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Intranasal immunization with outer
membrane vesicle pertussis vaccine
confers broad protection through
mucosal IgA and Th17 responses

René H. M. Raeven!™, Dedeke Rockx-Brouwer!, Gaurav Kanojial, Larissa van der Maas?,
Tim H. E. Bindels?, Rimko ten Have?, Elly van Riet?, Bernard Metz! & Gideon F. A. Kersten'-

A vaccine based on outer membrane vesicles of pertussis (omvPV) is protective in a mouse-challenge
model and induces a broad antibody and mixed Th1/Th2/Th17 response against multiple antigens
following subcutaneous immunization. However, this route did not result in mucosal immunity and

did not prevent nasopharyngeal colonization. In this study, we explored the potential of intranasal
immunization with omvPV. Only intranasal immunization induced strong mucosal immune responses
that encompasses enhanced pulmonary and nasal IgA antibody levels, mainly directed against Vag8
and LPS. Furthermore, high numbers of IgA- and IgG-producing plasma cells were detected as well

as lung-resident IgA memory B-cells. Finally, only intranasal immunization induced pulmonary Thl/
Th17-related cytokine responses. The magnitude and type of systemic immunity was comparable
between both routes and included high systemic IgG antibody levels, strong IgG-producing plasma

cell responses, memory B-cells residing in the spleen and systemic Th1/Th2/Th17-related cytokine
responses. Importantly, only intranasal immunization prevented colonization in both the lungs and the
nasal cavity. In conclusion, intranasal omvPV immunization induces mucosal IgA and Th17-mediated
responses without influencing the systemic immunity profile. These responses resulted in prevention of
Bordetella pertussis colonization in the respiratory tract, including the nasal cavity, thereby potentially
preventing transmission.

Immunization against the respiratory pathogen Bordetella pertussis resulted in a dramatic worldwide decrease
of whooping cough cases'. However, the current pertussis resurgence occurs even in the vaccinated population,
indicating that current pertussis vaccines or vaccination strategies should be improved®>. Prolonged immunity is
an important aspect for new pertussis vaccines as rapid waning of immunity is a major issue of current acellular
pertussis vaccines (aPV)*. Moreover, it was demonstrated in baboons that aPV immunization prevents against
disease but does not protect against transmission of B. pertussis to other baboons’. Nasopharyngeal carriage of B.
pertussis in vaccinated individuals could be a potential cause for continuous spread by transmission®. Therefore,
reducing nasal carriage by immunization is an important goal to prevent transmission and lowering the risk of
exposure especially to unvaccinated individuals. Induction of mucosal immunity in the respiratory tract and
particularly in the nasal cavity could assist preventing nasal colonization by B. pertussis and therefore reducing
the chance of transmission’. B. pertussis infections induce powerful mucosal immunoglobulin A (IgA) and T
helper (Th) type 17-mediated responses and prevent colonization in the complete respiratory tract upon reinfec-
tion®’. In addition, the immune response after intranasal immunization with the live-attenuated pertussis vaccine
BPZE] is also characterized by Th17 and IgA responses and this vaccine diminishes the capability of B. pertussis
to colonize the nose'®. Mucosal immunity might therefore be an important mechanism to prevent nasal carriage
and reduce the risk for transmission’.

Pertussis outer membrane vesicles (omvPV) are currently developed as a non-replicating vaccine candi-
date!! that provides protection against a B. pertussis infection in mice after intraperitoneal'> and subcutane-
ous immunization'®. The protective immune response is characterized by a mixed Th1/2/17 response'*~'* and
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Figure 1. Study design. BALB/c mice (20 per group) were immunized with 4 ug outer membrane vesicle
pertussis vaccine (omvPV) by the intranasal (IN; red) or subcutaneous (SC; blue) route on days 0 and 28.
Subsequently, for both routes the vaccination-induced responses were characterized at day 35 and 56 (n=6).
Subsequently, a B. pertussis challenge (2 x 10° colony-forming units (CFUs)) was performed on day 56 in both
vaccinated groups and naive mice (green) after which the level of protection was assessed in the respiratory tract
onday 57 and 62 (n=4).

a broad antibody response against multiple antigens such as Bordetella resistance to killing (BrkA), pertactin
(Prn), autotransporter Vag8 and lipopolysaccharide (LPS)'®, which are antigens that were all demonstrated to
have protective capacity'’-2’. However, despite the excellent induction of systemic responses by systemic omvPV
immunization, nasal carriage is not diminished. We recently showed that omvPV can be administrated directly
in the respiratory tract leading to faster bacterial clearance from the lungs compared to subcutaneous immu-
nization'*'. Pulmonary immunization also resulted in mucosal Th17 cells and IgA that were not present after
subcutaneous immunization. In addition, pulmonary immunization evoked elevated systemic immunoglobulin
G (IgG) antibody levels, IgG-producing plasma cells, memory B-cells, and Th17 cells as compared to subcutane-
ous immunization. While these data revealed the benefits of pulmonary over subcutaneous immunization with
omvPYV, the feasibility of pulmonary immunization is more challenging in terms of dose delivery, especially in the
deeper lung area. Moreover, complete bacterial clearance from the nasal cavity was not achieved with pulmonary
immunization. Intranasal immunization could serve as an alternative as the nasal cavity, the natural entrance site
for pertussis, is an excellent site for vaccine delivery?? that would allow easier administration and could serve as
a more efficient immunization site. Roberts et al. previously demonstrated that intranasal omvPV immunization
leads to protection against a B. pertussis infection in the lungs'2. However, the profiling of immune responses
following intranasal immunization in a direct comparison with subcutaneous immunization are not yet reported
in literature. In the current study, we investigated whether intranasal immunization with our omvPV concept
provides protection against a B. pertussis infection, and in particular against nasal carriage. Additionally, systemic
and mucosal antibody, B-cell and T-cell responses were studied to explore the underlying type of immunity.

Materials and Methods

Ethics statement. The animal experiment was carried out in accordance with the guidelines provided by the
Dutch Act on Animal Experimentation. The animal experiment was approved by a local and independent ethical
committee for animal experimentation of the Institute for Translational Vaccinology (Intravacc, Bilthoven, The
Netherlands).

Immunization and challenge of mice. In a single experiment, 20 female, 8-week old BALB/c mice
(Harlan, The Netherlands) were immunized twice (day 0 and 28) with 4 ug total protein omvPV for both admin-
istration routes, either administered via the intranasal (10 uL per nostril, total 20 uL), or subcutaneous route
(300 uL) (Fig. 1). The B. pertussis challenge with the B1917 strain (2 x 10E5 colony forming units (CFU)) of
immunized and naive mice (n =4 per group, per time point) was performed on day 56 as described previously'.

Sample collection. For immunological assays, mice were sacrificed at day 35 for analysis of plasma cells
(n=6 per group) and at day 56 for analysis of antibody, memory B-cell and T-helper responses (n =6 per group).
For colonization assays, mice were sacrificed at day 1 and day 6 post-challenge (n =4 per group, per time point).
Mice were anesthetized (isoflurane/oxygen) for orbital blood collection and sacrificed by cervical dislocation. (I)
Serum for antibody detection was obtained by collecting whole blood in a serum collection tube (MiniCollect
0.8mL Z Serum Sep GOLD, Greiner). After coagulation (10 min., room temperature), sera were collected by
centrifugation (10 min., 3000 g), aliquoted and stored at —80 °C. (II) Whole blood for B-cell assays was collected
in heparinized tubes (MiniCollect 1 mL LH, Greiner, Austria) after which erythrocytes were lysed using RBC
lysis buffer (Pharm Lyse, BD). (III) Lungs and trachea for colonization assays were homogenized in 900 uL THIJS
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medium?® using a Bio-Gen PRO200 Homogenizer (Pro Scientific Inc., Oxford, USA). (IV) Nasal lavages for col-
onization assays were obtained by flushing the nose with 1 mL THIJS medium supplemented with 40 ug/mL
cephalexin. (V) For B- and/or T-cell assays, complete lungs and spleens were collected in 5mL RPMI complete
medium (RPMI-1640 medium (Gibco) supplemented with 10% FCS (Hyclone), 100 units penicillin, 100 units
streptomycin and 2.92 mg/mL L-glutamine (Invitrogen)) and homogenized using a 70-pm cell strainer (BD
Falcon, BD Biosciences) by using a previously described protocol'®. Spleen and lung tissue homogenates were
treated with home-made lysis buffer (10 g/L NH,CL, 1.25g/L NaHCO;, 0.125 mM EDTA in H,0; pH 7.4) to lyse
erythrocytes. (VI) Lung homogenates and nasal lavages were sterile filtered with a 0.22 um filter (Millex-GV,
Millipore) and subsequently used for antibody detection at mucosal sites.

Colonization assays. Lung and trachea homogenates and nose lavages collected at day 1 and day 6
post-challenge were serially diluted (undiluted, 1:10, 1:100, and 1:1000 depending on organ type) in THIJS
medium. Subsequently, 100 uL of each sample was plated on Bordet-Gengou agar plates with 15% sheep blood
(BD, The Netherlands) and incubated for 5 days at 35 °C. The number of CFU/mL was determined using a colony
counter (ProtoCOL, Synbiosis, Cambridge, UK). The limit of detection for this method is 10 CFU/mL.

Multiplex immunoassay (MIA) for antibody measurements. Antibodies against outer membrane
vesicles (OMV), BrkA, fimbriae (Fim) 2/3, filamentous hemagglutinin (FHA), Prn, pertussis toxin (Ptx), and an
autotransporter (Vag8) were measured using a MIA as described previously'®. Serum samples were diluted 1:2000
for anti-OMV IgG and 1:100 for IgG (subclass) and IgA measurements. For measuring IgA levels, lung lysates
were ten times diluted while nasal lavages were left undiluted. Data was acquired with a Bio-Plex 200, processed
using Bio-Plex Manager software (v5.0, Bio-Rad Laboratories), and presented as fluorescence intensities (FI). The
limit of detection of each analyte was set at 3x the background signal as detected in non-immunized mice.

Western blotting for antibody profiling. The antibody profiling using SDS-PAGE and Western blot-
ting to characterize serum IgG, pulmonary IgA and nasal IgA to identify immunogenic proteins was performed
as described previously?!. The antigen identification of immunogenic antigens was not done in this study but
obtained from a previous study'®. Two lanes containing a marker and a B. pertussis lysate were cut in pairs after
the SDS-PAGE and blotting. These strips were incubated with individual samples. All blots were scanned at the
same intensity. The markers were used to align the blots from different groups with each other. Subsequently, the
marker of each blot was cropped off and only the blot on the lysate is depicted in the figures.

B-cell ELISpot for plasma and memory B-cells. For analysis of memory B-cells, splenocytes and
lung cells were stimulated (5 x 10E5 cells per well, 24-well plate; 5 days, 37 °C) with 10 pg/mL CpG ODN 1826
(Invivogen, San Diego, CA), 10 pg/mL pokeweed mitogen (Sigma-Alderich, Zwijndrecht, The Netherlands),
and Staphylococcus aureus protein A of Cowan Strain (1:5000; Sigma) in RPMI complete medium with
B-mercaptoethanol (1:25000; Sigma) to induce differentiation into antibody secreting cells*. The percentage of
OMYV specific antibody secreting cells were subsequently determined by ELISpot. The numbers of OMV-specific
IgG- and IgA-producing plasma cells in blood, spleen and lungs were directly determined using the same ELISpot
method, with 10 ug/mL wildtype B1917 OMYV as coat, as described before'>. Spots were counted with an AID
iSpot reader (Autoimmun Diagnostika, Strassberg, Germany) and indicated as antibody-secreting cells per 5 x
10E5 cells.

Cell stimulation and MIA for T-helper (Th) cytokine analysis. The single-cell suspension obtained
from lungs and spleen was stimulated for 3 days with OMV (1.5pg/mL) to induce cytokine production after
which the supernatant was collected. The concentration of T-helper-related cytokines interleukin-4 (IL-4), IL-5,
IL-10, IL-13, IL-17A, TNF-o and IFN-~ was determined in the supernatants using a ProcartaPlex Mix&Match
Mouse 7-Plex (ThermoFisher). Data was acquired with a Bio-Plex 200 (Bio-Rad) and analyzed using Bio-Plex
Manager software (v 5.0, Bio-Rad). Results were corrected for the background with an unstimulated control per
mouse stimulation per cytokine and calculated in pg/mL. Statistical analysis was only performed on results where
the average cytokine production per group was >2x altered in immunized groups compared to the naive group.

Statistics. Data from antibody, cytokine, and colonization assays were log-transformed and statistically
tested using a t-test. Significance of inter-group differences for B-cell ELISpot analysis was determined using a
Mann-Whitney t-test. Significant p-values are indicated by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Results

Bacterial clearance from respiratory tract.  Protection against B. pertussis colonization of the respiratory
tract was studied in mice that were immunized intranasally or subcutaneously with an omvPV. This was done by
counting the number of viable bacteria, i.e. colony-forming units (cfu) in the lungs, trachea and nose on day 1
and day 6 post-challenge (p.c.) with B. pertussis (Fig. 2). The lungs, trachea and nose of naive mice were heavily
colonized on day 1 after the B. pertussis challenge and the number of bacteria further increased on day 6 p.c.,
indicating successful colonization (Fig. 2A-C). In contrast, in the lungs and trachea of IN-mice, no cfu could be
detected on both day 1 and day 6 p.c., whereas the lungs of SC-mice were not cleared 1-day p.c. (Fig. 2A,B). In the
nose, only IN-mice were free of viable B. pertussis bacteria, whereas the mice in other groups showed presence of
bacteria in the nasal lavages. However, the numbers of bacteria in the noses of SC-mice were lower compared to
naive mice indicating some vaccine-induced protection (Fig. 2C). These results indicate that both subcutaneous
and intranasal immunization with an omvPV enable faster bacterial clearance following a B. pertussis infection
compared to non-immunized animals. However, full protection against colonization at all sites of the respiratory
tract was observed with intranasal immunization.
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Figure 2. Colonization of the respiratory tract by B. pertussis. Naive and vaccinated mice were challenged with
B. pertussis (2 x 10° cfu) on day 56 and the number of cfu/ml were subsequently determined on day 1 (d57) and
day 6 (d62) post-challenge (p.c.) in (A) lungs, (B) trachea, and (C) nasal lavages (mean with SEM and individual
samples). The limit of detection (10 CFU/mL (Logl)) is depicted as horizontal dashed line. Significant
differences are indicated by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 obtained using a t-test after log-
transformation of data. NS = not significant.

Mucosal humoral responses.  Mucosal humoral responses were investigated by analyzing (I) anti-OMV
IgA-secreting plasma cells, (IT) IgA memory B-cells and (III) IgA responses in the lungs, nasal wash and blood
(Fig. 3A-F). IN-mice generated a significantly higher number of IgA-secreting plasma cells in the spleen, lung
and blood compared to naive or SC-mice (Fig. 3A). Numbers of IgA memory B-cells in the lungs were signifi-
cantly higher in IN-mice compared to SC-mice or naive mice, but there was no significant difference in the spleen
(Fig. 3B). The levels of IgA antibodies directed against Ptx, Prn, FHA, Fim2/3, BrkA, Vag8 and OMV were deter-
mined in the lungs (Fig. 3C), nasal wash (Fig. 3D) and serum (Fig. 3E). Pulmonary IgA antibody levels directed
against BrkA, Vag8 and OMV were significantly increased in IN-mice compared to SC-mice and naive mice
(Fig. 3C). Nasal IgA antibody levels directed against FHA, Fim2/3, Vag8 and OMV were significantly increased
in IN-mice compared to SC-mice and naive mice (Fig. 3D). In serum, only the anti-OMV IgA antibodies were
significantly increased following intranasal immunization (Fig. 3E). Antibody profiling with Western blotting
on a B. pertussis B1917 lysate demonstrated pulmonary and nasal IgA antibodies directed against LPS and Vag8
in the IN-mice but not in SC-mice or naive mice (Fig. 3F). The identity of these antigens was determined previ-
ously by mass spectrometry'®. In addition, the pulmonary IgA of the IN-mice contained antibodies against three
unidentified antigens (U1-3). These results indicate that the mucosal IgA humoral response was stronger after
intranasal immunization as compared to subcutaneous immunization and that the IgA memory B-cells induced
by intranasal immunization resided in the lungs.

Systemic humoral responses. Induction of systemic immune responses was determined by measuring (I)
anti-OMYV IgG-secreting cells, (II) IgG memory B-cells and (III) IgG (subclass) antibody responses. OMV-specific
IgG plasma cells were detected in spleen, lungs and blood of all omvPV-immunized mice, whereas these cells
were not detected in naive mice, 7 days after booster immunization (Fig. 4A). Intranasal immunization resulted
in a significantly higher number of anti-OMV IgG-secreting plasma cells in the lungs compared to the num-
bers observed in SC-mice. No significant differences in numbers of anti-OMV IgG-secreting plasma cells were
observed in blood and spleen between the two immunized groups (Fig. 4A). Increased numbers of OMV-specific
IgG memory B-cells were found in the spleens of both immunized groups (Fig. 4B). In addition, the IN-mice
contained significantly higher numbers of IgG memory B-cells in the lungs compared to both SC-mice and naive
mice (Fig. 4B).

In serum, the levels of IgG antibodies directed against BrkA, FHA, Prn, OMV, and Vag8 were significantly
enhanced in both omvPV-immunized groups, when compared to naive mice (Fig. 4C). The levels of IgG antibodies
directed against BrkA were slightly higher in SC-mice compared to IN-mice. A Western blot of anti-sera against
bacterial lysate to establish the antigen specificity revealed overall a similar IgG response in intensity and diversity of
immunogenic proteins between IN- and SC-mice. However, only the SC-mice induced additional antibodies against
GroEL and the unidentified antigens U2 and U7, while the IN-mice had higher antibody formation against antigen
Ul and exclusive antibody production against antigen U3 (Fig. 4D). The identity of the identified immunogenic
proteins was determined previously by mass spectrometry®. Both SC- and IN-mice induced a broad IgG subclass
response. Significant levels of IgG1, IgG2a, IgG2b and IgG3 antibodies against a variety of antigens were detected
in vaccinated mice (Fig. 4E-H). Of note, the anti-Prn IgG2a levels were significantly lower in SC-mice when com-
pared to IN-mice. The anti-BrkA IgG1 levels and anti-FHA IgG3 were slightly higher in SC-mice when compared to
IN-mice. These results reveal that both subcutaneous and intranasal immunization induce similar, but not identical,
systemic immune responses as measured in blood and spleen, while intranasal immunization resulted in elevated
presence of IgG-producing plasma and memory B-cells locally in the lungs.

Pulmonary and systemic T-helper cytokine responses. To determine the OMV-specific T-cell
responses in spleens and lungs, cell suspensions from both organs were stimulated with OMVs for 3 days, after
which concentrations of seven signature cytokines (IL-4, IL-5, IL-10, IL-13, IL-17A, TNF-a and IFN-~) were
determined in the supernatant by MIA (Fig. 5A,B). The Th17-related cytokine IL-17A was significantly increased
in the supernatants of stimulated splenocytes and lung cells in both IN-mice and SC-mice compared to naive
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Figure 3. Mucosal humoral responses. (A) Numbers of OMV-specific IgA-secreting plasma cells in spleens,
lungs and blood and (B) numbers of IgA memory cells, that were differentiated into antibody secreting cells
(ASC), in spleens and lungs were determined by B-cell ELISpot of 6 mice per group at day 35 and day 56,
respectively. Results are indicated as ASC per 5 x 10° cells. Levels of immunoglobulin A (IgA) antibodies
directed against Ptx, Prn, FHA, Fim2/3, BrkA, Vag8 and OMV were determined in (C) lungs, (D) nasal wash
and (E) serum of 6 mice per group. Results are expressed as fluorescence intensities (FI). (F) Immunoproteomic
profiles of pooled (n=6) pulmonary and nasal IgA were determined using Western blotting using the same
scan intensity. In the box plots, the box represent 25th to 75th percentiles, whereas the bars indicate the
minimum and maximum value. Horizontal dashed lines represent the limit of detection (background x 3).
Significant differences are indicated by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 obtained using a
Mann-Whitney t-test (B-cells) and t-test (antibodies) after log-transformation of data.

mice. This IL-17A production was however much higher in the IN-mice as compared to the SC-mice. The pro-
duction of the Th1-related cytokine IFN~ was increased in lung cells of IN-mice compared to SC- or naive mice.
In splenocytes, a similar increase in IFN~ production was observed in both IN- and SC-mice compared to naive
mice. When looking at Th2-related cytokines, an increased IL-13 and IL-5 production was seen in the lungs of
IN-mice that was absent in SC- and naive mice. In splenocytes, the Th2-related cytokines IL-4, IL-5 and IL-13
were significantly increased in SC- and IN-mice compared to naive mice. This IL-5 production was higher in
SC-mice compared to IN-mice. Overall, these results demonstrate that both subcutaneous and intranasal immu-
nization with omvPV result in a mixed Th1/Th2/Th17-related cytokine response, but that the intranasal immuni-
zation leads to additional induction of local Th1/Th17-related cytokine responses in the respiratory tract.

Discussion

Current resurgence of pertussis, despite high vaccination coverage, occurs because protection induced by aPV
is of limited duration®, is not effective against antigen-deficient (i.e. Prn-deficient) strains?**” and fails to pre-
vent B. pertussis transmission®. Therefore, the current focus for improving pertussis vaccines is on providing
longer-lasting immunity, establishing adaptive immune responses against a broader range of antigens to increase
the robustness of protection and prevention of transmission by reducing nasal carriage of B. pertussis.
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Figure 4. Systemic humoral responses. (A) Numbers of OMV-specific IgG-secreting plasma cells in spleens,
lungs and blood and (B) numbers of IgG memory cells in spleens and lungs were determined by B-cell ELISpot
of 6 mice per group at day 35 and day 56, respectively. Results are indicated as antibody-secreting cells (ASC)
per 5 x 10° cells. (C-H) Levels of (C) immunoglobulin G (IgG) antibodies and (E-H) IgG subclasses 1, 2a, 2b
and 3 antibodies directed against Ptx, Prn, FHA, Fim2/3, BrkA, Vag8 and OMV were determined in serum of
6 mice per group. Results are expressed as fluorescence intensities (FI). (D) Western blot for antibody profiling
with pooled (n=6) serum IgG using B. pertussis B1917 lysate as antigen. The same scan intensity was applied
to all blots. In the box plots, the box represent 25th to 75th percentiles, whereas the bars indicate the minimum
and maximum value. Horizontal dashed lines represent the limit of detection (background x 3). Significant
differences are indicated by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 obtained using a Mann-
Whitney t-test (B-cells) and t-test (antibodies) after log-transformation of data.

Earlier we have shown that omvPV induces immune responses against a broad range of antigens, as well
as a more Th1/Th17 and less Th2 biased response when administered subcutaneously or in the lungs!>!>162!,
In the current study, we compared intranasal and subcutaneous immunization with omvPV from the B1917
strain (summarized in Table 1). Both subcutaneous and intranasal administration induced a Th1/Th17 polarized
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Figure 5. T-helper cytokine profiles in splenocytes and lung cells. Concentrations of T-helper 1, 2 and
17-related cytokines were determined in supernatant after 3-day stimulation with OMV of (A) splenocytes
and (B) lung cells. Results in pg/mL are corrected for the background level IMDM complete medium control)
and are given as means.d. of 6 mice per group. Significant differences (>2x alteration compared to naive
group) are indicated by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 obtained using a t-test after log-
transformation of data.

response and a broad humoral response in terms of multiple subclasses and against several antigens that were
proven to be protective, such as BrkA?**, LPS'” and Vag8'8. These results indicate that the Th1/Th17 immune
profile is related to omvPV, more than to the route of immunization. With respect to the antibody responses to
these antigens, these were found to resemble antibody responses to natural B. pertussis infection in humans-
and mice'®. These broad antibody responses induced by omvPV may provide protection through multiple anti-
body mechanisms such as opsonizing and bactericidal activity as well as prevention of bacterial adhesion®*2.,
However, the functionality of omvPV-induced IgG and IgA antibodies remains to be investigated.

With respect to protection against colonization of B. pertussis, subcutaneous vaccination induced partial pro-
tection, whereas intranasal administration of omvPV provided full protection in the complete respiratory tract
upon challenge. This is in agreement with the fact that mucosal immune responses such as IgA antibodies and
tissue-resident memory B- and T-cells have generally been shown to play an important role in eliminating path-
ogens locally**-%. Also for pertussis vaccines, mucosal immunity may be beneficial to prevent transmission and
limit residence time of the bacteria in the respiratory tract®”. Intranasal immunization with experimental pertus-
sis vaccines has been performed with multiple concepts such as a live-attenuated vaccine!®*’, bacterium-like par-
ticles®®, aPV with new adjuvants such as CpG*, LP-GMP* or cholera toxin B*, omvPV from the Tohama strain'?
and omvPV with detoxified LPS*2. These studies demonstrate that intranasal immunization can prevent bacterial
colonization in the respiratory tract in mice. Solans et al. demonstrated more specifically that the mechanism of
their live-attenuated pertussis vaccine was depending partly on the induction of mucosal IgA responses and IL-17
producing tissue-resident memory T-cells°.

The profiling of underlying immune responses following omvPV immunization in the current study demon-
strated that the most profound difference between intranasal and subcutaneous immunization was indeed the
induction of strong mucosal responses (Table 1). Intranasal omvPV immunization provides strong mucosal IgA
antibody responses against the potentially protective antigens Vag8 and LPS, and induces lung-resident memory
B-cells (both IgA and IgG) and Th17-related cytokine responses. Local antigen encounter in the nasal cavity
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Immunization route for omvPV
Naive Intranasal Subcutaneous Difference™

Lung clearance >6 days p.c. ++++ (<1dayp.c) +++ (>1dayp.c) +

Protection Tracheal clearance | >6 days p.c. ++4+++ (<1dayp.c) +-+++ (<1 dayp.c.) 0
Nasal clearance >6 days p.c. ++4+++ (<1dayp.c) +4 (>6daysp.c.) +++
Antibodies
Serum IgG — + +++ ++++ 0
Serum IgG1 — +4++ ++++ +
Serum IgG2a — ++++ +++ +
Serum IgG2b — ++++ +++ +
Serum IgG3 — +++ ++++ —
Serum IgA — +++ — +++
Serum I}gG _ OMY, Vag8, BrkA, Prn, OMY, Vag8, BrkA, Prn, 0
specificity* U1, U3, U4, U6, LPS GroEL, U1-2, U4-7, LPS
Plasma cells

Systemic immunity 156G ASC Blood _ T T 0
IgG ASC Spleen — ++ ++ 0
IgG ASC Lung - ++++ ++ ++
Memory B-cells
IgG ASC Spleen — ++ ++ 0
IgG ASC Lung — ++ - ++
T-helper related cytokine responses
Spleen Thl - +++ +++ 0
Spleen Th2 — ++ ++ 0
Spleen Th17 - ++++ +++ +
Antibodies
Pulmonary IgA — +4+++ + +++
Nasal IgA — ++++ + +++
f;elgggf;z fgA - Vag8,LPS,Ul-3 Vag8, | — +++
i‘;‘escallﬁlé‘fg . - LPS - N
Plasma cells

Mucosal immunity 1A ASC Blood — T - T
IgA ASC Spleen - ++ — ++
IgA ASC Lung - ++++ - SIS
Memory B-cells
IgA ASC Lung - +++ - +++
T-helper related cytokine responses
Pulmonary Thl — + ++ + +++
Pulmonary Th2 - + - +
Pulmonary Th17 - ++++ + ++++

Table 1. Comparison of immunity profiles induced by subcutaneous and intranasal OMV immunization.
*Based on combined results of MIA and Western blotting. **Scale ranges from - (absent) to ++4-+ (highly
present). ***Difference between intranasal and subcutaneous omvPV immunization. + to ++++ is advantage
intranasal, 0 is no difference, — is advantage subcutaneous.

following intranasal immunization is required to evoke local responses such as memory B-cells**. Interestingly,
despite administration at the outside of the mucosal barrier, intranasal omvPV immunization maintained a sim-
ilar level of systemic IgG antibody levels, IgG-producing plasma cells, and spleen-resident memory B-cells as
compared to subcutaneous omvPV immunization (Table 1). Both IgA-* and Th1/Th17-mediated responses*
were previously identified as protective responses against B. pertussis. In line with intranasal omvPV immuniza-
tion, similar mucosal IgA and Th17 responses were observed after a B. pertussis infection which provides excellent
protection against a subsequent B. pertussis challenge®*4. Recent studies demonstrated that a B. pertussis infec-
tion also primes local innate immune cells, such as alveolar macrophages, M-cells and goblet cells*. These cells
may also be induced by mucosal immunization with omvPV and could contribute to the faster bacterial clearance
of the respiratory tract upon infection. Importantly, it was shown that an infection also induces tissue-resident
T-cells in the lungs*’. More research to whether these play a role in longevity of the memory response will be
important for future research.
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Previously, we demonstrated that induction of mucosal immunity and faster bacterial clearance from the lungs
could be achieved through pulmonary administration of omvPV in both spray dried (reconstituted) and liquid
form'>?!. However, whereas the pulmonary immunization with omvPV led to significant reduction of B. pertussis
in the nasal cavity, in the current study we demonstrated that intranasal immunization with omvPV provided
complete B. pertussis clearance, also from the nasal cavity of mice. This difference cannot be explained by levels of
nasal IgA, since these were similar and directed against the same antigens. In addition, in both cases pulmonary
Th17 and IgA memory B-cells were detected?!. However, possibly these administration routes result in qualitative
differences in IgA, such as T-cell dependent versus independent induction, differences in the ratio of monomers,
dimers and polymers or in levels and type of glycosylation of IgA antibodies, that can all affect IgA effector func-
tion. Alternatively, a head to head comparison could show whether the presence of local tissue-resident B- and
T-cells in the nose could explain this difference.

In accordance with our previous findings'>*!, the current study indicates that the intrinsic adjuvant activity
present in the current form of the omvPV are suitable for inducing excellent systemic and mucosal immunity,
obviating the need for additional adjuvants. In terms of safety, these intrinsic adjuvants may cause pyrogenicity.
However, we observed earlier that systemic omvPV immunization induced less pro-inflammatory cytokines as
compared to a whole-cell pertussis vaccine'. Due to the mucosal barrier, intranasal immunization may induce
even less systemic side effects as compared to systemic immunization. However, to further lower endotoxic activ-
ity, an additional LPS modification can be inserted*. Insertion of the detoxified LPS, PagL, in an omvPV in
combination with intranasal immunization did indeed further reduce pyrogenicity in mice*2. Moreover, two
studies reporting on safety in healthy individuals after intranasal immunization with vaccines against Shigella
sonnei*® and Shigella flexneri*® based on outer membrane vesicles demonstrated that no serious adverse effects
were observed. However, next to pyrogenicity, the local neurotoxic effects in the nose after intranasal omvPV
immunization remain to be investigated clinically since this has been observed for E. coli heat-labile toxin adju-
vanted influenza vaccine®'. The cause of this neurotoxic effects were thought to be the combination of binding
of de B subunit of LT to surface gangliosides (especially GM1) and inflammation associated with the A subunit.
However, the use of the enzymatic A1 domain was shown to be safe and effective®>.

With regard to human vaccination programs, the intranasal route offers a cost effective and patient friendly
method for vaccine administration®. Our current findings could therefore justify further testing of different
omvPV administration routes in other animal models such as baboons, as well as clinical trials and potentially in
a human challenge model>!. When used as a stand-alone booster, omvPV immunization could possibly reduce
carriage of B. pertussis in the adult population, subsequently limiting the transmission to infants®. Additional
research is needed to proof the hypothesis that intranasal administration might prevent carriage of B. pertussis. It
would potentially even be more interesting when intranasal immunization with omvPV could be implemented as
a primary vaccination to provide better protection against infection through induction of mucosal immunity and
priming of children’s immune responses towards a more effective response®®.

In conclusion, intranasal immunization of omvPV adds strong and broad mucosal IgA antibody responses,
as well as lung-resident memory B-cells (both IgA and IgG) and Th17-related cytokine responses. This mucosal
immunity is induced on top of the already promising systemic immune profile provided by subcutaneously
administered omvPV that consists of a more Th1/Th17- and less Th2-related cytokine biased response and a
broader antibody response (both subtypes and antigenicity) compared to aPV. Most importantly, intranasal
administration prevented colonization of the lung, trachea and nose in the current study, which is important to
prevent transmission, warranting further investigation in baboons or humans.
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