
sensors

Article

Lightweight Digital Certificate Management and Efficacious
Symmetric Cryptographic Mechanism over Industrial Internet
of Things

Adel A. Ahmed

����������
�������

Citation: Ahmed, A.A. Lightweight

Digital Certificate Management and

Efficacious Symmetric Cryptographic

Mechanism over Industrial Internet

of Things. Sensors 2021, 21, 2810.

https://doi.org/10.3390/s21082810

Academic Editor: Rongxing Lu

Received: 16 March 2021

Accepted: 14 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh,
Jeddah 25729, Saudi Arabia; aaaabdullah1@kau.edu.sa; Tel.: +966-563884738

Abstract: The certificate authority, a trusted entity, issues digital certificates which contain identity
credentials to help Industrial Internet of Things (IIoT) devices to represent their authenticity in a
secure means. The crucial challenge of a digital certificate is to how design a secure certification
authority management system that can counteract cyberattacks on the IIoT network. Moreover,
current IIoT systems are not capable of implementing complex mathematical operations due to
their constrained power capacity and processing capability. This paper proposes an effective, secure
symmetric cryptographic mechanism (ESSC) based on the certificate authority management and
Elliptic Curve Diffie Hellman (ECDH) to share a digital certificate among IIoT devices. The proposed
certificate authority is used to securely exchange the shared secret key and to resolve the problem
of spoofing attacks that may be used to impersonate the identity of the certificate authority. Also,
ESSC uses the shared secret key to encrypt the sensitive data during transmission through the
insecure communication channel. This research studies the adversary model for ESSC on IIoT and
analyzes the cybersecurity of ESSC in the random oracle model. The findings that result from the
experiments show that ESSC outperforms the baseline in terms of communication, computation,
and storage costs. ESSC thus provides an adequate lightweight digital certificate management and
cryptographic scheme which can help in the detection and prevention of several cyberattacks that
can harm IIoT networks.

Keywords: digital certificate; ECDH; IIoT; symmetric cryptographic

1. Introduction

The Industrial Internet of Things (IIoT) is a system/framework of smart devices that
provide internet connection and communication capabilities to electronic devices, sensors,
mechanical and digital machines, instruments, and any manufacturing objects used by
industries. The IIoT devices have the capability to collect data and communicate with each
other to enable intelligent industrial operations and achieve high productivity without
requiring human intervention [1,2]. However, a non-negligible number of devices in IIoT
networks are vulnerable to cybersecurity attacks, for example, device hijacking or spoofing,
denial of service, man-in-the-middle, and data breaches. The effects of IIoT cyberattacks
can cause catastrophic consequences for the investments of the business leaders who
choose to implement IIoT. Hence, IIoT systems based on lightweight cryptography and
efficacious digital signatures are essential to many models of cybersecurity protection. The
recent IIoT cryptographic schemes can be classified into two types: symmetric (private
key) and asymmetric (public key) cryptographic mechanisms. Symmetric cryptography
uses a single (private) key to encrypt and decrypt a message. The strength of symmetric
schemes truly depends on the distribution of the key between the IIoT devices [3–7].
In contrast, asymmetric cryptography uses two different (mathematically related) keys
which are private and public keys. The private key is never distributed through the IIoT
network. The public key can be announced through a secure channel to legitimate devices

Sensors 2021, 21, 2810. https://doi.org/10.3390/s21082810 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1485-4851
https://doi.org/10.3390/s21082810
https://doi.org/10.3390/s21082810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082810
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082810?type=check_update&version=2


Sensors 2021, 21, 2810 2 of 24

of the IIoT network. Unfortunately, the asymmetric or symmetric cryptography alone
cannot be used to provide data integrity and sender authenticity. Therefore, a digital
signature that is combined with symmetric/asymmetric cryptography can provide data
confidentiality, sender authenticity, and data integrity. However, digital signatures have a
crucial vulnerability in confirming the true identity of the sender. Digital signatures only
prove that the private key of the sender which could be the imposter private key was used to
encrypt the digital signature, but they do not absolutely prove the genuineness of the sender.
Furthermore, the implementation of asymmetric algorithms on IIoT is more complex and
utilizes more time and energy consumption compared to the symmetric algorithms.

One of the popular implementations of cryptography is digital certificates. In IIoT,
a digital certificate is used to associate an object’s (a sensor, actuator, or user) identity to
a public key using the digital signature of a trusted third party. The trusted third party
has the capability to verify the owner’s identity and associate his public key with a digital
certificate. When a remote IIoT user sends a message to an object, he does not ask it to
retrieve his public key from IIoT gateway; instead, he attaches the digital certificate to that
message. Upon the object receiving the message with the digital certificate, it can verify the
digital signature of the trusted third party on the certificate. If the signature was signed
by IIoT gateway, then it can be safely assumed that the public key contained in the digital
certificate is actually from the legitimate IIoT user. Therefore, digital certificates make it
possible for the object to verify user’s claim that the key belongs to him and prevent a
spoofing attack that impersonates the public key of the owner [8,9].

In this research, a certificate authority center (CAC) at IIoT gateway serves as the
trusted third-party agency that is responsible for issuing, distribution, status viewing and
recovery of the digital certificates. The general duty of the CAC is to associate IIoT device
identities to a public key and digitally sign the sensitive information using his private
key. The owner of the digital certificate can be verified using the public key of CAC [10].
Furthermore, CAC can generate and publish certificate status information, maintain the
security and availability, revoke public key certificates, and continuity of the certificate
issuance signing functions.

Regardless of the platform design of IIoT, the network model of IIoT is susceptible to
numerous cyberattacks at all layers of TCP/IP model including application layer, network
layer, and sensing layer. The cyberattacks exploit the vulnerability of IIoT system to harm,
interrupt, gain unauthorized access to the sensitive information; or interrupt the production
processes which may decrease the IIoT benefits. The IIoT cyberattacks might include
physical attacks, device hijacking or spoofing, denial of service, man-in-the-middle, botnets,
and data breaches. Unfortunately, IIoT platforms do not have security standard protocols
that can defend against the aforementioned cyberattacks. Moreover, the standard TCP/IP
cryptosystem imposes an essential computation cost because of the complex mathematical
operations that must be executed in the encryption and decryption phases. Therefore,
efficiently developing fast, compact, and secure cryptographic mechanisms for the IIoT
is a demanding task. The developer of the cybersecurity mechanism on IIoT platform
should design lightweight and efficacious mechanisms to prevent the disclosure of sensitive
information to unauthorized attackers and to verify access to the IIoT services [11,12].

1.1. Problem Statement and Motivation

Asymmetric cryptography in conjunction with digital signatures has a crucial weak-
ness in the confirmation of the true identity of the sender which means the private key
of the sender that was used to encrypt the digital signature could be an impostor private
key [13]. Furthermore, the implementation of asymmetric algorithms in IIoT is more com-
plex and utilizes more time and energy. However, distributing and maintaining a secure
single key among multiple users, who are often scattered geographically, poses significant
challenges. This paper intends to investigate an effective, secure symmetric cryptographic
mechanism based on digital certificate management and ECDH over Industrial Internet of
Things networks.



Sensors 2021, 21, 2810 3 of 24

1.2. Summary of Contributions

This paper reports the following contributions:

• This research proposes an effective certificate authority management based on ECDH
which is used to create a shorter digital certificate that is more suitable for resource-
constrained devices. The proposed system can verify the true identity of the sender
and provide protection against impersonation by binding a public key to its owner.

• This research proposes a symmetric cryptographic mechanism based on lightweight
and effective mathematical operation on ECDH. It resolves the problem of exchanging
secret key through the insecure communication channel and offers an efficient compu-
tation and communication costs, less execution (processing) overhead and storage.

• This research studies the adversary model for ESSC on IIoT and analyzes the cyber-
security of the proposed ESSC in the random oracle model which is considered a
standard proven security method.

Finally, several simulation experiments have been conducted to evaluate the per-
formance of the proposed ESSC in terms of communication, computation, and storage
costs. The rest of this paper is structured as follows: Section 2 describes the related works
on cryptographic and digital certificate algorithms over IIoT. The system design of the
proposed ESSC algorithm is described in Section 3. Section 4 presents the threat model and
cybersecurity analysis of ESSC mechanism. Section 5 explains the implementation of ESSC
on IIoT and Section 6 presents the limitations of Implementation ESSC on IIoT. Finally, the
conclusion and future work are explained in Section 7.

2. Related Work on Cryptographic and Digital Certificate Algorithms on IoT

Although many researchers have studied security algorithms in IIoT, a limited amount
of research has benn focused on the development of effective, lightweight cybersecurity
algorithms that target resource-constrained devices, especially for the sensors and actuators
in IIoT networks. Thus, the overview of related works in this paper focuses on research
studies that develop lightweight digital certificates, digital signatures and cryptographic
algorithms for IIoT networks.

2.1. Lightweight Digital Certificates and Signatures in IoT systems

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) offer
communications security for IoT that can prevent eavesdropping, tampering, and message
forgery [14]. The relevant features of lightweight digital certificates for resource constrained
IoT devices were first proposed by Forsby et al. [15], who developed a lightweight version
of the X.509 (LX.509) certificate for IoT which provided compression and encoding schemes
for the profiled certificate. An important feature is the compatibility with the X.509 standard
which can be used in any existing PKI solution.

Elliptic curve cryptography (ECC) has been utilized in several cryptographic algo-
rithms, including the elliptic curve digital signature algorithm (ECDSA [16]) which is a
cryptographic public-key algorithm. Muhammad et al. [17] proposed a so-called shortened
complex digital signature algorithm (SCDSA) for securing communication between smart
devices in human-centered IoT applications. The research presented by Yasir et al. [18]
proposed a lightweight security mechanism based on ECC and ElGamal for encryption and
decryption over public-key (EEoP) infrastructures. Furthermore, Alizai et al. [19] devel-
oped a secure multi-factor authentication method which uses digital signatures and device
capability to authenticate a device on IoT. Sciancalepore et al. [20] also developed a key
management protocol (KMP) which combines implied certificates with ECDH exchange
for verifying authentication and key generation.

2.2. Lightweight Cryptographic Algorithms on IoT

Elliptic Curve Integrated Encryption Scheme, or ECIES, is a mixed encryption system
proposed by Victor Shoup in 2001. ECIES is combined with advanced standard encryption
and called ECIES_AES, whereby a symmetric key from Elliptic Curve Cryptography (with-



Sensors 2021, 21, 2810 4 of 24

out the need for the Diffie-Hellman exchange) is created and used in encryption with 256-bit
AES in ECB mode. Also, ECIES is combined with Rabbit and called ECIES_Ra). Rabbit
is a standard stream cipher encryption protocol that has been designed for high perfor-
mance software and described in RFC4503. NIST reports many lightweight authenticated
encryptions with associated data (AEAD) ciphers which have been developed recently
to deal with the needs of resource-constrained devices such as IoT systems [21]. AEAD
provides data confidentiality, integrity and authentication. For instance, Seok et al. [22]
designed secure D2D communication based on ECC and AEAD ciphers to cover resource-
constrained IoT devices. Tokens have been used as the ECDSA with the associated data
in the secure data communication step. The research presented by Muhammad et al. [23]
proposed a lightweight encryption algorithm named Secure IoT (SIT) which is a mixture
of Feistel and a uniform substitution-permutation network which requires a 64-bit key to
encrypt the data. Also, Rajesh et al. [24] proposed a tiny symmetric encryption algorithm
(NTSA) which adds a dynamic key confusion for each round of encryption for the transfer
a text files through the IoT network. The combination of authentication and cryptography
has been presented in Shah et al. [25] in which they proposed a combination of encryption
algorithms, Diffie–Hellman, and a multifactor authentication system to share a secret key
over the network. Shivraj et al. [26] proposed a lightweight one-time password (OTP)
scheme based on Identity-Based Elliptic Curve Cryptography (IBE-ECC). However, IBE-
ECC depends on a pre-shared key-based Diffie-Hellman exchange which is not enough
to create secure encryption. Hammi et al. [27] proposed OTP that relies on Elliptic Curve
Cryptography and Isogeny. Ayoub et al. [28] proposed a secure authentication and en-
cryption based on improved ECC which is an asymmetric encryption scheme based on
user credentials and biometric parameters. Also, Adeel et al. [29] developed a lightweight
authentication algorithm based on elliptic ElGamal encryption. The authors combined
the public key infrastructure (PKI) and ECC to generate a key pair and to exchange the
secret key among IoT devices. Table 1 summarizes the most related research works and the
limitations of each study.

The limitations of previous literature studies [14–28] can be divided into three types:
Firstly, most of these research studies did not consider the hardware resource constraints
and the appropriate architecture of IoT in the design of digital signature and cryptographic
schemes is not considered. Secondly, the vulnerabilities of ECDH on IIoT were not covered
and investigated as well. Finally, the divergence of IIoT devices’ abilities was not carefully
taken into the design of the digital certificate and cryptographic mechanisms.



Sensors 2021, 21, 2810 5 of 24

Table 1. Summary of related works.

Approaches Date of Publishing Methodology and Features Limitations

Forsby et al. [15] 2017 The authors proposed lightweight X.509 (LX.509) which is
compatible with the X.509 standard.

It uses concise binary object representation (CBOR) to encode
and ultimately compress the profiled X.509 certificate.

ECDSA [16] 2001 It is the elliptic curve analogue of the digital signature algorithm. Slowness design flaws and insufficiently defensive.

SCDSA and MPS-SCDSA [17] 2018 It secures communication between smart devices in human
centered IoT. It needs high processing resources and consumes extra energy.

Yasir et al. [18] 2017
It proposes a lightweight security mechanism based on ECC and

ElGamal for encryption and decryption over public-key
infrastructure (EEoP).

It lacks the security and adversary mode analysis.

Alizai et al. [19] 2018
It proposes a secure multi-factor authentication which uses

digital signatures and device capability to authenticate a device
on IoT.

The parameters of the digital signature scheme are not
adequate to claim authenticity.

KMP [20] 2017 It combines implied certificates with ECDH exchange for
verifying authentication and key generation It consumes more resources due its use of implied certificates.

B. Seok et al. [22] 2020 It proposes a secure D2D communication based on ECC and
AEAD ciphers to cover resource-constrained IoT devices. It lacks security and adversary mode analysis.

SIT [23] 2017 It uses a mixture of feistel and a uniform
substitution-permutation network. It consumes more resources due to using complex permutation.

NTSA [24] 2019 It proposes a dynamic key confusion for each round of
encryption for the transfer a text files through the IoT network. It is limited to text file transmission.

Shah et al. [25] 2017
It proposes a combination of encryption algorithms,

Diffie–Hellman, and a multifactor authentication system to share
a secret key over the network.

It lacks security and adversary mode analysis.

IBE-ECC [26] 2015 It proposes a lightweight one-time password (OTP) scheme
based on Elliptic Curve Cryptography.

It depends on a pre-shared key based Diffie-Hellman exchange
which is not sufficient to create secure encryption.

M. Ayoub et al. [28] 2020 It proposes a secure authentication and encryption based on
improved ECC that used biometric parameters. The biometric parameters are vulnerable to unpredicted errors.

Adeel et al. [29] 2019 It merges two algorithms: ECC to select the key pair, and
Elgamal to exchange the secret key. It lacks the adversary mode analysis.



Sensors 2021, 21, 2810 6 of 24

3. System Design of ESSC Algorithm

The proposed cybersecurity mechanism primarily consists of digital certificate man-
agement, and symmetric cryptographic algorithms which will ensure a high degree of
cybersecurity protection against cyberattacks over IIoT.

3.1. Digital Certificate Management Algorithm

The main purpose of digital certificate management is to securely exchange the shared
secret key and to resolve the problem of spoofing attacks that are used to impersonate the
identity of CAC. The proposed digital certificate management on IIoT consists of three
functions which are management of issuance digital certificate, management of distribution
digital certificate, and management of digital certificate recovery that will resolve the most
critical certificate authority issues on IIoT networks. In order to design the three proposed
functions, the following assumptions are made throughout this paper:

• The IIoT gateway (CAC) has a robust security mechanism which cannot be compro-
mised by any attacker.

• The public key of the CAC and the domain parameters of the Elliptic Curve Diffie
Hellman (ECDH) are embedded and uploaded to all IIoT devices during a program-
ming session.

• The content of the digital certificate includes the certificate ID, public key of the digital
certificate owner, ID of IIoT device, expiration time, and the digital signature of CAC
for all fields of the certificate.

The following subsections describe the three algorithms and explain how these al-
gorithms are used to secure the IIoT networks. All the notation used in this research is
summarized in Table 2.

Table 2. Frequently used notation.

Notation Meaning Notation Meaning

C Ciphertext IIoT Industrial Internet of Things
CAC Certificate authority center (i.e., Gateway) M Plaintext message
CCA Chosen-cipher attack m Converting M to the integer number
CPA Chosen-plaintext attack n order of G

d Private key O An extra point at infinity of the curve
dC Private key for CAC P Modular prime
dS Private key for source PFS Perfect forward secrecy
D Destination node Q Public key

DA Direct access QC Public key for CAC
DC Digital Certificate QS/C Public key for Source or CAC

DCC Digital Certificate for CAC QS Public key for Source
DCS Digital Certificate for source IIoT device R Secure random number
DS Digital signature RDC Request digital certificate

ECC Elliptic curve cryptography S Source node
ECDH Elliptic Curve Diffie Hellman SSK Shared secret key
ESSC Effective secure symmetric cryptography X1 The X coordinate of random point E

G Base point generator XK Shared secret key
h Subgroup cofactor Zn The set of integer number modulo n

3.1.1. Issuance and Distribution of Digital Certificate

The standard certificate authority mechanism is designed based on an asymmetric
cryptography concept. This means the CAC should sign the digital certificate with his
private key and the third party can verify any digital certificate using the public key of
the CAC. However, the proposed certificate authority mechanism is designed based on
Elliptic Curve Diffie Hellman (ECDH) which is used to create a shorter shared secret key
that is more suitable for resource-constrained devices compared to other cryptographic



Sensors 2021, 21, 2810 7 of 24

algorithms (e.g., RSA). The elliptic curve is a set of points that is defined by the solution of
the following equation:

E =
{
(x, y)

∣∣∣y2 = x3 + ax + b
}
∪ {O}, a, b ∈ K(Z/pZ) Satisfy (4a3 + 27b2) 6= 0 (1)

where K is a finite field of integer numbers, modular prime P; O represents an extra point
at infinity of the curve. Initially, the domain parameters p, a, b, G, n, and h represent the
public information that should be agreed among CAC, sensor, actuator, remote IIoT user,
etc. The parameter p specifies the prime of the base finite field of the curve (modulo p), G is
the base point generator, n is the order of G, and h is the subgroup cofactor. In the proposed
system, the CAC and the IIoT devices must have a key pair containing of a private key d (a
randomly nominated integer number between 1, and n − 1) and a public key represented
by a point Q (where Q = d × G, that is, the result of adding G to itself d times). Figure 1
illustrates the proposed time diagram of the issuance digital certificate and the handshake
procedure that are used to create the shared secret key. The IIoT devices should request
a digital certificate (RDC) from the CAC. The RDC contains information identifying the
IIoT device (such as ID, Q) which must be signed using the IIoT’s private key. The CAC
must verify the true identity of the sender using the digital signature included in the RDC
and the verification of the public key as a valid curve point using three steps: 1. Check
that Q is not equal to the identity element O, 2. Check that QS/C is a point on the curve,
and 3. Check that n × QS/C = O. After the successful verification of the true identity of the
sender, the CAC replies to each request with the appropriate digital certificate (DC). Upon
receiving the DC, the IIoT device will use the stored value of QC to verify the signature of
the CAC that is appended in the received DC. Let us assume that the remote IIoT device
wants to create a direct access (DA) to the sensor or actuator (usually the sending and
receiving packets pass through the IIoT gateway); he will issue a handshake request that
contains his DCC to the sensor or actuator. Upon receiving the handshake request, the
sensor or actuator will verify the identity of the sender using the DCC. Furthermore, the
sensor or actuator will calculate the shared secret key and will send it to the sender of the
handshake request as (XK, YK) = dS ×QC. In addition, the sensor or actuator will send the
confirmation message that includes his DCS to the sender of handshake request. Upon
receiving the confirmation message, the sender of the request (remote IIoT device) will
verify the identity of the sensor or actuator and he will calculate the shared secret key as
(XK, YK) = dC × QS. Finally, the shared secret key will be XK which is equal in both parties,
because dS × QC = dS ×dC × G = dC × dS × G = dC × QS. It is interesting to note that is
denoted to the scalar elliptic curve point multiplication by a scalar. Moreover, Q, d, and
XK are ephemeral (dynamic) which means they are changed based on establishing a new
session between the source and the destination. Indeed, the ephemeral shared secret key
is recommended by RFC8442 to provide important security properties for ECDH such as
perfect forward secrecy (PFS) and key-compromise impersonation resilience. The XK is
used as a master key to encrypt and decrypt the plaintext during the transmission session.

3.1.2. Recovery of Digital Certificate

The gateway has the capability to store the list of revoked digital certificates that
might get lost, stolen, broken, compromised, expired, or revoked. Figure 2 depicts the
procedure of the DC recovery which is started by sending a recovery request from an IIoT
device (sensor, actuator, and IIoT remote user) to the CAC. The recovery request should
include the revoked DC, the reason for the revocation, and the signature of the revocation
request. The request verification in Figure 2 includes two verification procedures at the
CAC: verification of the sender and validation of the revocation request. In first verification,
the CAC will verify the correctness of the revocation request using the digital signature of
the sender that must be included in the request. If the sender identity has been verified
and the correctness of revoked DC have been validated, the CAC will add the revoked DC
to the list of revocation DCs. Since the unique information of the revoked DC (e.g., ID of



Sensors 2021, 21, 2810 8 of 24

DC and the sender ID) and the expiration time of new DC have been stored at the CAC,
the replaying/duplication of the certificate issuance request will be prevented. Finally, the
CAC will create a new DC baseds on the received information and send it to the sender.

Figure 1. Issuance of digital certificate and handshake establishment algorithm.

Figure 2. Digital certificate recovery algorithm.



Sensors 2021, 21, 2810 9 of 24

3.2. Lightweight Cryptographic Algorithm

The proposed secure symmetric cryptography uses ephemeral shared secret key that
has been calculated from the previous step to be used in the encryption and decryption
process which will prevent the disclosure of the sensitive information. The dynamic shared
secret key is varied for each session which ensures forward secrecy protection. Furthermore,
the proposed mechanism uses the scalar multiplication of the secure random number (R)
and the G (the base point generator) to create a new point on the elliptic curve E(X1, Y1)
which will be used to randomize the ciphertext for each message.

The encryption algorithm is implemented at the source node using the following steps:

• Select a cryptographically secure random integer R between 1, and n − 1.
• Calculate XK as K(XK, YK) = dS × QD, where dS is the private key of the source and

randomly nominated integer number between 1, and n − 1; QD is the public key of
the destination.

• Calculate E(X1, Y1) = R× G.
• Compute T= X1 ⊕ StrToInt(Hash(XK) mod n), where Hash() is a cryptographic hash

function, such as a CMA [30] or SHA-256 [31] and ⊕ is a bitwise XOR operation.
• Calculate C[0 . . . i] = T × m[0 . . . i] mod n, where m[0 . . . i] is the converting of the

plaintext message (M[0 . . . i]) to the integer number using an agreed-upon reversible
protocol known as a padding scheme. Each chunk (M) should include 24 bytes which
is encrypted based on the elliptic curve (e.g., Secp192r1 that used in this research) [32].

• Send C[0 . . . i] and X1 to the destination.
• X1, and XK are randomly nominated in each session that is associated between the

source and destination.

The decryption algorithm is implemented at the destination node using the follow-
ing steps:

• Verify the public key of the sender (QS) based on three steps of curve point inspection:
1. Check that QS is not equal to the identity element O, 2. Check that QS lies on the
curve, and 3. Check that n QS = O.

• Calculate XK as K(XK, YK) = dD × QS, where dD is the private key of the destination
and it is randomly nominated integer number between 1, and n − 1.

• Compute T = X1 ⊕ StrToInt(Hash(XK) mod n), where Hash() is the same function used
in the encryption process.

• Calculate m[0 . . . i] = C[0 . . . i] × T−1 mod n, where T−1 mod n can be solved using a
modular multiplicative inverse.

• Convert m[0 . . . i] back to the plaintext (M[0 . . . i]) and remove the padding bytes
from last chunk M[i].

The pseudocode of ESSC algorithm is introduced in Algorithm 1. The destination
will follow the same procedure as a source if it sends back a reply message. In that case,
the source will act as the destination and the destination will act as the source. Algorithm
1 presents the pseudo code of the proposed algorithm. In this algorithm, the source and
the destination nodes must use the proposed digital certificate to exchange the public key
between the parties of communication. After that, the public key will be used to create the
shared secret key. Each encrypted message is created based on a secure random number
and a shared secret key; therefore, the ciphertext is different for a similar message which
satisfies the ciphertext indistinguishability (IND-CPA) and it prevents the replay attacks.



Sensors 2021, 21, 2810 10 of 24

Algorithm 1: ESSC Algorithm at Source (S) Node

Input: DC, the domain parameters p, a, b, G, n, h;//DC: Digital Certificate
Output: SSK, C;//SSK: Shared Secret Key, C: Ciphertext
Start Algorithm (ESSC)

1 | While (new session starts) do
2 | Pick private key (dS);//1 ≤ dS ≤ n
3 | QS = dS × G);//QS: the public key of the source node
4 | Request_DC(ID, QS, Sing());//Request a DC from CAC
5 | CAC_Verify (RDC);//CAC verifies the request and the identity of the sender; RDC: Request Digital Certificate.
6 | if (DCS is received);//Receive DCS from CAC
7 | Verify (CAC, DCS);//Verify the DCS and the CAC
8 | End
9 | if (DA is received)//Receive DA request from IIoT device
10 | Verify (CAC, DCC); //Verify the DCC sent from IIoT device
11 | Obtain (Qc);//Get the public key of IIoT device from DCC
12 | SSK (XK,YK) = dS × QC; //calculate shared secret key (XK)
13 | End
14 | Pick Random Number (R);//1 ≤ R ≤ n
15 | E (X1,Y1) = R × G; //calculate the curve point (E)
16 | T = X1 ⊕ (StrToInt(Hash(XK)) mod n);

17
| if (Count(M) > 24)//count number of bytes in M, 24 (192 bits) which related to elliptic curve (Secp192r1) used
in this paper

18
| M[0 . . . i] = Split(M,24);Pad(M(i),24);//Split M to number of chunks each 24 bytes, last chunk will be padded
to be 24 bytes

19
| m[0 . . . i] = StrToInt(M[0 . . . i]);//convert the plaintext to number; m[i] is the last part of converting of M[i]
with padding

20 | C[0 . . . i] = (m[0 . . . i] × T) mod n;//C: the ciphertext
21 | Send (C[0 . . . i], X1);//Send the ciphertext and X1
22 | End;//While loop
23 End;//Algorithm

ESSC Algorithm at destination (D) node
Input: DC, C[0 . . . i], X1, the domain parameters p, a, b, G, n, h;//DC: Digital Certificate, C: Ciphertext
Output: M[0 . . . i], SSK;//SSK: Shared Secret Key,
Start Algorithm (ESSC)

1 | While (new session starts) do
2 | Pick private key (dC);//1 ≤ dC ≤ n
3 | QC = dC×G;//QS: the public key of the source node
4 | Request_DC(ID, QC);//Request digital certificate from CAC
5 | CAC_Verify (RDC);//CAC verifies Request Digital Certificate
6 | if (DCC is received);//Receive DCC from CAC
7 | Verify (CAC, DCC);//Verify the DCC and the CAC
8 | End
9 | Send_DA (S)//Send DA request to the Source (S)
10 | if (DA Confirm is received)//Receive DA Confirm from S
11 | Verify (CAC, DCS);//Verify the DCs sent from IIoT device
12 | Obtain (QS);//Get the public key of the S from DCS
13 | SSK (XK,YK) = dC × QS; //calculate shared secret key (XK)
14 | End
15 | if (C[0 . . . i] and X1 are received)//D receives C[0 . . . i] and X1
16 | Check (QS);//check public key of the S is a curve point
17 | T = X1 ⊕ (StrToInt(Hash(XK)) mod n);
18 | m[0 . . . i] = (C[0 . . . i] × T−1) mod n;//m: the ciphertext
19 | M[0 . . . i] = Convert_IntToStr(m[0 . . . i]); Remove_pad(M(i),24);
20 | End
21 | End;//While loop
22 End;//Algorithm



Sensors 2021, 21, 2810 11 of 24

4. Adversary Model and Cybersecurity Analysis

In order to evaluate the security assurance of ESSC, an adversary model is defined
based on random oracle model to simulate the cyberattacks on ESSC and exploit the
vulnerabilities of IIoT.

4.1. Adversary Model for ESSC on IIoT

The adversary model consists of possible attacks that can be implemented using exter-
nal or internal adversary on ESSC based IIoT. In the cryptanalysis, the adversary is assumed
to have the capability to breach ESSC cryptographic security system and gain access to
the contents of encrypted messages, even if the shared secret key is unknown [33–39].
This research studies the following attacks’ model for cryptanalysis in the random oracle
model (ROM):

• Chosen-plaintext attack (CPA). It presumes that the adversary can obtain the ciphertexts
for arbitrary plaintexts. In the adaptive CPA (CPA2), the adversary can make his
choice of the inputs to the encryption function of ESSC based on the previously chosen
plaintext queries and their corresponding ciphertexts [38]. Let an adversary A has
access to an oracle with any pair of equal-length messages (m1, m2) as input. The
oracle will return a ciphertext as output.

Definition 1. Let ESSC = (K, E, D) be a symmetric encryption scheme, and A be an adversary that
has access to the oracle. The IND-CPA advantage of A is defined as:

Advin-cpa
ESSC

(A) = Pr[k← K; C ← Ek(m1) : A(C) = 1]− Pr[k← K; C ← Ek(m2) : A(C) = 1] (2)

If the advantage is small, it means that is not doing well and ESSC is secure. In contrast, if
the advantage is large, it means that is doing well and ESSC is not secure.

• Chosen-ciphertext attack (CCA). It presumes that the adversary can obtain the decryption
of any ciphertext(s) of its choice. In the adaptive CCA (CCA2), the adversary can make
his choice of the inputs to the decryption function of ESSC based on the previously
chosen ciphertexts queries [39].

Definition 2. Let ESSC = (K, E, D) be a symmetric encryption scheme, and A be an adversary that
has access to the E and D oracle. The IND-CCA advantage of A is defined as:

Advin-cca
ESSC

(A) = Pr[k← K; C ← Ek(mb); b← {0, 1}; b′ ← A(Ek(.), Dk(.)) : b′ = b] (3)

The adversary’s access to the decryption oracle is unlimited except for the restriction that the
adversary should not request a query to the decryption oracle because C was previously returned by
the encryption oracle. ESSC is secure against IND-CCP if a “reasonable” adversary cannot obtain

“significant” advantage in distinguishing the cases b = 0 and b = 1 given access to the oracles, where
reasonably reflects its resource usage.

• Related-key attacks. The adversary knows or chooses a mathematical relation between
several keys and is given access to encryption functions (E) of ESSC with such related
keys. The goal of the attacker is to find the actual secret key(s) (XK). Let us define
Perm(K, Zn) as the set of all block-ciphers with domain Zn and key-space K. Moreover,
let Φ be a set of functions that map k to K. We call Φ the set of allowed related-key-
deriving (RKD) functions. Also, let us define the related-key oracle Erk(·,k)(.) on the E
of ESSC as an oracle that takes two arguments, φ ∈ Φ and an element M ∈ Zn, and it
returns Eφ(k)(M). The pseudorandom permutation with respect to related-key attacks
(PRP-RKA) can be defined as follows:



Sensors 2021, 21, 2810 12 of 24

Definition 3. Let E: K × D→D be a family of functions and let Φ be a set of allowed RKD
functions over K. Let adversary A has access to a related-key oracle, and restricted to queries of the
form (φ, M) in which M ∈ Zn. Then the PRP-RKA advantage of A in a Φ-restricted related-key
attack (RKA) on E is defined as:

Advprp-rka
Φ,E

(A) = Pr[k← K : A(E(φ(k), M)) = 1]− Pr[k← K; G ← Perm(K, D) : A(G(φ(k), M)) = 1] (4)

The adversary model allows A to choose a function φ which transforms the target key
K into the key φ(K), and then to obtain the value of the block cipher, on an input of A’s
choice, under this transformed key. If the advantage is small, it means that ESSC is secure
against Φ-restricted related-key attack. In contrast, if the advantage is large, it means that
A is doing well and ESSC is not secure against Φ-restricted related-key attack.

4.2. ESSC Cybersecurity Analysis

ESSC is designed based on the digital certificate to share the ephemeral shared secret
keys that are different for each session, and can provide important security properties
such as PFS and key-compromise impersonation resilience. Indeed, the ephemeral shared
secret key for ECDH is recommended by RFC8442. The cryptographically secure random
that was multiplied with the base point in the elliptic curve is used to create random
ciphertext indistinguishability (IND-CPA) and it prevents the replay attacks. This section
explains the cybersecurity analysis for ESSC in ROM. The proven security of ESSC under
ROM investigates the previous attacks on the proposed shared secret key-derivation,
cryptography, and digital certificate algorithms.

4.2.1. Proven Security for ESSC in ROM

Let us assume that the sender and receiver shared a secret random key such as
XK ∈ {0, 1}L (where L = |XK| = |n| = |p|; is the length of each domain parame-
ter in Secp192r1 which is equal to 192 bits) and the base point as G(x, y) ∈ Ea,b(Zn).
To encrypt message M ∈ {0, 1}L, the sender picks a random R ∈ {0, 1}L, computes
E(X1, Y1) = R× G(X, Y) and T(X1, XK) = X1⊕H(XK) mod n, computes C = T ×M modn,
and sends (X1, C) to the receiver. To decrypt the ciphertext (X1, C), the receiver computes
T(X1, XK) = X1 ⊕ H(XK) mod n and M = T−1 × C mod n. In order to prove the
security of ESSC cryptography, the ROM is used to instantiate the hash function as
H(.) : {0, 1}∗ → {0, 1}L .

Theorem 1. If T is a (t, ε)-pseudorandom function (PRF), then the ESSC cryptographic is secure
in the sense of indistinguishability against CPA (secure against IND-CPA).

Proof. This theorem will be proven through the contradiction methodology in which we
assume the encryption (E) of ESSC is not secure. This means there exists some algorithm
probabilistic polynomial time (PPT) A that breaks it. We will show how to use such
algorithm to construct a PPT distinguisher B which can distinguish the output of T from a
random string with non-negligible probability. This will contradict the fact that T is PRF;
hence, our original assumption is false and the encryption (E) of ESSC must be secure. Let
us assume we have an adversary A attacking the encryption (E) of ESSC in the sense of
IND-CPA and we have messages M0, M1 for which:∣∣∣∣ Pr[H(XK)← Z∗n ; T ← X1⊕ H(XK); C ← M0 × T : A(C) = 0]

−Pr[H(XK)← Z∗n ; T ← X1⊕ H(XK); C ← M1 × T : A(C) = 0]

∣∣∣∣ = γ(L) (5)

where γ(n) is not negligible. We construct an algorithm B which tries to distinguish T
from the random function. The adversary B is given oracle access to T which is either a
completely random function or PRF. B runs as follows: (1) Choose random b ∈ {0, 1},
(2) B sets C = T ×Mbmodn, (3) Run A(C) to get b′ which represents A’s guess as to what



Sensors 2021, 21, 2810 13 of 24

message was encrypted. If b = b′ (A guessed correctly) then B guesses pseudorandom
which denoted by B outputs “1”. In contrast, If b 6= b′ (A did not guess correctly) then B
guesses random which denoted by B outputs “0”. The algorithm B distinguishes output of
T as: ∣∣Pr[H(XK)← Z∗n ; y← T(H(XK)) : B(y) = 1]− Pr[y← Z∗n : B(y) = 1]

∣∣ (6)

Let us look at each of these terms individually as: P1
def
= Pr[H(XK) ← Z∗n ; y ←

T(H(XK)) : B(y) = 1] and P2
def
= Pr[y← Z∗n : B(y) = 1] . In step 3, the algorithmdid the

following:

P1 = Pr[H(XK)← Z∗n ; y← T(H(XK)) : b ∈ {0, 1}; b′ ← A(T ×Mb) : b′ = b] (7)

Conditioning on the value of b gives:

P1 = Pr[H(XK)← Z∗n ; y← T(H(XK)) : A(T ×M0) = 0]× Pr[b = 0] + Pr[H(XK)← Z∗n ; y← T(H(XK)) : A(T ×M1) = 0]× Pr[b = 1]

Using the fact: Pr[b = 0] = Pr[b = 1] = 1
2 , and

Pr[H(XK)← Z∗n ; y← T(H(XK)) : A(T ×M1) = 1] = 1− Pr[H(XK)← Z∗n ; y← T(H(XK)) : A(T ×M1) = 0]

gives:

P1 = 1
2 +

[
1
2 ×

(
Pr[H(XK)← Z∗n ; y← T(H(XK)) : A(T ×M0) = 0]− Pr[H(XK)← Z∗n ; y← T(H(XK)) : A(T ×M1) = 0]

)]
= 1

2 +
(

1
2 × γ(L)

) (8)

P2 is calculated as:

P2 = Pr[y← Z∗n : b ∈ {0, 1}; b′ ← A(T ×Mb) : b′ = b] (9)

As before, we eventually get:

P2 =
1
2
+

[
1
2
×
(

Pr[y← Z∗n : A(T ×M0) = 0]− Pr[y← Z∗n : A(T ×M1) = 0]
)]

(10)

Since y is completely random and T(X1, XK) = X1 ⊕ H(XK) mod n, the success
probability of A when attacking the one-time pad is 0. Thus, P2 is 1/2. Putting everything
together gives:

∣∣Pr[H(XK)← Z∗n ; y← T(H(XK)) : B(y) = 1]− Pr[y← Z∗n : B(y) = 1]
∣∣ = |P1 − P2| =

∣∣∣∣12 ± γ(L)
2
− 1

2

∣∣∣∣ = γ(L)
2

(11)

Since γ(L) was not negligible, γ(L)
2 is not negligible. This means that A had non-

negligible advantage in breaking the encryption of ESSC and therefore B had non-negligible
advantage in breaking the PRF (i.e., distinguishing output of from random). However, this
contradicts the fact that T is a (t, ε)-PRF and our assumption must be wrong, and no such A
can exist; hence, the encryption of ESSC is secure. 2

Theorem 2. Let E: K× {0, 1}L→ {0, 1}L be a block cipher and let ESSC = (K, E, D) be a symmetric
encryption scheme, then for all PPT adversaries, the IND-CCA advantage of A is negligible in
the ROM.

Proof. Let us assume there exists some algorithm PPT A that breaks ESSC in the sense of
IND-CCA for which Advin-cca

ESSC
(A) = 1. The encryption oracle EK (mb) takes input a pair of

messages, and returns an encryption of either (m0, m1) message in the pair, depending on
the value of b. The goal of A is to determine the value of b and it works as follows:

A(E(mb), D (·)) {



Sensors 2021, 21, 2810 14 of 24

m0 ← 0L; m1 ← 1L; (X1, C)← EK((m0, m1), b);
C′ ← C ⊕ 1L; M← DK(X1, C′);

If M = m0 than return 1 else return 0}

The encryption oracle is queried with the pair of distinct messages (m0, m1), each one
block long and the a ciphertext (X1,C) is returned. The adversary flips the bits of C to get
C′ and then feeds the ciphertext (X1,C′) to the decryption oracle to obtain the message M.
Finally, the adversary can flip the bits of M (i.e., the flip bits should be in same position
that are flipped in C) to obtain the original message (plaintext). It is interesting to note that
(X1,C′) = (X1,C), so the decryption query is legitimate. The advantage of A in attacking
ESSC with IND-CCA is drefined as:

Advin-cca
ESSC

(A) = Pr[Expind−ccp−1
ESSC (A)]− Pr[Expind−ccp−0

ESSC (A)] (12)

Let us look at each of these terms individually, we start with Expind−ccp−1
ESSC (A) (b = 1)

as: C = EK(m1, b) = T ×m1modn. If we flip bit i of C, resulting in a new ciphertext C′ and
the decryption oracle with C′ is queried as:

M = DK
(
X1, C′

)
= T−1 ×

[
(T ×m1mod n)⊕ 1L

]
mod n = T−1 ×

[(
T × 1Lmod n

)
⊕ 1L

]
mod n (13)

The modular multiplication does not distribute over XOR (e.g., 6× (3⊕ 7) 6= (6× 3)⊕
(6× 7)) and it also does not associate over XOR (e.g., 6× (3⊕ 7) 6= (6× 3)⊕ 7). Hence, M6= m0

and the returned value is 0 which means A did not guess correctly and Pr[Expind−ccp−1
ESSC (A)] is

0. Eventually, the second term can be proven as before in which Pr[Expind−ccp−0
ESSC (A) is 0.

Putting everything together gives Advin−cca
ESSC

(A) is 0. Thus, The advantage of A in attacking
ESSC with IND-CCA is negligible. 2

Theorem 3. Let E: {0, 1}L × {0, 1}L→ {0, 1}L be a block cipher and let ESSC defined as
Ẽ (K, X1,M) = E(KX1, M). Then given ESSC-PRP adversary A against Ẽ we can construct
Φ⊕k (φ(K) = K⊕ k)-restricted PRP-RKA adversary B against E such that:

Advessc-prp
Ẽ

(A) ≤ Advprp-rka
Φ⊕k ,E

(B) (14)

Proof. Let B be an adversary that runs A and, when A makes an oracle query M, B makes
oracle query (φ, M) and returns the response to A as follows:

Adversary BFRK(.,K)(.) {
Run A, responding to A’s request (X1, M) as follows:

Return FRK(.,K)(M){K′ ← K⊕ X1
C ← EK′(M); (M); Return C;} to A;

Until A halts returning a bit b; Return b;}
If A queries its oracle with X1 (q times), then B runs at the same time as A and queries

its oracle with key transformation φ(K) (q times). We measure its success in determining
whether its oracle queries are being answered via the block cipher Ẽ or via a random block
cipher. The following equality holds because K⊕ X1 is a permutation on K and B computes
Ẽ exactly:

Pr[k← K : A
(

Ẽ(k, X1, M)
)
= 1] = Pr[k← K : B(E((k⊕ X1), M)) = 1] (15)

Furthermore, because for each X1 in A’s queries of G, B replies to A using an inde-
pendently selected random permutation on {0, 1}n. This is mainly due to the fact that
InSeccr

Φ⊕k

(∣∣Φ⊕k ∣∣) = 0. Consequently, the following equality holds as well:

Pr[G ← Perm(l, n) : A(G(k, X1, M)) = 1] = Pr[k← K; G ← Perm(l, n) : BA(G(k⊕ X1, M)) = 1] (16)



Sensors 2021, 21, 2810 15 of 24

From Equations (15) and (16), Theorem 3 is proven. 2

4.2.2. Proven Security for Proposed Digital Certificate in ROM

Let us assume that RDC includes ID, Q, Sing(d, Ms) where ID ∈ {0, 1}∗, Q ∈
Ea,b(Zn), d ∈ {0, 1}L and Ms is the DC data that should be signed. The output of digital
signature function is σ ∈ {0, 1}∗. Moreover, let us assume that the output of verifying
function VerfySign(Q,Ms,σ) is 1 (valid) or 0 (invalid). Let H(Ms) : {0, 1}∗ → DQ (Domain
of Q) be a hash function modeled as random oracle. To sign DC, the output σ = Sign(d,

H(Ms)). Also, to verify signature σ on DC, we check that Sign−1(Q, σ) ?
= H(Ms).

Theorem 4. If Sign function is a (t, ε)-secure, then the ESSC digital certificate is (t, q ε)-secure
(unforgeable against adaptive CPA), where q represents the number of queries an adversary makes to
the random oracle H.

Proof. This theorem will be proven through contradiction methodology same as Theorem
1. Assume there is some adversary A which outputs a forgery for the above construction
with probability δ. We use this adversary to construct an algorithm B that inverts Sign(d,
H(MS)). B is given Q and a random element y, and tries to compute x such that Sign−1(Q,
x) = y. B(Q, y) proceeds as follows:

• Pick a random index i* ∈ {1, . . . , q};
• Run A(Q) and Answer the ith query of A to oracle H as follows (let mi denote ith

query): if i = i*, return y; otherwise, pick random ri←DQ, compute ansi = Sign−1(Q, r),
and return ansi;

• When A requests a signature on message m: find i such that m = mi; if i = i*, abort;
otherwise, return ri as the signature.

• When A outputs its forgery (m, σ) If m = mi* then output σ; otherwise, abort.

B sets things up so that it is able to answer all signature queries of A unless a signature
on mi* is requested. Note that the response of B to all other signature queries is indeed a
correct signature. Since the output (m, σ) of A can only be a forgery if A never requested a
signature on m, and since m = mj for some j (by assumption), it must be the case that there
is at least one index j for which A never requests a signature on mj. Since i* is chosen at
random, with probability at least 1/q we have j = i*. When j = i* (and A outputs a valid
forgery) then σ is indeed an inverse of y and B succeeds in inverting the Sign function.
However, this contradicts the fact that Sign function is a (t, ε)-secure and our assumption
must be wrong, and no such A can exist; hence, the digital certificate is secure as well.
To summarize the above discussion, the probability that B correctly outputs an inverse is
at least 1/q times the probability that A outputs a forgery; hence, B outputs the desired
inverse with probability at least δ/q. Since the Sign function is assumed to be a (t, ε) -secure,
we must have δ ≤ qε.

4.2.3. Countermeasure against Replay and Man-In-The-Middle Attacks

ESSC mechanism defends against the man-in-the-middle and replay attacks using the
proposed digital certificate and secure random number in the cryptographic mechanisms.
Moreover, ESSC will discard the replay attack message from the malicious nodes due to
the following reasons:

• The authentication in the digital certificate should be inspected before accepting any
data message from a man-in-the-middle. For more explanation, Section 5.1 discusses
how the IIoT device prevents the replay message from the intruder.

• Each encrypted message is created based on a secure random number which sat-
isfies the ciphertext indistinguishability (IND-CPA) property that will prevent the
replay attacks.



Sensors 2021, 21, 2810 16 of 24

• The ephemeral shared secret key is calculated and only known by the source and
destination.

4.2.4. Countermeasure against Brute Force Attacks

The proposed ESSC mechanism can defend against this attack using the PFS that
can be obtained using the hash function of the ephemeral shared secret key. The shared
secret key must change every communication session between parties in IIoT system.
Furthermore, the encryption process relies on secure random key which complicates the
brute force attack. The PFS prevents cracking the key-agreement protocol in ESSC which
might be applied by the attacker with likely quite computationally intensive.

4.2.5. Countermeasure against Stolen-Verifier and IIoT Device Capture Attacks

The ESSC algorithm preserves against those attacks using the embedded hash function
and the public key of the CAC that used to calculate digital certificate and ciphertext in the
proposed ESSC. The hash function and the CAC public key are parts of source code which
is flashed into the IIoT device using the machine level language code during programming
session. Thus, identified the shared secret key without knowing the hash function will
prevent the intruder to gain access to the IIoT network.

5. Implementation and Evolution of ESSC on IIoT

The hardware of a IIoT network is composed of sensors, actuators, IIoT devices, and
IIoT gateways. As more physical objects will be equipped with different types of sensors,
the cybersecurity software should be designed to fit the resource-constrained ones in terms
of memory and ability of processing mathematical functions. Consequently, the proposed
system used the elliptic curve equation and domain parameters that is recommended by
SECG/NIST (e.g., Secp192r1). The Secp192r1 is suitable for IIoT network because the key
size is 192 bits (24 bytes) and the time taken for the ECDH to establish the shared secret
key is 0.576 s [29]. Furthermore, the fastest known algorithm to resolve the ECDLP for
size k requires 0.886×

√
k steps, this means that to achieve a k-bit security strength, at

least 2 × k-bit key size of the curve is needed [32]. Hence, the curve Secp192r1 provides
96-bit security strength. The next generation of sensor (e.g., Lotus) is designed with an
enhanced capability such as low power ARM7 Cortex M3 with 32-bit processor, 64 kB
SRAM, 512 kB, and 64 MB serial flash memory. The 6LowPAN protocol is used to make
direct communication between the IIoT device and sensor nodes. The header length of
6LowPAN is 40 bytes and the length of payload is 127 [40]. Thus, the Secp192r1 equation
and domain parameters has been used to implement the key management of ESSC over IIoT
network. In order to implement and test the performance of ESSC, Mininet-IoT emulation
software has been used to emulate the hardware and communication specifications of
IIoT [41]. Figure 3 illustrates the emulation mesh topology which consists of eight sensor
devices (sensor1 to sensor8), one IIoT gateway (BaseST1), one mobile IIoT device (IoTDev5),
and two intruders (Intrudr6 and Intrudr7). All IIoT devices have two network interface
cards which can communicate with the IIoT gateway directly using IPv4 and communicate
with IIoT devices using 6LowPAN. The exchange of public keys and messages between all
legitimates IIoT devices are implemented using socket program code that integrated with
ESSC code. Table 3 presents the detail of the experiment’s configuration and performance
comparison metrics.

5.1. Simulation Spoofing Attack and Countermeasure

The IoT device (i.e., IoTDev5) in Figure 3 obtains the DC from the IoT gateway (i.e.,
BaseST1) which signed the DC using his private key. After that, IoTDev5 verifies the issuer
of DC using the stored public key of IoT gateway and ECDH key exchange. Figure 4 shows
the verification of genuine CAC signature upon receiving the DC from the IoT gateway.
The two parties, IoTDev5 and IoTDev5, authenticates each other in Figure 4. Let us assume
the following scenario:



Sensors 2021, 21, 2810 17 of 24

Figure 3. IoT mesh topology and ESSC implementation.

Table 3. Experiment Configuration.

Parameter Values

MAC and PHY 802.15.14_hmsim and 802.11_hmsim
Propagation Model Shadowing
Path loss exponent 3.0

Shadowing deviation (dB) 3.0
Event area (1000 m × 900 m)

Cover of IoT device 150 m
Cover range of BaseST1 250 m

Traffic Emulator TCP Socket client/server; 1000 messages
Performance metrics Computation Cost, Storage, Energy Consumption

ECDH curve Secp192r1
Key size 192 Bits (24 bytes)

MTU of the message 127 bytes
Emulation duration 1000 s

The intruder 7 (i.e., Itrudr7) used a man-in-the-middle and stolen-verifier attacks
to obtain the transferring DC between the BaseST1 and IoTDev5. Thus, the intruder 7
can pretend to be the issuer of the DC (i.e., pretend to be the CAC). As can be shown in
Figure 5, the ESSC mechanism on IoTDev5 can defend against these two attacks by using
the verification of digital signature in the DC. The public key will be used to calculate the
shared secret key which is not sent through the channel between the parties of IIoT system.
Therefore, the intruders have no chance to spoof this key. Moreover, the shared secret key
uses further hash function to remove weak bits in the specific case of domain parameters
selection. The hash function for the ephemeral shared secret key creates random number
that used to make the session identity code sporadically changes. Even if the digital
certificate is stolen, the intruder needs to resolve the digital signature of DC in order to
gain access to the IIoT network. This is basically due to the digital signature between both
parties of the session is mandatory to be used in the validation process between IoTDev5



Sensors 2021, 21, 2810 18 of 24

and BaseST1. Hence, IoTDev5 decides the DC sent by Intrudr7 is a fraud DC as can be
shown in Figure 5.

Figure 4. Verification of valid DC (a) BaseST1; (b) IoTDev5.

Figure 5. Countermeasures spoofing attack for gateway DC (a) Intruder 7; (b) IoTDev5.



Sensors 2021, 21, 2810 19 of 24

5.2. Performance Evaluation

The performance evaluation of using of ESSC (digital certificate and cryptographic)
has been analyzed in terms of storage, communication and computation costs.

5.2.1. Storage Cost Analysis

The total cost of memory usage (Tot) in IIoT device can be estimated as the summed
cost of sensed data (Sdata), communication (send/received message) data (Cdata), and the
program source code (SC) in time unit t. The equation of storage cost can be expressed as:

Tt =
n

∑
t=0

(Sdata + Cdata)t + SC (17)

5.2.2. Computation Cost Analysis

The computation cost (CP) can be calculated as the multiplication of the number of
steps per execution (s/e) for all functions (Ste) and the energy consumption of each step
(ES). The equation of computation cost can be expressed as:

CP = Ste × ES (18)

5.2.3. Communication Cost Analysis

The communication cost (Cm) can be calculated as the total number of packet over-
head (PH) that is required to implement an algorithm (digital certificate or cryptographic)
multiplied by the energy consumption of each packet (EP). The equation of communication
cost can be expressed as:

Cm = PH × EP (19)

5.3. Comparative Analysis with the State of Art Solutions

The comparison between the proposed ESSC and certificate-based authentication in
TLS/DTLS handshake (CAH), Lightweight X.509 Digital Certificates (LX.509), ECIES_AES,
and ECIES_Ra algorithms has been studied. The python source codes of all baseline
algorithms are downloaded from [42] website and implemented on the Mininet-IoT em-
ulator. Each scenario of the following experiments is repeated 20 times and each time,
1000 messages are transferred, after which the average results have been calculated for
all algorithms. The confidence level of the results is 95%. Furthermore, the cProfile and
memory_profiler Python programs have been used to estimate the deterministic profiling for
all algorithms in terms of storage, communication and computation costs.

5.3.1. Performance Comparison between ESSC Digital Certificate and Baseline Algorithms

The performance of using ESSC digital certificate (ESSC_DC) has been evaluated
based on storage, communication and computation costs. Meanwhile, the results have
been compared with CAH and L.509 benchmark algorithms. As can be seen in Figure 6,
the performance results of the three algorithms have increased sharply at the starting point
(0–1 s) due to the initialization phase of the three algorithms. After that, the performance
results have been increased gradually with the simulation time due to the certification
management between the authority parties. In Figure 6a, the ESSC_DC experiences on
average 17.7% less memory usage compared to CAH and it experiences on average 10.9%
less memory usage compared to LX.509. Moreover, Figure 6b illustrates that ESSC_DC
experiences on average 23.8% and 18.1% less computation cost compared to CAH and
LX.509 respectively. Also, Figure 6c shows that ESSC_DC consumes on average 16.9% and
13.1% less communication cost compared to CAH and LX.509 respectively. The previous
results are mainly achieved due to the following reasons. Firstly, ESSC_DC spends a smaller
number of message communication overhead compared to the LX.509 and CAH. CAH and
LX.509 consumes more resources due to the size of digital certificate includes unnecessary
fields such as Issuer and subject unique ID, Subject, Extensions. Moreover, CAH and LX.509



Sensors 2021, 21, 2810 20 of 24

used concise binary object representation (CBOR) to encode and ultimately compress the
profiled X.509 certificate. Consequently, the compress and decompress functions consume
more computation cost and increase the communication overhead.

Figure 6. Performance comparison between ESSC digital certificate and baseline algorithms on IIoT
(a) Execution Time; (b) Function Calls; (c) Energy Consumption.

5.3.2. Performance Comparison between ESSC Cryptographic and Baseline Algorithms

In this experiment, the performance of the ESSC cryptographic algorithm (ESSC_CR)
has been evaluated based on storage, communication and computation costs. The results



Sensors 2021, 21, 2810 21 of 24

have been compared with EDIES_AES, and ECIES_Ra benchmark algorithms. As illus-
trated in Figure 7, the performance results have been affected by encryption and decryption
functions at ESSC_CR, EDIES_AES, and ECIES_Ra. In Figure 7a, the ESSC_CR experiences
on average 23.9% and 14.6% less memory usage compared to EDIES_AES and EDIES_Ra
respectively. Furthermore, Figure 7b depicts that the ESSC_CR experiences on average
29.2% and 17.95 less computation cast compared to EDIES_AES, and ECIES_Ra respec-
tively. Also, Figure 7c shows that ESSC_CR consumes on average 28.6 and 17.95% less
communication cost compared to EDIES_AES and EDIES_Ra respectively. Overall, the
results in Figure 7 show that the ESSC_CR outperforms EDIES_AES and ECIES_Ra in terms
of storage, communication, and computation costs. This is primarily due to the following
reasons. Firstly, ESSC_CR consumes less memory usage to encrypt the message based
on its secure and effective hash function idea and modular multiplication. Secondly, the
ESSC_CR consumes few computation steps due to the fact that ESSC_CR does not execute
several rounds or complex mathematical in the encryption/decryption function which
means less function calls and execution steps per each function. Finally, ECIES_Ra uses
stream ciphertext which is complex to be implemented correctly in IIoT while EDIES_AES
uses several rounds to implement encryption/decryption function. Overall, ESSC_CR and
ESSC_DC outperform the baseline security protocol in terms of storage, communication,
and computation costs.

Figure 7. Cont.



Sensors 2021, 21, 2810 22 of 24

Figure 7. Performance comparison between ESSC cryptographic and baseline algorithms on IIoT (a)
Execution Time; (b) Function Calls; (c) Energy Consumption.

6. Limitations of the Implementation of ESSC in IIoT

ESSC provides a promising and emerging security solution for IIoT networks, which
enables secure, intelligent industrial operations and achieves high trusted productivity
without requiring human intervention. Hence, the proposed ESSC encourages business
leaders in civilian and military production facilities to choose implementation of IIoT in
a smart manufacturing environment. Cyberattacks can cause catastrophic consequences
to production processes, damage to instruments and equipment and financial losses. The
potential compromised of attacker on ESSC can occur on the IIoT gateway (CAC) which
has been assumed to have a robust security mechanism. Although the ESSC was carefully
developed for IIoT, there were some of unescapable hardware constraints. Firstly, the ESSC
faces a long process when applied to any IIoT device that uses an 8-bit microcontroller
due to the limitation of mathematical calculations that are needed in ESSC. This means
IIoT network devices with 32-bit or 64-bit microcontroller are preferred to implement
ESSC algorithms. In 2019, the IIoT 32-bit microcontroller market has experienced more
than 50% (57.1%) growth compared to all other types of microcontroller. This means a
gradual transformation from 8-bit MCUs to 32-bit and 64-bit MCUs is occurring; hence,
ESSC provides a promising and emerging security solution for IIoT networks. Finally, the
scalability and capacity of IIoT networks require more research and study to deal with the
hardware specifications of IIoT which are not well-defined yet in the standard reported
IIoT networks.

7. Conclusions and Future Work

The proposed ESSC algorithm has been presented, proven in the ROM and compared
with standard digital certificate and lightweight cryptographic schemes. In this paper, the
vulnerability of the standard digital signature mechanism has been described. ESSC utilizes
ECDH to provide secure digital certificate management and symmetric cryptographic
schemes for the IIoT and it solves the problem of verification of the true identity of the
sender. Also, the threat model has been defined and the cybersecurity analysis shows that
the ESSC has been proven secure against CPA, CCA, and RKA. Moreover, the emulation
results that obtained in this research demonstrate the efficiency and effectiveness of ESSC
performance in terms of storage, communication and computation costs compared with
the standard baseline digital certificate and cryptographic mechanisms. The future work of
this research will focus on developing an effective key management to replace the ECDH
that has been used in ESSC over IIoT networks.



Sensors 2021, 21, 2810 23 of 24

Funding: This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, grant number D-335-830-1441 and The APC was funded by D-335-830-1441.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Deanship of Scientific Research (DSR), King
Abdulaziz University, Jeddah, under grant No (D-335-830-1441). The authors, therefore, gratefully
acknowledge the DSR technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Choo, K.-K.R.; Gritzalis, S.; Park, J.H. Cryptographic Solutions for Industrial Internet-of-Things: Research Challenges and

Opportunities. IEEE Trans. Ind. Inform. 2018, 14, 3567–3569. [CrossRef]
2. Kreutz, D.; Yu, J.; Ramos, F.; Esteves-Verissimo, P. ANCHOR: Logically Centralized Security for Software-Defined Networks.

ACM Trans. Priv. Secur. TOPS 2019, 22, 1–36. [CrossRef]
3. Fang, X.; Yang, M.; Wu, W. Security Cost Aware Data Communication in Low-Power IoT Sensors with Energy Harvesting. Sensors

2018, 18, 4400. [CrossRef] [PubMed]
4. Li, S.; Song, H.; Iqbal, M. Privacy and Security for Resource-Constrained IoT Devices and Networks: Research Challenges and

Opportunities. Sensors 2019, 19, 1935. [CrossRef]
5. Xu, P.; He, S.; Wang, W.; Susilo, W.; Jin, H. Lightweight Searchable Public-Key Encryption for Cloud-Assisted Wireless Sensor

Networks. IEEE Trans. Ind. Inform. 2018, 14, 3712–3723. [CrossRef]
6. He, D.; Ma, M.; Zeadally, S.; Kumar, N.; Liang, K. Certificateless Public Key Authenticated Encryption with Keyword Search for

Industrial Internet of Things. IEEE Trans. Ind. Inform. 2018, 14, 3618–3627. [CrossRef]
7. Chatterjee, U.; Chakraborty, R.S.; Mukhopadhyay, D. A PUF-Based Secure Communication Protocol for IoT. ACM Trans. Embed.

Comput. Syst. 2017, 16, 1–25. [CrossRef]
8. Aman, M.N.; Chua, K.C.; Sikdar, B. A robust ECC-based provable secure authentication protocol with privacy preserving for

industrial internet of things. IEEE Trans. Ind. Inform. 2018, 14, 3599–3609.
9. Chuang, Y.-H.; Lo, N.-W.; Yang, C.-Y.; Tang, S.-W. A Lightweight Continuous Authentication Protocol for the Internet of Things.

Sensors 2018, 18, 1104. [CrossRef]
10. Lu, X.; Yin, W.; Wen, Q.; Liang, K.; Chen, L.; Chen, J. Message Integration Authentication in the Internet-of-Things via Lattice-

Based Batch Signatures. Sensors 2018, 18, 4056. [CrossRef]
11. Ma, M.; He, D.; Kumar, N.; Choo, K.-K.R.; Chen, J. Certificateless Searchable Public Key Encryption Scheme for Industrial Internet

of Things. IEEE Trans. Ind. Inform. 2017, 14, 759–767. [CrossRef]
12. Hu, Q.; Du, B.; Markantonakis, K.; Hancke, G.P. A Session Hijacking Attack Against a Device-Assisted Physical-Layer Key

Agreement. IEEE Trans. Ind. Inform. 2020, 16, 691–702. [CrossRef]
13. Ciampa, M. Security + Guide to Networking Security Fundamentals, 5th ed.; Course Technology Press: Boston, MA, USA, 2015.
14. Tschofenig, H.; Fossati, T. Transport layer security (TLS)/datagram transport layer security (DTLS) profiles for the Internet of

Things. In RFC 7925; Internet Engineering Task Force (IETF): Wilmington, DE, USA, 2016.
15. Forsby, F.; Furuhed, M.; Papadimitratos, P.; Raza, S. Lightweight x. 509 digital certificates for the internet of things. In

Interoperability, Safety and Security in IoT; Springer: Cham, Switzerland, 2017; Volume 242, pp. 123–133.
16. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.

[CrossRef]
17. Mughal, M.A.; Luo, X.; Ullah, A.; Ullah, S.; Mahmood, Z. A Lightweight Digital Signature Based Security Scheme for Human-

Centered Internet of Things. IEEE Access 2018, 6, 31630–31643. [CrossRef]
18. Javed, Y.; Khan, A.S.; Qahar, A.; Abdullah, J. EEoP: A lightweight security scheme over PKI in D2D cellular networks. J.

Telecommun. Electron. Comput. Eng. 2017, 9, 99–105.
19. Alizai, Z.A.; Tareen, N.F.; Jadoon, I. Improved IoT device authentication scheme using device capability and digital signatures. In

Proceedings of the International Conference on Applied and Engineering Mathematics, Taxila, Pakistan, 4–5 September 2018;
pp. 1–5.

20. Sciancalepore, S.; Piro, G.; Boggia, G.; Bianchi, G. Public Key Authentication and Key Agreement in IoT Devices with Minimal
Airtime Consumption. IEEE Embed. Syst. Lett. 2016, 9, 1–4. [CrossRef]

21. NIST Computer Security Resource Center. Lightweight Cryptography Project. Available online: https://csrc.nist.gov/projects/
lightweight-cryptography (accessed on 13 March 2020).

22. Seok, B.; Sicato, J.C.S.; Erzhena, T.; Xuan, C.; Pan, Y.; Park, J.H. Secure D2D Communication for 5G IoT Network Based on
Lightweight Cryptography. Appl. Sci. 2020, 10, 217. [CrossRef]

http://doi.org/10.1109/TII.2018.2841049
http://doi.org/10.1145/3301305
http://doi.org/10.3390/s18124400
http://www.ncbi.nlm.nih.gov/pubmed/30545149
http://doi.org/10.3390/s19081935
http://doi.org/10.1109/TII.2017.2784395
http://doi.org/10.1109/TII.2017.2771382
http://doi.org/10.1145/3005715
http://doi.org/10.3390/s18041104
http://doi.org/10.3390/s18114056
http://doi.org/10.1109/TII.2017.2703922
http://doi.org/10.1109/TII.2019.2923662
http://doi.org/10.1007/s102070100002
http://doi.org/10.1109/ACCESS.2018.2844406
http://doi.org/10.1109/LES.2016.2630729
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
http://doi.org/10.3390/app10010217


Sensors 2021, 21, 2810 24 of 24

23. Usman, M.; Ahmed, I.; Aslam, M.I.; Khan, S.; Shah, U.A. SIT: A lightweight encryption algorithm for secure internet of things. Int.
J. Adv. Comput. Sci. Appl. 2017, 8, 402–411. [CrossRef]

24. Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A Secure and Efficient Lightweight Symmetric Encryption Scheme for Transfer
of Text Files between Embedded IoT Devices. Symmetry 2019, 11, 293. [CrossRef]

25. Shah, R.H.; Salapurkar, D.P. A multifactor authentication system using secret splitting in the perspective of Cloud of Things. In
International Conference on Emerging Trends & Innovation in ICT (ICEI); IEEE: Pune, India, 2017; pp. 1–4.

26. Shivraj, V.L.; A Rajan, M.; Singh, M.; Balamuralidhar, P. One time password authentication scheme based on elliptic curves for
internet of things (IoT). In Proceedings of the 2015 5th National Symposium on Information Technology: Towards New Smart
World (NSITNSW), Riyadh, Saudi Arabia, 17–19 February 2015.

27. Hammi, B.; Fayad, A.; Khatoun, R.; Zeadally, S.; Begriche, Y. A Lightweight ECC-Based Authentication Scheme for Internet of
Things (IoT). IEEE Syst. J. 2020, 14, 3440–3450. [CrossRef]

28. Khan, M.A.; Quasim, M.T.; Alghamdi, N.S.; Khan, M.Y. A Secure Framework for Authentication and Encryption Using Improved
ECC for IoT-Based Medical Sensor Data. IEEE Access 2020, 8, 52018–52027. [CrossRef]

29. Abro, A.; Deng, Z.; Memon, K.A. A Lightweight Elliptic-Elgamal-Based Authentication Scheme for Secure Device-to-Device
Communication. Futur. Internet 2019, 11, 108. [CrossRef]

30. Ahmed, A.A.; Ahmed, W.A. An Effective Multifactor Authentication Mechanism Based on Combiners of Hash Function over
Internet of Things. Sensors 2019, 19, 3663. [CrossRef]

31. NIST. Fips publication 180-2: Secure hash standard. In Technical Report, National Institute of Standards and Technology (NIST),
Announcing Approval of FIPS Publication 180-2; NIST: Gaithersburg, MA, USA, 2003.

32. Lochter, M.; Merkle, J. RFC 5639: Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation; IETF:
Wilmington, DE, USA, 2010.

33. Li, X.; Niu, J.W.; Ma, J.; Wang, W.D.; Liu, C.L. Cryptanalysis and improvement of a biometrics-based remote user authentication
scheme using smart cards. J. Netw. Comput. Appl. 2011, 34, 73–79. [CrossRef]

34. Katz, J.; Lindell, Y. Introduction to Modern Cryptography; CRC Press: Boca Raton, FL, USA, 2020.
35. Bellare, M.; Bellare, M.; Kohno, T. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In

International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 491–506.

36. Wang, Y.; Yang, G.; Li, T.; Li, F.; Tian, Y.; Yu, X. Belief and fairness: A secure two-party protocol toward the view of entropy for IoT
devices. J. Netw. Comput. Appl. 2020, 161, 102641. [CrossRef]

37. Goldwasser, S.; Bellare, M. Lecture Notes on Cryptography. 2008. Available online: https://cseweb.ucsd.edu/~{}mihir/papers/
gb.pdf (accessed on 16 March 2021).

38. Biryukov, A. Adaptive Chosen Plaintext Attack. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A., Jajodia, S., Eds.;
Springer: Boston, MA, USA, 2011.

39. Biryukov, A. Related Key Attack. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A., Jajodia, S., Eds.; Springer:
Boston, MA, USA, 2011.

40. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals.
Available online: http://www.ietf.org/rfc/rfc4919.txt (accessed on 25 March 2020).

41. Mininet-IoT Emulator of Internet of Things. Available online: https://github.com/ramonfontes/mininet-iot (accessed on
17 April 2020).

42. A Security Site. Available online: https://asecuritysite.com/encryption/ (accessed on 8 January 2020).

http://doi.org/10.14569/IJACSA.2017.080151
http://doi.org/10.3390/sym11020293
http://doi.org/10.1109/JSYST.2020.2970167
http://doi.org/10.1109/ACCESS.2020.2980739
http://doi.org/10.3390/fi11050108
http://doi.org/10.3390/s19173663
http://doi.org/10.1016/j.jnca.2010.09.003
http://doi.org/10.1016/j.jnca.2020.102641
https://cseweb.ucsd.edu/~{}mihir/papers/gb.pdf
https://cseweb.ucsd.edu/~{}mihir/papers/gb.pdf
http://www.ietf.org/rfc/rfc4919.txt
https://github.com/ramonfontes/mininet-iot
https://asecuritysite.com/encryption/

	Introduction 
	Problem Statement and Motivation 
	Summary of Contributions 

	Related Work on Cryptographic and Digital Certificate Algorithms on IoT 
	Lightweight Digital Certificates and Signatures in IoT systems 
	Lightweight Cryptographic Algorithms on IoT 

	System Design of ESSC Algorithm 
	Digital Certificate Management Algorithm 
	Issuance and Distribution of Digital Certificate 
	Recovery of Digital Certificate 

	Lightweight Cryptographic Algorithm 

	Adversary Model and Cybersecurity Analysis 
	Adversary Model for ESSC on IIoT 
	ESSC Cybersecurity Analysis 
	Proven Security for ESSC in ROM 
	Proven Security for Proposed Digital Certificate in ROM 
	Countermeasure against Replay and Man-In-The-Middle Attacks 
	Countermeasure against Brute Force Attacks 
	Countermeasure against Stolen-Verifier and IIoT Device Capture Attacks 


	Implementation and Evolution of ESSC on IIoT 
	Simulation Spoofing Attack and Countermeasure 
	Performance Evaluation 
	Storage Cost Analysis 
	Computation Cost Analysis 
	Communication Cost Analysis 

	Comparative Analysis with the State of Art Solutions 
	Performance Comparison between ESSC Digital Certificate and Baseline Algorithms 
	Performance Comparison between ESSC Cryptographic and Baseline Algorithms 


	Limitations of the Implementation of ESSC in IIoT 
	Conclusions and Future Work 
	References

