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Three-dimensional Gaussian functions have been shown useful in representing electron microscopy (EM) density maps for
studying macromolecular structure and dynamics. Methods that require setting a desired number of Gaussian functions or a
maximum number of iterations may result in suboptimal representations of the structure. An alternative is to set a desired error of
approximation of the given EM map and then optimize the number of Gaussian functions to achieve this approximation error. In
this article, we review different applications of such an approach that uses spherical Gaussian functions of fixed standard deviation,
referred to as pseudoatoms. Some of these applications use EM-map normal mode analysis (NMA) with elastic network model
(ENM) (applications such as predicting conformational changes of macromolecular complexes or exploring actual conformational
changes by normal-mode-based analysis of experimental data) while some other do not use NMA (denoising of EM density maps).
In applications based on NMA and ENM, the advantage of using pseudoatoms in EM-map coarse-grain models is that the ENM
springs are easily assigned among neighboring grains thanks to their spherical shape and uniformed size. EM-map denoising based
on the map coarse-graining was so far only shown using pseudoatoms as grains.

1. Introduction

Single-particle analysis is an electron microscopy (EM) tech-
nique that allows determining the structure at near-atomic
resolutions for a large range of macromolecular complexes
[1–16]. Also, it allows studying conformational variability of
macromolecular complexes by determining their different
conformations [17–22]. These different conformations are
usually obtained by analyzing heterogeneity with methods
that assume a small number of discrete conformations
coexisting in the specimen [23–28], while several methods
have been recently developed to help analyzing continuous
conformational changes [29–33].

EM-map representations with a reduced number of
points or with a set of 3D Gaussian functions have been

shown useful in studying macromolecular structure and
dynamics [30, 33–44]. The process of representing EM maps
with a set of points or 3D Gaussian functions (grains) is
sometimes referred to as coarse-graining of EM maps. A
typical approach to coarse-graining is a neural network
clustering approach that quantizes the given EMmap so that
the probability density of the grains closely resembles the
probability density of the given data, whichmakes the coarse-
grain representation retain the overall shape of the structure
from the given EM map [34, 36, 38–40]. This approach is
referred to asVectorQuantization (VQ).Adifferent approach
is to parametrize a Gaussian Mixture Model (GMM) of the
probability density function using expectation-maximization
algorithm [41, 45]. All these approaches require setting a
desired (target) number of grains or a maximum number of
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Table 1: Comparison of Vector Quantization, Gaussian Mixture Model, and our pseudoatomic model.

Vector Quantization Gaussian Mixture Model Our pseudoatomic model

Grain 3D point (codebook vector) 3D Gaussian distribution function 3D radial basis function (isotropic
Gaussian distribution function)

Grain geometry Spherical Ellipsoidal Spherical

Algorithm Self-organizing map (SOM)
Maximum likelihood method using
the expectation maximization
algorithm

Iterative adding and removing of
pseudoatoms and gradient descent
refinement

Goal of algorithm

Minimize the mean-square
deviation of the codebook
vectors from the corresponding
3D data

Find the model with the maximum
likelihood function

Find the model with the minimum
number of grains for the given error of
density approximation

Number of grains Fixed Fixed Adjustable
Grain weight Adjustable Adjustable Adjustable
Grain position Adjustable Adjustable Adjustable
Grain size Adjustable Adjustable Fixed
Application of elastic
network model Easy Difficult Easy

iterations to stop the iterative procedure, which may result
in suboptimal representations. Indeed, the use of a small
target number of grains or a small maximum number of
iterations may lead to a small final number of grains resulting
in a model with overrepresented high density regions and
underrepresented low density regions. Furthermore, in the
case of symmetrical structures, the inadequately small final
number of grains can result in representations that are
overall nonuniform (asymmetrical). A difficulty is thus to
choose the stopping parameter that will produce a sufficiently
high number of grains to appropriately represent all density
regions.

An alternative is to set a desired (target) error of
approximation of the given EM map and then optimize
the number of Gaussian functions, their position, and their
weights to achieve the target approximation error, as in
the approach that we introduced in [43]. In each iteration,
this approach adds some Gaussian functions (grains) while
removing some (the grains with small weights or distances
will be removed). We have found that this strategy of mini-
mizing the global representation error, involving controlled
adding and removing grains, allows placing new grains
where they are most needed and adapting the grains near
the removed ones to better represent the local intensity
in the input EM map [43], which helps overcoming the
underrepresentation problem. For instance, we have found
that symmetry is preserved in EM-map approximations with
this strategy for typical values of the target approximation
error such as 1–15% [30, 33, 42–44]. This method uses
spherical Gaussian functions of fixed standard deviation that
we refer to as pseudoatoms. Its versatility has been shown
in applications such as predicting conformational changes of
macromolecular complexes, exploring actual conformational
changes, analyzing continuous conformational changes, and
denoising of EM density maps [30, 33, 42–44]. Some of
these applications are based on EM-map normal mode

analysis (NMA) with elastic network model (ENM) [46, 47]
(e.g., predicting conformational changes of macromolecular
complexes or exploring actual conformational changes using
normal-mode-based analysis of experimental data). In some
other applications, NMA is not used (e.g., denoising of EM
density maps).

The advantage of using pseudoatoms in applications
based on NMA and ENM, with respect to other types of
grains (Table 1), is their uniformity over the molecule that is
a prerequisite for a simple application of the ENM. Indeed,
as pseudoatoms have spherical shape and uniformed size
over the molecule, they allow an easy setting of springs
among neighboring grains in the ENM. On the contrary,
3D points (the so-called codebook vectors) obtained with
VQ can be regarded as Gaussian functions whose standard
deviation can vary over the molecule (each codebook vector
is associated with a data subregion known as Voronoi cell
[34] and different subregions can have different sizes), which
may make the ENM setting more complicated than with
Gaussian functions of the same standard deviation. Similarly,
NMA should be more complicated with ellipsoidal Gaussian
distribution obtained with the GMM approach (to the best
of our knowledge, such NMA has not been reported so far).
Regarding EM-map denoising (not based on NMA), only
pseudoatomswere so far reported as grains in that application
of coarse-graining [44].

In this article, we review the mentioned applications
of this EM-map approximation method while only briefly
reminding the method. For algorithmic details (e.g., related
to adding/removing grains), the reader is addressed to [43]
that describes this method in detail.

2. Background

We start this section with a brief background on the approach
for converting EM maps in sets of pseudoatoms. Then, we
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provide a brief reminder on NMA that is used in applica-
tions of the conversion approach to studying conformational
changes of macromolecular complexes.

2.1. Approximation of EM Maps Using Pseudoatoms and
Approximation Error Control. A function 𝑓(r) (r ∈ R3)
can be approximated using Gaussian radial basis functions
(RBFs) by �̂�𝑁(r) = ∑

𝑁
𝑖=1 𝜔𝑖𝐾𝜎(‖r−r𝑖‖), where𝐾𝜎(𝑟) is the RBF

kernel that is a Gaussian functionwith the standard deviation
𝜎 and the amplitude of 1, to which we refer as pseudoatom,𝑁
is the number of pseudoatoms, r𝑖 is the vector of the center
coordinates of the 𝑖th pseudoatom, ‖r − r𝑖‖ is the Euclidean
distance between the vectors r and r𝑖, and 𝜔𝑖 > 0 is the
weight (contribution) of the 𝑖th pseudoatom. Given an EM
density map 𝑓(r) (r ∈ R3), a Gaussian-function standard
deviation 𝜎, and a target approximation error 𝜀, our approach
determines the number of pseudoatoms𝑁, their positions r𝑖,
and weights 𝜔𝑖 such that the approximation error 𝑒𝑁 satisfies
𝑒𝑁 = (1/𝑉)∑𝑉𝑗=1(|𝑓(r𝑗) − �̂�𝑁(r𝑗)|/Δ𝑓) < 𝜀. Here, Δ𝑓 is the
effective range of values in the EM map, r𝑗 is the voxel
location at which the given EM map is compared with its
approximation, and𝑉 is the total number of evaluated voxels
(the evaluation can be done in a region of interest defined by
a mask). To avoid getting trapped into local minima of the
error 𝑒𝑁, newpseudoatoms are addedprogressively in regions
with large errors and weights and positions of the current
number of pseudoatoms are determined by a gradient descent
minimization of 𝑒𝑁. It should be noted that pseudoatom
positions r𝑖 donot necessarily coincidewith voxel positions r𝑗
because the pseudoatom positions vary continuously within
the EM density map. Also, it should be noted that 𝜎 can be
expressed in angstroms, but it is here expressed in voxels.The
typical values of 𝜎 are between 1 and 2 (voxels).

Different pseudoatom representations can be obtained
with this approach by varying the Gaussian-function stan-
dard deviation (𝜎) and the target approximation error (𝜀)
(Figure 1). Smaller values of 𝜎 and 𝜀 result in larger numbers
of pseudoatoms and vice versa. However, 𝜎 and 𝜀 should
be chosen taking into account resolution and noise of the
given EM map (e.g., large 𝜎 and 𝜀 may give sufficiently
good approximations of low resolution maps) and the target
application, as we show here.

2.2. Normal Mode Analysis. NMA models complex motions
by linear combinations of harmonic oscillations around a
minimum-energy conformation. NMA is often based on the
standard ENM [46], which is also the case in our approach.
More precisely, we perform NMA of pseudoatom represen-
tations of EMmaps using the software developed by Tama et
al. [47]. In this approach, the given EM map is assumed to
contain the structure in the minimum-energy conformation
and no energy minimization is required [46]. It has been
shown that NMA of EM density maps of intermediate
resolution result in a good approximation of normalmodes of
atomic-resolution structures, in particular at low frequencies
at which the motions were experimentally observed [47].
An experimentally observed motion here means a transition
between two different conformations of the same complex

obtained at atomic resolution (e.g., by X-ray crystallography).
This transition and the conformational states along it can be
modeled (simulated) using low-frequency normal modes of
any of the two given conformations. For instance, the low-
frequency modes having the highest overlap with the differ-
ence between the two given atomic-resolution conformations
usually capture 60–70% of the conformational change [47,
48]. Normalmodes of EMdensitymaps can be used to obtain
other possible conformational states of the same complex
(to predict low-frequency motions of the complex). Note
here that the conformational states are discrete and can be
regarded as discrete samples of a continuous trajectory of
conformational transition. NMA of intermediate-resolution
EM density maps is especially useful when atomic-resolution
structures cannot be obtained [37, 38, 47], but it requires
coarse-grain representations of the density maps.

Nodes of the elastic networkmodel are 3D point particles.
Each node is connected, via harmonic springs, with other
nodes within a sphere of a given radius (the radius is referred
to as interaction cutoff distance). In our approach, the
coordinates of nodes of the ENM are the center coordinates
of pseudoatoms with which the given EM density map is
represented. Given 𝑁 nodes of the ENM, NMA requires a
diagonalization of a 3𝑁 × 3𝑁 matrix of second derivatives
of the potential energy (Hessian matrix), which is performed
via eigenanalysis of the Hessian matrix. Normal modes are
eigenvectors of the Hessian matrix while the normal mode
frequencies are the square roots of eigenvalues of the Hessian
matrix.

A displacement of nodes of the ENM along normal
modes modifies the given conformation, which is used in
simulations of structural flexibility (Figure 2). The coordi-
nates of normal modes are expressed in angstroms while
the displacement amplitudes along normal modes have no
units. Six lowest-frequency modes are related to rigid-body
movements and are usually not used for the displacement.

3. Applications

3.1. Prediction of Conformational Changes. As explained in
Background, NMA of intermediate-resolution EM maps
provides normalmodes that can be used to simulate (predict)
different conformational states of the same complex. Normal
modes of EM maps are calculated based on the EM-map
coarse-grained representations with pseudoatoms. Both EM-
map coarse-graining and NMA can be performed using
3DEM Loupe web server [42].

3DEM Loupe [42] is currently the only web server that
allows interactive NMA of EM density maps. Other web
servers perform NMA of atomic-resolution structures (e.g.,
ElNemo [49]) or do not allow the user to input his/her own
EM density map for NMA (e.g., EMotion [38]).The workflow
of 3DEM Loupe consists of the following three steps: (1)
conversion of the input EM density map into a pseudoatomic
structure (coarse-graining) based on the approximation error
control; (2) calculation of normalmodes of the pseudoatomic
structure; and (3) animation of the obtained normal modes
(animated displacement of pseudoatomic structures along
normal modes).The pseudoatomic structure, normal modes,
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(a) (b)

(c) (d)

Figure 1: Approximation of density maps to a desired level of accuracy (𝜀) using 3D Gaussian functions of a given standard deviation (𝜎). (a,
b) Synthetic density map of Tomato Bushy Stunt Virus at 15 Å resolution from an atomic structure available in PDB (the structure from [55])
(a) and its pseudoatomic representation using 𝜎 = 1.3 and 𝜀 = 4% (b). (c, d) Synthetic density map of 70S ribosome at 15 Å resolution from
an atomic structure available in PDB (the structure from [56]) (c) and its pseudoatomic representation using 𝜎 = 1 and 𝜀 = 2% (d). In this
figure, 3D Gaussian functions (referred to as pseudoatoms) are shown as spheres of a radius related to 𝜎 and overlapping spheres are used for
a nicer visualization of the pseudoatomic structure.

and animations obtained by 3DEMLoupe can be downloaded
for their further analysis on a local computer. The server also
contains precomputed results for several EM maps, such as
70S ribosome, GroEL, ribosome-bound termination factor
RF2, and connector of bacteriophage T7.

3.2. Exploring Actual Conformational Changes Including Con-
tinuous Conformational Changes. Coarse-grain representa-
tions of EM density maps and normal modes of those coarse-
grain representations can be used to analyze experimental
EM data. More precisely, conformations actually present in
EM data can be interpreted using simulated conformations
(NMA-based simulations). In the framework of conforma-
tional heterogeneity analysis, normal modes were used for
image analysis first in [50], but the first procedure capable
of automatically processing large series of images using as

many “test” conformations as needed is HEMNMA [30, 51].
In this subsection, HEMNMA, the approach for NMA-based
conformational analysis of a series of images (using normal
modes of a given density map), is presented together with an
approach for NMA-based conformational analysis of a series
of density maps (StructMap).

3.2.1. Analysis of EM Images: HEMNMA. Given an EM den-
sity map,HEMNMA [30, 51] computes its pseudoatom repre-
sentation and performs NMA of the obtained pseudoatomic
structure, as does 3DEM Loupe [42]. This pseudoatomic
structure and its normal modes are then used to analyze each
single-particle image by elastic projection matching. More
precisely, HEMNMA deforms the pseudoatomic structure
using some amplitudes of the displacement along normal
modes and then compares the image with projections of
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Figure 2: Normalmodes of pseudoatomic structures fromEMdensitymaps for simulations of structural flexibility. (a, b) EMdensitymap of a
compact conformation of Tomato Bushy Stunt Virus from [57] (a) and a displacement of pseudoatoms along the normal mode describing the
swelling motion of the virus capsid that has also been observed experimentally [57, 58] (b). (c, d) EM density map of a DNA polymerase Pol
𝛼-B subunit complex of the eukaryotic primosome from [59] (c) and a displacement of pseudoatoms along the normal mode describing the
bending-unbending motion that has also been observed experimentally [30, 59] (d). In this figure, very small spheres are used to represent
3D Gaussian functions (referred to as pseudoatoms) and not all spheres are shown in order to avoid their overlapping and allow a nicer
visualization of the displacement of pseudoatoms along the particular normal mode.

the pseudoatomic structure converted into a density map.
The image is assigned the orientation, translation, and nor-
mal mode amplitudes of the best-matching projection. The
normal mode amplitudes obtained for all images are finally
mapped onto a low-dimensional distance space (usually,
1D, 2D, or 3D), which allows seeing the distribution of
conformations. This space can be explored to detect whether
the conformational change is discrete (points are grouped in a
few clusters) or continuous (absence of clusters, points spread
over the space). In the case of continuous conformational
changes, conformational trajectories may be identified by
analyzing the most populated regions in this space. Along
the trajectories, the given EM map and the obtained pseu-
doatomic structure can be animated and 3D reconstructions
can be calculated. It has been shown that this methodology
can help detect the motions undetectable with methods that
assume a small number of different coexisting conformations

in the specimen [30] (Figure 3). In this context, the conforma-
tional heterogeneity ofE. coli 70S ribosome,DNApolymerase
Pol 𝛼-B subunit complex of the eukaryotic primosome, and
Tomato Bushy Stunt Virus was described more extensively
with HEMNMA than with other methods [30].

It should be noted that HEMNMA can also analyze
a series of images using an atomic-resolution structure
instead of a density map. It should also be noted that the
conformational variability shown in Figure 3(b) is rarely
seen in EM because the majority of computational methods
assume specimens with few different conformations of com-
plexes (e.g., Figures 3(a) and 4(a)). Additionally, biochemical
specimen preparation protocols are usually optimized so
as to reduce the number of different conformations in the
specimen. To achieve atomic resolution of reconstruction,
the computational methods are usually based on different
rounds of 2D and 3D classifications (involving computations
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Figure 3: Exploring actual conformational changes by image analysis using normal modes of Gaussian-based (pseudoatomic) representation
of EM density maps (analysis with HEMNMA). (a) EM density maps of three conformations of a DNA polymerase Pol 𝛼-B subunit complex
of the eukaryotic primosome showing bending-unbendingmotion of the complex and the percentage of images assigned to each density map
usingML3D, a method that assumes a small number of different coexisting conformations in the specimen, from [59]. (b)Mapping of images
used in the analysis in [59] (producing the density maps shown in (a)) onto a low-dimensional distance space based on a flexible 2D-to-3D
fitting between the images and a reference densitymap (the onewith the highest percentage of assigned images in [59]) using normalmodes of
the pseudoatomic representation of the reference densitymap (in this space, images are represented with points and the distances between the
points correspond to the differences between the corresponding conformations). (c) Displacement of the reference pseudoatomic structure
along the trajectories identified in the densest regions of the distance space shown in (b), which indicates a bending-unbending motion,
detected also by ML3D, and changes in the length of the flexible linker between the two lobes that could not be detected with ML3D (from
left to right: the displacement along the yellow, red, and green trajectory shown in (b); the displacement is shown by providing three frames
of an animation represented by red, yellow, and blue isosurfaces of the density maps into which the reference pseudoatomic structure was
converted during the displacement; the arrows indicate the motions visualized by the frames). Reproduced with permission from [59] (a)
and from [30] (b and c).

of average particle views and conformations), during which
many particle images are removed and only particles assigned
to high-resolution classes (particles with most consistent
views and conformations) are kept for final 3D reconstruc-
tions. Such biochemical and computational “selection” of
particles may obscure full conformational variability of the
complex. On the contrary, HEMNMA method estimates
the conformational variability distribution (e.g., Figure 3(b))
using raw images and no classification, which facilitates
deciphering the full range of conformational variability that
is a quasicontinuumof conformational states (a large number
of discrete samples of a continuous conformational transition
trajectory). Analysis of continuous conformational transi-
tions by EM is currently a research field in expansion [29–
32, 52], which will be reviewed in a separate publication.

3.2.2. Analysis of EMMaps: StructMap. StructMap [33] auto-
matically analyzes a set of EM density maps to map them
onto a common low-dimensional distance space (usually,
1D, 2D, or 3D). It requires representing each density map
with pseudoatoms and computing normal modes of each
obtained pseudoatomic structure.The actual conformation in
each EM density map (reference map) is estimated by elastic
fitting of this map with the pseudoatomic structures of all
other maps from the given set of EM maps. More precisely,
pseudoatoms are displaced along normal modes and the
displacement amplitudes are adjusted to maximize the cross-
correlation coefficient between the map calculated from
displaced pseudoatoms and the reference map. The obtained
maximumcross-correlation coefficients are subtracted from 1
and thenmapped onto a low-dimensional space, which shows
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the differences (distances) among given EM density maps
that cannot be interpreted using normal modes. In the case
of continuous conformational distribution, EM density maps
can be regarded as discrete, unordered samples of continuous
trajectories and StructMap can be used to get a rough idea
of these trajectories (potential sequences of conformational
changes) [33]. In some heterogeneity cases, such as a com-
bined conformational and compositional heterogeneity of
states along the elongation cycle of human 80S ribosome [53],
this task can be particularity challenging, but StructMap can
still help visualizing the differences between the states and
analyzing potential trajectories [33] (Figure 4).

In the context of revealing sequences of conformational
changes, StructMap can also be combined with HEMNMA.
For instance, instead of usingHEMNMA to analyze all images
with all given EM density maps, a few EM maps can be
chosen from the distance space obtained by StructMap so as
to explore more finely particular regions in this space.

3.3. Denoising. Cryo-EM images have a low signal-to-noise
ratio. Thus, a large number of such images must be averaged
in 3D space to reduce noise. However, even high-resolution
3D reconstructed EM maps may still contain significant
amounts of noise. We have shown that pseudoatom repre-
sentations of EM density maps can be used for EM-map
denoising [44]. We assume that the object reconstructed
from images is correct enough, meaning that effects of noise
dominate potential reconstruction artifacts and potential
effects of heterogeneity of images that were used for this
reconstruction. Smaller target approximation errors (𝜀) and
smaller Gaussian standard deviations (𝜎) generally produce
better approximations of EM maps (i.e., the density maps
computed from pseudoatomic structures have more details),
with a risk of reproducing the EM-map noise in the density
map computed from pseudoatoms. Setting 𝜀 or 𝜎 to higher
values can reduce this risk. These two parameters should
be set in accordance with the resolution of the given EM
map. We have shown that 𝜎 = 1.5 (voxels) and 𝜀 =
1% produce satisfactory denoising results in most cases
of higher-resolution density maps (resolutions higher than
6 Å, gold-standard FSC 0.143), whereas denoising of lower-
resolution density maps is usually achieved using larger
values of 𝜀 (𝜀 = 5%–15%) and the values of 𝜎 that may need to
be adjusted around its default value (𝜎 = 1.5) [44].

The method was used to denoise EM density maps of
several complexes obtained at subnanometer resolutions by
single-particle analysis or subtomogram averaging (beta-
galactosidase, ribosome, and empty and full virus particles)
[44] (Figure 5).

4. Discussion

The method for EM-map approximation using Gaussian
functions of standard deviation 𝜎 and amplitude 1 and using a
target approximation error 𝜀 [43] has applications in predict-
ing conformational changes of macromolecular complexes,
exploring actual (discrete or continuous) conformational
changes, and denoising of EM density maps. In this article,
we reviewed these applications, together with the software

that uses this method and the examples of results that can be
obtained with this software.

In this approach, the EM-map approximation is a
weighted sum of Gaussian functions of given standard
deviation 𝜎 and amplitude 1 (referred to as pseudoatoms)
whose number, location, and weights are determined by
minimizing the EM-map approximation error towards the
given target error 𝜀. The shape and density distribution of
a given macromolecular complex are thus fully represented
with the distribution of Gaussian functions. The centers of
pseudoatoms are control points that can be displaced (e.g.,
along normal modes) to modify a given conformation of
the complex. The modified conformation, represented with
the pseudoatoms, can be converted into a density map by
computing the weighted sum of Gaussian functions at new
locations (the same weight as before the modification).

The target approximation error control allows different
applications of this method. We could learn from experi-
ments how to choose this target approximation error to suit
these different applications. For instance, in EM-map denois-
ing applications, target approximation errors smaller than 5%
are recommended for EM maps of higher resolution (higher
than 6 Å according to the gold-standard FSC 0.143 criterion),
whereas larger target approximation errors (5%–15%) are
recommended for EM maps of lower resolution [44]. In
applications such as simulations of conformational changes
(NMA of EM density maps) or elastic fitting among several
EM maps (elastic 3D-to-3D fitting), it is recommended to
use target errors of 10%–15% with EM maps that are noisy
or that have different (low and high) resolutions among each
other, whereas target errors of 1%–5% are recommended with
clean and high-resolution EM maps [33, 42]. In elastic 3D-
to-2D fitting applications, smaller target errors (1%–5%) are
recommended to guarantee a good quality of projections of
the densitymap frompseudoatoms (a goodprojection quality
is required for an accurate projection matching with images)
[30]. In these different applications, the standard deviation of
Gaussian functions is usually in the range between 1 and 2
(voxels) and the value of 1.5 (voxels) can often be chosen as
a default value, though adjustments are required around this
value to achieve optimal results (quality can be evaluated by
comparing target and achieved approximation errors).

Advantages of structural representations with pseu-
doatoms have recently been explored in the context of 3D
reconstruction. For instance, a Bayesian approach to ab initio,
low resolution 3D reconstruction proposed in [54] is based on
estimating a pseudoatomic model using a random model for
initialization and a given number of pseudoatoms. It should
be noticed that the Gaussian-function standard deviation
in that approach is estimated together with other param-
eters of the pseudoatomic model (position and weights of
pseudoatoms) as well as the parameters of image orientation
and translation [54].That approach makes calculations using
class averages instead of raw images and it does not consider
a possible conformational heterogeneity of the given set
of images. We are currently working on a method based
on pseudoatoms with a fixed Gaussian-function standard
deviation to iteratively refine a preliminary model taking
into account conformational heterogeneity of the data set.
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Figure 4: Exploring actual conformational changes by analyzing a set of EM density maps using normal modes of Gaussian-based
(pseudoatomic) representation of these maps (analysis with StructMap). (a) States along the elongation cycle of 80S ribosome, from which
eleven states were determined by EM in [53] (the EMDB code of each determined densitymap is provided next to it in red color; translocation
and decoding-sampling/recognition states were not experimentally observed in the original work and are shown grayed out and without
associated EMDB code or marked with n/a in the inset). (b) Mapping of EM density maps, denoted in (a) with their EMDB codes, onto a
low-dimensional distance space based on a flexible 3D-to-3D fitting between the density maps using normal modes of their pseudoatomic
representations (in this space, the density maps are represented with filled circles and EMDB codes and the distances between the points
correspond to the conformational differences that remain after the flexible fitting). Dotted lines are used in (b) to connect subsequent states
along the cycle shown in (a). Slightly modified reproductions from [53] (a) and [33] (b), with permission.
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(a) (b)

(c) (d)

Figure 5: Denoising of EM density maps based on their approximation to a desired level of accuracy (𝜀) using 3D Gaussian functions of a
given standard deviation (𝜎). (a and b) Half of the density map of genogroup II genotype 10 norovirus virus-like particle from [60] radially
colored with Chimera before (a) and after (b) denoising (denoising based on 𝜎 = 1.5 and 𝜀 = 15%). (c and d) Density-map arbitrary slice
before (c) and after (d) denoising, for the density maps shown in (a) and (b), respectively. Reproduced with permission from [44].

This new method should result in a 3D reconstruction
(model) optimally representing all given (raw) images via the
determined elastic (normal-mode-based) transformations
between the model and the images.
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server for protein movement analysis and the generation of
templates for molecular replacement,” Nucleic Acids Research,
vol. 32, pp. W610–W614, 2004.

[50] J. Brink, S. J. Ludtke, Y. Kong, S. J. Wakil, J. Ma, and W.
Chiu, “Experimental verification of conformational variation
of human fatty acid synthase as predicted by normal mode
analysis,” Structure, vol. 12, no. 2, pp. 185–191, 2004.

[51] C. O. S. Sorzano, J. M. de la Rosa-Trevı́n, F. Tama, and S. Jonić,
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