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Abstract.—We prove that maximum likelihood phylogenetic inference is consistent on gapped multiple sequence alignments
(MSAs) as long as substitution rates across each edge are greater than zero, under mild assumptions on the structure
of the alignment. Under these assumptions, maximum likelihood will asymptotically recover the tree with edge lengths
corresponding to the mean number of substitutions per site on each edge. This refutes Warnow’s recent suggestion (Warnow
2012) that maximum likelihood phylogenetic inference might be statistically inconsistent when gaps are treated as missing
data, even if the MSA is correct. We also derive a simple new proof of maximum likelihood consistency of ungapped
alignments. [Kullback–Leibler divergence, maximum likelihood, missing data, multiple sequence alignment, phylogeny.]

Phylogenetic inference is a fundamental
bioinformatics problem. The amount of sequence
data available is increasing and researchers design
methods that try to extract all information from large
data sets. One desirable property of a phylogenetic
method is statistical consistency: as the number of sites
tends to infinity, the inferred tree should converge to
the true tree that generated the data. It is now widely
accepted that standard phylogenetic methods, such
as distance methods or maximum likelihood, achieve
statistical consistency under Markov models of evolution
without insertions and deletions (see Felsenstein (2004)
or RoyChoudhury (2014) for a discussion).

In practice, phylogenies are usually built from
multiple sequence alignments (MSAs) that contain
insertions and deletions (indels). Most phylogenetic
methods treat indels as missing data and do not
attempt to model the indel process. It has been
widely assumed that statistical consistency of standard
phylogenetic methods extends to this setting, though
to our knowledge no proof of this has been published.
Recently, Warnow (2012) called this assumption into
question by presenting an example of an evolutionary
process where methods treating indels as missing
data will fail to achieve consistency. More specifically,
Warnow pointed out that for alignments that contain
indels but no substitutions, methods that neglect indels
will give equal support to all tree topologies, whereas an
explicit model of the indel process can achieve statistical
consistency. Although such evolutionary regimes are
rare in nature, Warnow claimed that this example might
be representative of a larger class of models where
consistency may not hold, even when the alignment is
correct.

Here, we prove that the “no substitutions” scenario
highlighted by Warnow is in fact the only case where
standard phylogenetic inference methods fail to achieve
statistical consistency on correct MSAs. Specifically,
we prove that for any evolutionary process where

each edge in the tree has a nonzero substitution rate,
standard maximum likelihood inference is consistent
on MSAs, under minimal assumptions on the indel
process.

PRELIMINARIES

Trees, Alignments, and Substitutions
A phylogenetic tree T on n leaves is a tree (not necessarily

binary) whose leaves are uniquely labeled with elements
of the taxon set N ={1,...,n}. Each edge in T has an
associated positive length. For any two leaves a,b, the
distance dT(a,b) is defined as the sum of lengths of all
edges on the path from a to b. For a taxon set S⊆N, T|S
is the unique tree obtained by removing all vertices of
T that do not lie on a path between some two leaves in
S, suppressing all degree-two vertices in the remaining
tree, and adjusting the edge lengths so that dT|S (a,b)=
dT(a,b) for every choice of a and b in S.

A MSA A is an n×m matrix with entries from
the set �={A,C,G,T,−}, where n is the number of
taxa and m is the number of sites in the alignment.
Characters in the same column of A are descended from
a common ancestral site. Aij =− represents a “gap” in
the alignment, indicating that taxon i has no sites that
are homologous to any site in column j. This can happen
as a result of a deletion on a branch leading to taxon
i or an insertion on any branch that does not lie between
i and the root of the tree.

For a taxon set S⊆N, a site category C(S) is the set of
columns in A whose nongap characters occur precisely in
taxa from S. For sets X ⊆N and Y ⊆{1,...,m}, we denote
by A[X,Y] the restriction of A to rows in X and columns
in Y. In particular, A[S,C(S)] is the restriction of A to the
rows in S and columns in C(S), and therefore contains
no gaps. By slight abuse of notation, we will write A[∗,j]
to refer to the characters in the j-th column of A.
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We need to make some minimal assumptions about
the evolutionary process in order to prove our main
result. We assume the sequences evolve along the edges
of the tree under a continuous-time Markov chain where
substitutions and indels are independent of each other,
starting from an unobserved ancestral sequence at the
root of the tree. We also assume that for each insertion,
the inserted nucleotides are drawn independently from
the equilibrium distribution of the substitution model.
For simplicity of presentation, we assume the Jukes–
Cantor model for nucleotide substitution (Jukes and
Cantor 1969), with substitutions independent between
sites, though our proof could be generalized to more
complicated models (see Section 5).

The assumption of independence between indel and
substitution processes appears to be crucial. In a recent
paper, McTavish et al. (2015) showed that distance
methods are inconsistent when some sites are invariant
with respect to both substitutions and indels. Other
authors have also reported biases in reconstructed
phylogenies when patterns of missing data were
correlated with the substitution process (Grievink et al.
2013; Roure et al. 2013). Similar problems have been
discussed in statistics literature (Allison 2001).

Given a tree T with specified branch lengths and an
evolutionary model, we can compute the probability
Pr[A[∗,j]|T] of a pattern of nucleotides arising at the
leaves of T, for example using Felsenstein’s pruning
algorithm (Felsenstein 2004). In standard phylogenetic
analyses, gaps at site j are treated as missing data. This
is equivalent to computing the likelihood Pr[A[S,j]|T|S]
where S is the set of taxa that do not have gaps at site j.

For a sequence alignment A, the likelihood of A given
tree T is the product of per-site likelihoods for each site
in the alignment. Taking the logarithm of the likelihood,
we can write

log Pr[A|T]=
m∑

j=1

log Pr[A[∗,j]|T].

It is often convenient to use the normalized per site log-
likelihood L(A|T)= 1

m log Pr[A|T].
The maximum likelihood phylogeny is the tree that

maximizes the likelihood of the alignment:

ML(A)=arg max
T

log Pr[A|T]=arg max
T

L(A|T).

Finally, we define a metric on the space of all phylogenies
on N as follows: let D(T1,T2)=maxa,b∈N |dT1 (a,b)−
dT2 (a,b)|. It can be easily verified that this is indeed a
metric, as long as all edge lengths are positive. We note
that this is not true in the case discussed by Warnow,
where all edges have zero length as the substitution
rate is zero across the tree. When zero-length edges are
allowed, it is possible to find trees T1 and T2 with distinct
topologies such that D(T1,T2)=0, which violates the
definition of a metric.

Consistency of ML has been stated in several
papers (Yang 1994; Rogers 1997). A formal statement of
consistency can be written as follows:

Theorem 1 Let A
m be an ungapped m-column MSA

generated from tree T∗. Then D(ML(Am),T∗)→0 with
probability 1 as m→∞.

Several proofs of Theorem 1 have been proposed,
but some were later found to be incorrect. The
proofs of Yang (1994) and Rogers (1997) show that
for any tree T �=T∗, we have L(Am|T)<L(Am|T∗) with
probability 1 as m→∞. Unfortunately, this is insufficient
to prove consistency, since it does not preclude the
possibility that the sequence ML(A1),ML(A2),ML(A3),...
does not converge to T∗. This was noticed recently by
RoyChoudhury (2014), who provides a more detailed
discussion of these two proofs. Felsenstein (1973)
argued that consistency follows from the result by
Wald (1949), who proved statistical consistency for
maximum likelihood estimators under very general
conditions. However, Felsenstein’s claim was disputed
by Yang (1994) and Farris (1999), since Wald’s proof
relies on several technical assumptions which are not
straightforward to verify for phylogenetic trees. These
arguments were in turn countered by more recent
works Swofford et al. (2001); RoyChoudhury (2014).
Chang (1996) proved that ML is consistent for a more
complicated model where each branch in the tree has
its own substitution matrix. Although Chang’s model
includes the basic time-homogeneous model as a special
case, the proof of identifiability for Markov models of
evolution is somewhat complicated due to its generality.
Chang’s proof also requires the true tree to be binary,
though the author does mention that the result could
be extended to nonbinary trees. To our knowledge,
no simple, correct proof has been published for the
basic scenario where sequences evolve according to a
fixed time-reversible model, constant across sites and
edges.

We will use the following property to establish our
result:

Lemma 1. For any �>0, Pr[supT:D(T,T∗)>�L(Am|T)≥
L(Am|T∗)]→0 as m→∞.

This states that as the number of alignment columns
tends to infinity, it is almost certain that an ungapped
MSA has a higher likelihood on T∗ than any other tree T
that is “distinct enough” from T∗. We prove this lemma
towards the end of the article.

The Indel Process
We assume that the process starts from an ancestral

sequence of length manc. The expected length of
the alignment is proportional to manc and we have
m→∞ whenever manc →∞. For simplicity, we will
write m→∞ from now on. We make the following
two mild assumptions about the structure of the
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alignment:

Assumption 1. For each pair a,b of taxa, let Kab be the
number of columns j such that A

m
aj �=− and A

m
bj �=−.

Then, with probability 1,

min
a,b

Kab →∞ as m→∞.

Assumption 2. For each S⊆N, either |C(S)|=0 or
|C(S)|→∞ as m→∞, with probability 1.

Assumption 1 states that every pair of taxa has infinitely
many shared nongapped sites as the size of the MSA
tends to infinity. Assumption 2 states that every possible
site category either is not observed or is observed
infinitely many times as the size of the MSA tends to
infinity. These two assumptions hold for a large class
of Markov models of sequence evolution, including
for example the TKF model (Thorne et al. 1991), the
“long indel” model (Miklós et al. 2004) and the recently
introduced Poisson indel process (Bouchard-Côté and
Jordan 2013). These models assume that sequences
evolve according to a continuous-time Markov chain
where the insertion and deletion rates are uniform
across the sequence. This uniformity directly implies
Assumption 2. Assumption 1 is a consequence of
the fact that, under these models, each site of the
ancestral sequence has a positive probability of not
undergoing a deletion between any two leaves of
the tree, as long as indel rates on every branch are
finite. Note that the only case when we have |C(S)|=
0 as m→∞ for some sets S occurs when there
are no deletions. In that case, an insertion remains
present in all descendant lineages. Thus, the sets
for which C(S)>0 coincide with the clades in the
tree.

CONSISTENCY FOR GAPPED ALIGNMENTS

We can now state and prove consistency of ML
inference of phylogeny for gapped alignments. The key
intuition behind the proof is that the likelihood of
a gapped alignment can be represented as a sum of
likelihoods of a finite number of gapped alignments
created by restricting A to different site categories.
We use Lemma 1 to prove that consistency for these
ungapped alignments is enough to ensure consistency
of the whole gapped alignment.

Theorem 2 Under Assumptions 1 and 2, maximum
likelihood phylogenetic inference is consistent. More precisely,
if A

m is an m-column alignment containing gaps,
D(ML(Am),T∗)→0 with probability 1 as m→∞.

Proof . The log-likelihood of the alignment
given tree T can be written as the product of

per-site likelihoods:

L(Am|T) = 1
m

m∑
j=1

log Pr[Am[∗,j]|T]

= 1
m

∑
S⊆N

log Pr[Am[∗,C(S)]|T].

Since gaps are treated as missing data, we can write
equivalently

L(Am|T)= 1
m

∑
S⊆N

log Pr[Am[S,C(S)]|T|S].

For each taxon set S, A
m[S,C(S)] is an ungapped

alignment.
By Lemma 1, for all �>0 we have

Pr

⎡
⎣ sup

T:D(T|S,T∗
|S)>�

L(Am[S,C(S)]|T|S)≥L(Am[S,C(S)]|T∗
|S)

⎤
⎦

→0 as m→∞ (1)

for all S such that |C(S)|>0. By Assumption 1, for any
tree T such that D(T,T∗)>�, there exists at least one set
S such that D(T|S,T∗

|S)>� and |C(S)|→∞ as m→∞. We
can use this to bound the probability of any tree distinct
from T∗ having higher likelihood:

Pr

[
sup

T:D(T,T∗)>�

L(Am|T)≥L(Am|T∗)

]
≤Pr

⎡
⎣⋃

S⊆N

sup
T:D(T|S,T∗

|S)>�

L(Am[S,C(S)]|T|S)≥L(Am[S,C(S)]|T∗
|S)

⎤
⎦.

By the union bound, iterating over all subsets S of N, we
get

Pr

[
sup

T:D(T,T∗)>�

L(Am|T)≥L(Am|T∗)

]
≤

∑
S⊆N

Pr

⎡
⎣ sup

T:D(T|S,T∗
|S)>�

L(Am[S,C(S)]|T|S)≥L(Am[S,C(S)]|T∗
|S)

⎤
⎦.

From Equation (1), we see that the above sum tends to
zero as m→∞. It follows that Pr[D(ML(Am),T∗)≤�]→1
for all �>0. Consequently, we have D(ML(Am),T∗)→0
as m→∞, as desired. �

A NEW PROOF OF ML CONSISTENCY FOR UNGAPPED

ALIGNMENTS

In this section, we present a new and simple proof
of Theorem 1, consistency for maximum likelihood on
ungapped alignments.

A pattern at site i is a tuple c= (c1,...,cn)∈�n denoting
the characters at alignment positions A1j,A2j,...,Anj,
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respectively. The probability f ∗
c of seeing each c at a site

is specified by tree T∗, and let fc =mc/m be the empirical
frequency of pattern c in the alignment. It is easy to see
that fc → f ∗

c with probability 1 as m→∞. For a fixed pair
of taxa a,b, we will write f ab

xy for the fraction of columns
in A such that Aaj =x and Abj =y, and denote by xyc′ a
pattern c such that Aaj =x, Abj =y and c′ ∈�n−2 is a tuple
containing the characters of c at taxa other than a and b.
Likewise, we will write pd

xy for the probability of jointly
observing character x at a and character y at b given that
dT(a,b)=d.

The following lemma provides an upper bound on the
log-likelihood of the data given a misspecified tree T.

Lemma 2. Let T be a tree such that there exist a,b∈N with
dT(a,b)=d. Then

L(A|T)≤
∑

c∈�n

fc log fc −DKL(
{

f ab
xy

}
||
{

pd
xy

}
)

where DKL(
{
f ab
xy

}||{pd
xy

}
)=∑

xy∈�2 f ab
xy log

f ab
xy

pd
xy

is the

Kullback-Leibler (KL) divergence between pairwise character
distributions

{
f ab
xy

}
and

{
pd

xy
}
,

Proof . Let pc be the probability of c under tree T. The
normalized log-likelihood L(A|T) can be written as

L(A|T)=
∑

c∈�n

fc log pc.

Our goal is to bound L(A|T) when T is constrained so
that dT(a,b)=d. We can write

L(A|T) =
∑

xy∈�2

∑
c′∈�n−2

f ab
xy f ′

xyc′ log pd
xyp′

xyc′

=
∑

xy∈�2

f ab
xy

∑
c′∈�n−2

f ′
xyc′ (log pd

xy +log p′
xyc′ ),

where f ′
xyc′ = fxyc′/f ab

xy and p′
xyc′ =pxyc′/pd

xy. Since∑
c′∈�n−2 fxyc′ = f ab

xy , we have
∑

c′∈�n−2 f ′
xyc′ =1 and

hence

L(A|T)=
∑

xy∈�2

f ab
xy log pd

xy +
∑

xy∈�2

f ab
xy

∑
c′∈�n−2

f ′
xyc′ log p′

xyc′ .

(2)
To get an upper bound on L(A|T), we find the values

of p′
xyc′ that maximize the expression in Equation (2)

subject to
∑

c′∈�nâˆ’2 p′
xyc′ =1 for each xy∈�2 . By Gibbs’

inequality (MacKay 2003), this occurs when p′
xyc′ = f ′

xyc′
for all xyc′ ∈�n, and therefore

L(A|T)≤
∑

xy∈�2

f ab
xy log pd

xy +
∑

xy∈�2

f ab
xy

∑
c′∈�n−2

f ′
xyc′ log f ′

xyc′ .

Using log f ′
xyc′ = log fxyc′ −log f ab

xy , we get

L(A|T) ≤
∑

xy∈�2

f ab
xy log pd

xy

+
∑

xy∈�2

f ab
xy

∑
c′∈�n−2

f ′
xyc′ (log fxyc′ −log f ab

xy )

�⇒ L(A|T) ≤
∑

xy∈�2

f ab
xy log pd

xy +
∑

xy∈�2

∑
c′∈�n−2

f ab
xy f ′

xyc′ log fxyc′

−
∑

xy∈�2

f ab
xy log f ab

xy

�⇒ L(A|T) ≤
∑

xy∈�2

f ab
xy (log pd

xy −log f ab
xy )+

∑
c∈�n

fc log fc

�⇒ L(A|T) ≤
∑

xy∈�2

f ab
xy log

pd
xy

f ab
xy

+
∑

c∈�n

fc log fc

=
∑

c∈�n

fc log fc −DKL

({
f ab
xy

}∣∣∣∣∣∣{pd
xy

})

as desired. �

We note that the bound in Lemma 2 is quite loose,
as it does not incorporate the constraint that the
pattern probabilities pc must be consistent with some
phylogenetic tree T.

The next lemma ensures that, given enough data, there
exist no high-likelihood trees that are bounded away
from the true tree T∗:

Lemma 3. Given any taxon pair a,b and any �>0, and
writing dT∗ (a,b)=d, we have

lim
m→∞ sup

T:dT (a,b)≥d+�

L(Am|T)≤
∑

c∈�n

f ∗
c log f ∗

c

−DKL

({
f ab
xy

}∣∣∣∣∣∣{pd
xy

})
(3)

and

lim
m→∞ sup

T:dT (a,b)≤d−�

L(Am|T)≤
∑

c∈�n

f ∗
c log f ∗

c

−DKL

({
f ab
xy

}∣∣∣∣∣∣{pd
xy

})
(4)

with probability 1.

Proof . Applying Lemma 2 to all trees T such that
dT(a,b)≥d+�, we get

sup
T:dT (a,b)≥d+�

L(Am|T)≤
∑

c∈�n

fc log fc

− inf
d′≥d+�

DKL

({
f ab
xy

}∣∣∣∣∣∣{pd
xy

})
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which is equivalent to

sup
T:dT (a,b)≥d+�

L(Am|T)≤
∑

c∈�n

fc log fc

−
∑

xy∈�2

f ab
xy log f ab

xy + sup
d′≥d+�

∑
xy∈�2

f ab
xy log pd′

xy.

The term
∑

xy∈�2 f ab
xy log pd′

xy is the normalized log-
likelihood of A[{a,b

}
,M] given dT(a,b)=d′. It can be

easily verified that, under the Jukes–Cantor model,
this is a concave function of d′, with the maximum
at t′ =− 3

4 log(1− 4
3 fx �=y) where fx �=y =∑

xy∈�2:x �=y f ab
xy is

the fraction of sites that differ between a and
b (Felsenstein 2004). Because fx �=y tends to 3

4 − 3
4 e−4d/3

with probability 1, t′ will tend to d. From the concavity
of

∑
xy∈�2 f ab

xy log pd′
xy, we get

sup
d′≥d+�

∑
xy∈�2

f ab
xy log pd′

xy =
∑

xy∈�2

f ab
xy log pd+�

xy

with probability 1 as m→∞. This, together with the
observation that

∑
c∈�n fc log fc →∑

c∈�n f ∗
c log f ∗

c as m→
∞, proves Inequality 3.

The proof of Inequality 4 proceeds analogously. �

Lemma 3 provides us with the means to prove
Lemma 1 and hence Theorem 1:

Proof of Lemma 1. By repeatedly applying Lemma 3 for
all pairs of taxa, we obtain

lim
m→∞ sup

T:D(T,T∗)>�

L(Am|T)≤
∑

c∈�n

f ∗
c log f ∗

c

− min
a,b∈N,s=±�

DKL

({
f ab
xy

}∣∣∣∣∣∣{pd+s
xy

})
with probability 1. On the other hand, we have
limm→∞L(Am|T∗)=∑

c∈�n f ∗
c log f ∗

c with probability 1,
which proves Lemma 1.

Proof of Theorem 1. The proof proceeds analogously to the
proof of Theorem 2 in the previous section. By repeatedly
applying Lemma 1, we get

Pr[D(ML(A),T∗)<�]→1

for all �>0 which implies D(ML(A),T∗)→0 as m→∞,
as desired. �

CONCLUSIONS

We have shown that standard maximum likelihood
phylogenetic inference is statistically consistent even in
the case where gaps are treated as missing data, as
long as substitution rates across edges are nonzero.
The problematic scenario highlighted by Warnow is
not representative of the vast majority of data sets
where substitutions are common. Given the widespread
use of maximum likelihood in phylogenetic inference,

this result should be reassuring to practitioners.
Although it has been observed that alignment gaps
can be used to reconstruct accurate phylogenies (Thatte
2006; Dessimoz and Gil 2010), our result shows that
neglecting the information in gaps should not lead to
incorrect inferences when sufficiently long sequences are
available.

The methods used for the proof for gapped alignments
have also permitted the construction of a new proof for
ungapped alignments, which we consider simpler than
other existing proofs.

Our proofs of consistency could be generalized
to more complex evolutionary models. More flexible
models of evolution, such as the general time-reversible
model (Tavaré 1986) require inferring model parameters
as well as the tree. To adapt our proof of Theorem 1 to
this setting, one would have to define a suitable distance
measure on the joint space of trees and substitution rate
matrices. We leave this for future work.

In most practical scenarios, MSAs contain errors.
Indeed, there are reasons to believe that this problem is
more serious for large alignments, and manual curation
requires a prohibitive amount of effort. Investigating
whether MSAs introduce systematic biases in the long
sequence limit is an interesting question for future
research.
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