancer progression and is

known to regulate the TMPRSS2 promoter, which constitutes the

regulatory part of the TMPRSS2/ERG fusion. In addition, AR was

recently shown to synergize with TMPRSS2/ERG to promote

invasive adenocarcinoma development [20]. Accordingly, a strong

cooperation between the two was evident in our system, as each

gene did not activate and even slightly reduced ZEB1/2

expression, while co-expression yielded a marked transcriptional

induction of these genes (Data not shown). Similarly, while EP cells

failed to grow in vivo following orthotopic implantation and EP-AR

cells formed discrete nodules, EP-AR TMPRSS2/ERG cells gave

rise to large malignant tumors, stressing the synergistic nature of

their cooperation. Recent studies have linked AR to EMT in

prostate cancer models through the activation of the SNAI axis

[41,42]. In our present study, AR alone was not sufficient to

induce EMT, perhaps due to the Snail-depleted background.

Thus, once again, it might be speculated that AR cooperates with

TMPRSS2/ERG to invoke an alternative EMT pathway in the

absence of Snail. The fact that the expression of both AR and

TMPRSS2/ERG in our system is governed by artificial promoters,

render it unsuitable to study AR induced TMPRSS2/ERG

expression. However this system might represent the hormone

refractory stage of advanced prostate cancer in which AR is over-

activated. Our data implies that the cooperation between AR and

TMPRSS2/ERG is not exclusively mediated through AR-depen-

dent transcriptional regulation of ERG. Alternatively, other

mechanisms, such as mediating components or physical interac-

tions, may affect their cooperation in prostate cancer progression.

Further studies should be focused on elucidating the exact

mechanisms by which AR controls TMPRSS2/ERG expression

and function.

Both SPINT1 and Il1R2 were previously implicated in cancer.

Il1r2 was reported to be significantly elevated in the plasma of

Hodgkin lymphomas’ patients compared to healthy controls [43].

Moreover, forced expression of IL1R2 in a uroepithelial cell line

resulted in a morphological alteration, actin rearrangement and

acquirement of a migratory capacity and IL1R2 overexpression

was associated with enhanced expression of ZEB2 and reduced

expression of CDH1 [35]. Our work further corroborated IL1R2

pro-oncogenic activity which is mediated by TMPRSS2/ERG

direct trans-activation. Recently, in a study which compared

tissues and cell lines representing different stages of Prostate

cancer, Spint1 was highly expressed in normal tissues compared

with Benign Prostatic Hyperplasia (BPH) and low-grade cancer,

with a progressive loss in increasing tumor grade specimens [44].

Accordingly, SPINT1 attenuation in prostate cancer cell lines,

Table 1. STR Alleles in EP and LHSR.

STR locus
Alleles: EP-AR and
EP-AR TMPRSS2/ERG

Alleles: LHSR and
LHSR TMPRSS2/ERG

D8S1179 14, 14 13, 16

D21S11 28, 30.2 31, 31.2

D7S820 8, 9 10, 11

CSF1PO 10, 11 12, 12

D3S1358 16, 16 15, 16

THO1 7, 9.3 9.3, 9.3

D13S317 11, 12 11, 13

D16S539 12, 13 10, 11

D2S1338 17, 20 17, 23

D19S433 11, 14 13, 13

vWA 16, 16 15, 16

TPOX 8, 8 8, 8

D18S51 17, 19 10, 13

Amelogenin XY XY

D5S818 12, 13 9, 10

FGA 22, 23 23, 24

doi:10.1371/journal.pone.0021650.t001
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Figure 4. TMPRSS2/ERG-induced EMT is mediated by the ZEB1/ZEB2 axis. (A) EMT-associated transcription factors expression. Cells were
analyzed for the expression of the specified genes using QRT-PCR. The results are presented as mean 6SD of a triplicate from a representative
experiment. ND = Not detected. * denotes a significant differential expression (P-Value,561024). (B) Cells were plated on slides and stained with a-
ZEB1 antibody. Nuclei were visualized by DAPI. (C) Prostate glands were injected with EP-AR (Control) and EP-AR TMPRSS2/ERG as described,
removed, sectioned and stained with an a-ZEB1 antibody. The blue arrow denotes a human nodule. The black arrow denotes mouse nodules with a
negative staining for AR. (X400 Magnification). (D) ZEB1 was knocked-down and its mRNA levels were measured (upper panel). * denotes a significant
differential expression (P-value = 861024). Cells were subjected to migration assay as described (lower panel). ** denotes a significant differential
expression (P-value = 461023).
doi:10.1371/journal.pone.0021650.g004
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resulted in a more aggressive phenotype which included enhanced

motility and invasiveness [45]. Finally, SPINT1 knockdown in the

pancreatic cancer cell line SUIT-2, induced EMT and invasion

which were accompanied by ZEB2 elevation and CDH1 reduction

[36]. Collectively these data suggest that SPINT1 acts as a tumor

suppressor in Prostate cancer. We were able to show that SPINT1

partially exerts its effect by reducing the levels of ZEB2 and

therefore it is repressed by TMPRSS2/ERG.

Recently, reports which focus on the cooperation of TMPRSS2/

ERG with different partners in the cancerous process are emerging

[16,19,20]. Our findings (Depicted in figure 6) extend our

knowledge as to the identity of these partners and their

mechanisms of action in promoting prostate cancer.

Materials and Methods

Cell lines propagation
Human PrECs were obtained from BioWhittaker (Rockland,

ME) and propagated in Prostate Epithelial Growth Medium

(Lonza, Walkersville, MD) as previously described [22]. Cells were

maintained in a humidified incubator at 37uC and 5% CO2.

Retroviral infections
Retroviral infections were performed serially and polyclonal-

infected populations were drug-selected after each infection.

Amphotropic retroviruses were produced by transfection of

293T cells with amphotropic packaging plasmid pCL-10A1, and

a retroviral vector encoding the gene of interest. Culture

supernatants containing retrovirus were collected 48 hours post-

transfection.

TMPRSS2/ERG plasmid
TMPRSS2 (exon-1) and ERG (exons 4-9) fusion-encoding

pBabe-Hygro plasmid, was kindly provided by Dr. Jan Trapman

(Erasmus University Medical Center, Rotterdam, the Nether-

lands).

Orthotopic implantation of tumor cells
The protocol for in vivo experiments was approved by the Sheba

Medical Center Institutional Animal Care and Use Committee

(Permit No. 468–2008). Mice were anesthetized prior to injections

and sacrificed when tumor size reached 1 cm3. All efforts were

made to minimize animals’ suffering. Immunodeficient mice

(Harlan Laboratories, Israel) were anesthetized with a mixture of

100 mg/kg ketamine and 10 mg/kg Xylazin 2:1 (Ketaset). A

lower midline incision was made; and 16106 cells (in 100 ml

PrEGM:matrigel (BD Bioscience) 1:1 mix), were implanted into

the ventral prostate lobes using a 30-gauge needle and a 0.1 mL

syringe. Testosterone pellets (Innovative Research of America,

Sarasota, FL) were implanted under the skin. Two Subcutaneous

injections were placed for each mouse as well. Mice were sacrificed

at 28 or 68 days, as indicated, after the intraprostatic implantation

of tumor cells. A table summarizing tumor incidence is presented

as Table S1.

Migration and invasion assays
Cells were plated at a cell density of 1.56105 per well in 8 mm

transwells (Co-Star) in triplicates and incubated for 24 hours.

Then, cells that were attached to the outer part of the wells were

removed by incubation with trypsin for 30 minutes and counted.

For invasion assays, the transwells were coated with matrigel

diluted in cell media 1:5. Cells were seeded in the presence of basal

medium and migrated towards 10% FCS.

Western blot analysis
Total cell lysates were fractionated by SDS-gel electrophore-

sis. Proteins were transferred to nitrocellulose membranes, and

immunoblotted with the indicated antibodies. Rabbit a-p53

(produced in Rotter’s lab); human specific a-Androgen Recep-

tor (a-hAR N-20, Santa-Cruz Biotechnology); a-ERG (SC-354,

Santa-Cruz Biotechnology); a–H-ras (C-20, Santa-Cruz Bio-

technology); a-hTERT (H-231, Santa-Cruz Biotechnology);

a-cyclin D2 (C-17, Santa-Cruz Biotechnology); a-actin (I-19,

Santa-Cruz Biotechnology). Bands were detected by horseradish

Figure 5. TMPRSS2/ERG induces an EMT transcription program. (A) Chromatin-IP assay was performed in EP-AR TMPRSS2/ERG cells using a-
ERG antibody and IgG as a control. The results are presented as mean 6SD of a triplicate from a representative experiment. * denotes P-
value,361022. (B) The list of 1215 differentially expressed genes was intersected with a list of genes associated with ZEB1 or ZEB2, which was
obtained from the ‘‘Genomatix’’ software [47], resulting in 37 shared genes. The 37-genes list was filtered for genes associated with EMT according to
the literature (n = unknown sample size), leaving the 7 genes that are listed in the box below. (C) Cells were analyzed for SPINT1 and IL1R2 expression
using QRT-PCR. The results are presented as mean 6SD of a triplicate from a representative experiment. * denotes P-value,561024. (D) Same set-up
as (A) was used for IL1R2 and SPINT1 promoters (E) Left panels: EP-AR cells were transfected with siRNA targeting SPINT1 and mRNA expression of the
designated genes was measured by QRT-PCR. The results are presented as mean 6SD from two experiments utilizing two different siRNA
oligonucleotides. * denotes P-value = 761024, ** denotes P-value = 161023. Right panels: the same experimental set-up was used with siRNA
targeting IL1R2 in EP-AR TMPRSS2/ERG. * denotes P-value = 261024, ** denotes P-value = 161022.
doi:10.1371/journal.pone.0021650.g005

Figure 6. A schematic model describing the proposed mech-
anism by which TMPRSS2/ERG induces EMT. Black lines represent
novel data; arrowheads represent activation; bar-headed lines represent
repression; grey lines represent literature-based data.
doi:10.1371/journal.pone.0021650.g006
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peroxidase–conjugated secondary antibodies and enhanced

SuperSignal west pico chemiluminescent substrate (Thermo-

scientific).

Quantitative Real-Time PCR (QRT-PCR)
RNA was isolated using TRIzol (Invitrogen) according to the

manufacturer’s instructions. cDNA was generated from a 2- mg

aliquot of the RNA using MMLV reverse transcriptase, amplifi-

cation grade DNase I, random hexamer primers, RNaseOUT,

and dinucleotide triphosphates (all from Invitrogen), according to

the manufacturer’s instructions. QRT-PCR was performed using

SYBR-Green Master Mix (Applied-Biosystems, CA, USA) on a

7500 Real-Time PCR system (Applied-Biosystems, CA, USA).

Gene expression was normalized to GAPDH. Primers sequences

are listed in Table S2.

Immunohistochemistry
Xenografts were fixed in formalin, embedded in paraffin and

sectioned at 4 mm. The slides were incubated at 60uC for one

hour. After sections were dewaxed and rehydrated, a CC1

Standard Benchmark XT pretreatment for antigen retrieval was

selected (Ventana-Medical Systems). a-Vimentin (NCL-L-VIM-

572, Leica Novocastra) was diluted 1:100. a-Ki67 antibody

(MU297-UC, Biogenex), was diluted 1:50. a-CDH1 antibody

(18-0223, Zymed) was diluted 1:25. Antibodies were incubated for

40 minutes at 37uC. Detection was performed with iView

detection kit (Ventana-Medical Systems) and counterstained with

hematoxylin (Ventana-Medical Systems). Then, slides were

dehydrated in 70% ethanol, 95% ethanol and 100% ethanol for

10 seconds each. Before coverslipping, the sections were cleared in

xylene for 10 seconds and mounted with Entellan.

For AR staining, antigen retrieval was performed using a

pressure cooker (Milestone, Microwave-Laboratory Systems) at

120uC for 5 minutes in citrate buffer pH 6, cooled for 10 minutes,

and rinsed with TBS buffer. Subsequently, an endogenous

peroxidase block was performed for 10 minutes in 3% H2O2/

PBS. After TBS rinsing, sections were blocked with 10% goat

serum for 30 minutes and incubated with the a-hAR primary

antibody (N-20, Santa-Cruz Biotechnology, 1:50) overnight at

4uC. Detection was performed with the Histostain SP Broad

Spectrum kit (Zymed Laboratories, Invitrogen, U.S.A.). Briefly,

sections were incubated with a biotinylated secondary antibody

and subsequently, after TBS rinse, with HRP-streptavidin, for 30

minutes at room temperature. The antibody was visualized with

the substrate-chromogen AEC, counterstained with hematoxylin

and coverslipped with an aqueous mounting fluid (glycergel).

SKY analysis
Described in detail in [46].

Expression micro-arrays
Experiments were performed using Affymetrix GeneChip Human

Gene 1.0 ST Arrays according to manufacturer’s recommendations.

Briefly, 100–600 ng of total RNA was used to generate first-strand

cDNA using random hexamers primer. After second-strand synthesis,

in vitro transcription was performed. The resulting cRNA was then

used for a second cycle of first-strand cDNA with UTP resulting in

single-stranded DNA which was used for fragmentation and terminal

labeling. cDNA generated from each sample was processed as per

manufacturer’s recommendation using an Affymetrix GeneChip

Instrument System manual (https://www.affymetrix.com/support/

downloads/manuals/wt_sensetarget_label_manual.pdf).

Mircro-array data analysis
EP-AR and EP-AR TMPRSS2/ERG expression profiles were

analyzed on duplicate arrays. Gene level RMA sketch algorithm

(Affymetrix Expression Console and Partek Genomics Suite 6.2)

was used for crude data generation. A t-test with an uncorrected

P-value was used to identify significantly differentially expressed

genes (P-value,0.05), with a threshold of at least two-fold

change. This analysis yielded a set of 1215 differentially expressed

genes.

Chromatin immunoprecipitation
Cells underwent cross-linking (1%formaldehyde, room temper-

ature, 10 minutes) followed by quenching (glycine 0.125 M). Cells

were rinsed with cold PBS, incubated with 20% trypsin (Gibco),

washed with PBS, scraped and centrifuged. Cells were lyzed

(5 mM PIPES pH 8.0, 85 mM KCl, 0.5%NP40, 1%protease

inhibitors) on ice for 20 minutes. Nuclei were collected by

centrifugation (4,000 rpm), resuspended in nuclear lysis buffer

(50 mM Tris–Cl, pH 8.1, 10 mM EDTA, 1%SDS, 1%protease

inhibitors) and incubated on ice for 10 min. Samples were

sonicated to an average DNA fragment length of 500 bp and

then centrifuged (20,000g). The chromatin solution was pre-

cleared by adding protein A beads (2 hours, 4uC) (Santa Cruz

Biotechnology). Immunoprecipitation of chromatin was done for

12 hours, in 4uC, using 1 ml antibody (a-ERG SC-354, Santa-

Cruz Biotechnology and IgG I-2511, Sigma), followed by

incubation with 30 ml protein A beads (2 hours). Immunoprecip-

itates were consecutively washed with dilution buffer (100 mM

Tris–Cl, pH 9.0, 500 mM LiCl, 1%NP-40, 1%Deoxycholic acid,

1% protease inhibitors), TSE150, TSE500 and TE pH = 8.

Samples were treated with 10 mg RNase A (30 minutes), followed

by 30 mg of proteinase K treatment (2 hours, 50uC) and

incubation at 65uC overnight. DNA samples were extracted using

QIAquick PCR Purification Kit (Qiagen). QRT-PCR was

performed as described above with each sample containing 2 ml

of immunoprecipitated DNA. Primers sequences are listed in

Table S2.

Short tandem repeat (STR) based fingerprinting
DNA was amplified by PCR using the reagents supplied

in the AmpFlSTRR Identifiler Plus (Applied Biosystems, Foster

City, 94404 Ca., USA) for the following STR loci: D8S1179,

D21S11, D7S820, CSF1PO D3S1358, TH01, D13S317, D16S539,

D2S1338, D19S433, vWA TPOX, D18S51, Amelogenin, D5S818,

and FGA. The products were separated on an Applied Biosystems,

3130 genetic analyzer and analyzed using the software supplied by

the manufacturer.

Supporting Information

Figure S1 The formation of tumor metastasis. LHSR T/

ERG tumor metastasized into the murine lung and stained for AR

(right hand side) compared to the normal lung of the LHSR mouse

(left hand side) (X400 Magnification). Arrow in the LHSR T/

ERG panel indicates lung metastasis.

(TIF)

Figure S2 EP-AR and LHSR exhibit identical chromo-
somal characteristics as their TMPRSS2/ERG express-
ing counterparts. The designated cell cultures were subjected to

SKY analysis. (A) Most recurrent features are shown in a table. (B)

Representative images of the chromosomal features, recurrent

features are circled in white.

(TIF)
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Figure S3 ERG binding sites in various promoters. (A)

The ETS transcription family binding site sequence. (B) ,2000

base pairs up stream to the translation start site of the gene of

interest were analyzed using ‘MatInspector’ Algorithm by

‘Genomatix’. ERG putative binding sites which passed a threshold

of .0.96 matrix similarity and a core similarity of 1 are depicted

in the table. In the sequence columns, capital letters represent core

sequence.

(TIF)

Table S1 Tumor incidence summary.
(TIF)

Table S2 Primers list.
(DOC)
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