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Abstract: Silk fibroin (SF) is a typical fibrous protein that is secreted by silkworms and spiders. It has
been used in a variety of areas, and especially for tissue-engineering scaffolds, due to its sound
processability, mechanical properties, biodegradability, and biocompatibility. With respect to gelation,
the SF gelation time is long in aqueous solutions, so a novel approach is needed to shorten this time.
The solubility of regenerated SF is sound in formic acid (FA), which is a carboxylic acid of the simplest
structure. In this study, SF was dissolved in formic acid, and the addition of salts then induced a
rapid gelation that accompanied a solution-color change. Based on the gelation behaviors of the SF
solution according to different SF and salt concentrations, the gelation mechanism was investigated.

Keywords: silk fibroin; gelation; nitration; tyrosine

1. Introduction

Silk, which is secreted by silkworms, spiders, mites, and pseudo-scorpions, is a generally fibrous
protein that has attracted considerable attention due to its inherent optical and outstanding mechanical
properties [1–4]. It has been widely used in high quality textile industries, but has recently played a
significant role in the medical materials for surgical sutures and as a wound dressing with respect
to membranes [5,6]. It has been known that silk mainly consists of two proteins whereby fibroin is a
dominant component (75%), and that it is also hydrophobic [7,8]. Contrary to fibroin, sericin comprises
a hydrophilic property with a fibroin encasement for protection. Fibroin is composed of a light chain
with 26 kDa and a heavy chain with 350 kDa [9]. The structure has a strong influence on the strength
and elasticity of silk. The amino acid composition of silk is made up of glycine, alanine and serine, all of
which represent more than 90% of the total content [10]; their short side chains make intermolecular
stacking interactions facilitative, and this leads to an antiparallel β-sheet structure of a high crystalline
quality [11]. The primary protein structure of fibroin holds the hydrophobic protein structure of the
natural block co-polymer [12].

The biocompatibility of fibroin is not only sound, but it also comprises transformable properties
for the preparation of an aqueous solution by a variety of methods [13]. Due to its strong benefits,
fibroin has been steadily researched in terms of cosmetics and food additives [14], and its application
has recently been extended to fields such as artificial blood vessels, wound dressings, and drug delivery
on account of its inherent biological properties [15].

The results from the gelation of fibroin include intermediate properties between liquids and
solids, a porous structure, and elasticity by three-dimensional crosslinking [16]. A variety of methods
have been introduced to gelate fibroin, for example a radical reaction using irradiation and a bridging
reaction using chemical covalent bonds or cross-linking agents [17].
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For all of their effective performances, such as the time necessary to gelate silk fibroin (SF) solution,
a limitation still exists. In the reported SF gelation study, 1 to 50 h gelation times were spent to form
the SF gel [18]. The aim of this study is to dramatically reduce the gelation time through the addition
of salts. The proposed method induced a rapid gelation of SF solution and the gelation process was
confirmed using diverse analysis methods [19–21].

2. Results and Discussion

2.1. Gelation Behavior of Silk Fibroin (SF)/Formic Acid Solution According to the Addition of a Variety of Salts

The addition of salts with nitrate in the SF/formic acid solution led to immediate gelation
reactions. All of the salt concentrations were 3.5% of the SF weight, and the concentration of the
SF/formic acid solution was 5%. Interestingly, a fast reaction rate was shown when nitrate-type
salts such as sodium nitrate (NaNO3), lithium nitrate (LiNO3), and potassium nitrate (KNO3) were
treated (Figure 1). However, when salts without nitrate such as sodium bicarbonate (NaHCO3) and
ammonium bicarbonate (NH4HCO3) were added to the solution, no changes were observed. After the
addition of NaClO3, a brownish color was observed without gelation. This finding indicates that the
gelation reaction of the SF/formic acid solution is derived from the addition of the nitrate salts, and the
nitrate salts induced the growth of the solution as yellowish gels. The reaction was completed within a
few minutes and yellow gels were obtained.
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Figure 1. Gelation behaviors of silk fibroin (SF)/formic acid solution according to the addition of salts.
The red parts indicate gelated SF solutions according to the addition of nitrate-type salts.

2.2. Effect of SF and NaNO3 Concentration on Gelation

The gelation behavior was observed under varying concentrations of the SF/formic acid solution
where NaNO3 is a representative nitrate salt. In the 3% to 8% SF/formic acid solution with 3.5%
NaNO3, gelation occurred above the 4.5% SF concentrations (Figure 2).

For the gelation of SF, the minimum concentration of the SF/formic acid solution is 4.5%. Also in
the 0.1% to 4% NaNO3 and 4.5% SF concentrations, gelation occurred below the 3.5% NaNO3

concentration. The maximum gelation concentration of NaNO3 is 3.5% at a 4.5% SF/formic acid
solution (Figure 3a(i–vi)). When 0.1% NaNO3 was added to the SF/formic acid solution, the gelation
time was 14 min, while the gelation of the 3.5% NaNO3 took 1 min. Therefore, the gelation times of the
SF/formic acid were decreased under high concentrations of NaNO3 due to the increased gelation
reaction rate (Figure 3b). Gelation time was measured below 3.5% NaNO3 because at 4% NaNO3,
gelation did not occur. Further experiments were performed at a 5% SF concentration to obtain stable
SF gels.
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2.3. Viscosity Change According to the NaNO3 Concentration

The addition of NaNO3 to the SF/formic acid solution induced an increased viscosity regarding
the gelation reaction. The viscosities were therefore analyzed according to the addition of diverse
NaNO3 concentrations (Figure 4). Before the addition of NaNO3, the viscosity of the SF/formic acid
solution was similar to water, but the high NaNO3 concentrations showed a low viscosity during
gelation. The concentration of the NaNO3 was decreased, the viscosity of the SF gel became higher,
and the gel stability was improved.

Int. J. Mol. Sci. 2016, 17, 1697 3 of 9 

 
Figure 2. Concentration effect of the SF/formic acid solution on gelation: (a) 3% SF; (b) 3.5% SF; (c) 4% 
SF; and (d) 4.5% SF. The red part indicates a gelated SF solution at a 4.5% SF concentration. 

 
Figure 3. (a) Effect of NaNO3 concentration on gelation: (i) 0.1% NaNO3; (ii) 0.5% NaNO3; (iii) 1% 
NaNO3; (iv) 3% NaNO3; (v) 3.5% NaNO3 and (vi) 4% NaNO3; (b) Gelation time of SF solution 
according to NaNO3 concentration. The red part indicates a non-gelated SF solution at a 4% NaNO3 
concentration. 

2.3. Viscosity Change According to the NaNO3 Concentration 

The addition of NaNO3 to the SF/formic acid solution induced an increased viscosity regarding 
the gelation reaction. The viscosities were therefore analyzed according to the addition of diverse 
NaNO3 concentrations (Figure 4). Before the addition of NaNO3, the viscosity of the SF/formic acid 
solution was similar to water, but the high NaNO3 concentrations showed a low viscosity during 
gelation. The concentration of the NaNO3 was decreased, the viscosity of the SF gel became higher, 
and the gel stability was improved. 

 
Figure 4. Viscosity change of SF gel depending on concentration of NaNO3: (a) viscosity change of SF 
gel from 0% to 4% NaNO3 concentrations and (b) the expanded viscosity change of SF gel at high 
NaNO3 concentrations (from 0.7% to 4%). 

Figure 4. Viscosity change of SF gel depending on concentration of NaNO3: (a) viscosity change of
SF gel from 0% to 4% NaNO3 concentrations and (b) the expanded viscosity change of SF gel at high
NaNO3 concentrations (from 0.7% to 4%).



Int. J. Mol. Sci. 2016, 17, 1697 4 of 9

2.4. Compositional Change of SF upon Gelation

2.4.1. Amino Acid Analysis

SF consists of 18 amino acids including Gly, Ala, Ser, and Tyr, and this amino acid composition
was investigated according to the SF gelation (Figure 5). The concentration of the SF/formic acid
is 5%, and except for tyrosine, content changes were not observed in the amino acids of the SF
gel. Tyrosine content decreased when the NaNO3 concentration increased and a nitrotyrosine peak
appeared (Figure 6). A standard test using 3-nitro-L-tyrosine confirmed that the nitration of the tyrosine
modified it to nitrotyrosine. The nitrotyrosine content was increased when the NaNO3 concentration
was increased.
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2.4.2. UV-Vis Spectroscopy

The functional SF groups were investigated upon gelation using a UV-vis spectrophotometer
(UV-2450, Shimadzu, Japan) (Figure 7). As the NaNO3 concentration increased, typical nitrotyrosine
peaks increased at 274 nm and 356 nm [22], indicating that the tyrosine reacted to the NaNO3, and that
the nitration of the SF modified the tyrosine to nitrotyrosine. This finding is consistent with the results
of the amino acid analysis of the SF gel [23].
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2.5. Fluorescence Spectroscopy

The fluorescence intensity change upon gelation was observed through the fluorescence property
of the tyrosine in the SF (Figure 8). When gelation occurred in the SF/formic acid solution,
the fluorescence intensity of tyrosine at 426 nm (excitation wavelength: 365 nm) was decreased
by the increase of the NaNO3 concentration. In a control experiment for which the tyrosine/formic
acid solution was used, when the NaNO3 concentration was treated, the tyrosine fluorescence intensity
at 416 nm was decreased in a similar manner as the original solution, indicating that the tyrosine
content decreased upon gelation due to the nitration of the tyrosine in the SF [24].
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2.6. Mechanism of SF Gelation and Nitration

The solubility of SF in water is low because of its hydrophobic property, but it was easily dissolved
in the formic acid. When NaNO3 was dissolved in the SF/formic acid solution, it was dissociated in
the formic acid solvent and reacted with the hydrogen cation to form NO3

− (Figure 9a). The tyrosine
reacted with the NO3

−-synthesized tyrosyl radical and NO2 radical (NO2·) (Figure 9b). The prepared
NO2· might be formed to nitrotyrosine through a nitration reaction between the NO2· and tyrosyl
radical. Also, the two tyrosyl radical groups probably cross-linked with each other to form a dityrosine
structure [25,26]. In addition, this was followed by the induction of the gelation in the SF/formic acid
solution (Figure 9c,d). For a confirmation of this mechanism, a further study will be performed.
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3. Materials and Methods

3.1. Materials

The raw silk was reeled off the cocoons of the Bombyx mori silkworm. The three types of nitrate
salts NaNO3, LiNO3, and KNO3 were used, and these salts were purchased from Samchun (Pyeongtaek,
Korea). The three types of non-nitrate salts NaClO3, NaHCO3, and NH4HCO3 that were obtained
from Sigma–Aldrich (St. Louis, MO, USA) were used, and these salts were used as additives in the
SF solution. The formic acid (98%) was purchased from Junsei (Tokyo, Japan). The L-tyrosine and
3-nitro-L-tyrosine were also purchased from Sigma-Aldrich.

3.2. Preparation of SF/Formic Acid Solution

Raw-silk fibers were degummed using a 0.5% (w/w) sodium bicarbonate (NaHCO3) solution
at 100 ◦C for 30 min before they were rinsed with warm distilled water [27]. While the degummed
silk fibroin was insoluble in formic acid, the regenerated SF was readily soluble in formic acid [28].
The degummed SF was dissolved in a ternary solvent system of calcium chloride/ethanol/water
(1:2:8 in molar ratio) at 85 ◦C for 4 h. After dialysis with a cellulose tubular membrane (molecular cut-off,
12,000) in distilled water for three days, the aqueous SF solution was filtered and freeze-dried to obtain
regenerated SF sponges [29,30]. The SF solution was prepared by dissolving the regenerated SF
sponges in formic acid for 30 min [28].

3.3. Gelation Behavior of SF/Formic Acid Solution According to the Addition of a Variety of Salts

Gelation was observed with the transparent SF/formic acid solution that had been prepared with
the addition of a variety of salts according to concentrations of 1 wt % to 4 wt %, based on the SF
weight (Figure 10). For the effective gelation of the SF, NaNO3 was selected as a salt, and its gelation
behavior was observed according to the SF and NaNO3 concentrations.
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3.4. Characterization

3.4.1. Viscosity Change Depending on the NaNO3 Concentration

The gelation of SF generally induced an abrupt increase in the viscosity. Also, the viscosity of SF
gel was associated with the degree of cross-linking. Viscosity changes of the SF/formic acid solution
depending on various concentrations (0.1% to 4%) of NaNO3 were observed using a viscometer
(HADB-III U, Brookfield, MA, USA). The SF concentration was fixed at 5%.
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3.4.2. Amino Acid Analysis

SF is consisted of 18 amino acids including Gly, Ala, Ser, and Tyr. Amino acid analysis was
conducted to investigate the change in the amino acid composition on gelation. To observe the
compositional change, the solvent of SF gel was replaced with water and then analyzed using amino
acid analysis (HITACH L-8900, Tokyo, Japan).

3.4.3. UV-Vis Spectrophotometry

Tyrosine and nitrotyrosine residues in the SF gel were able to absorb UV-vis light [31]. On the SF
gelation, the absorbance was varied with the tyrosine content. While the NaNO3 salt was added to
the SF solution, the absorbance change was characterized by the UV-vis spectrophotometer (UV-2450,
Shimadzu, Kyoto, Japan). A quartz cell was used and the solution was analyzed at wavelengths of
200 nm to 800 nm.

3.4.4. Fluorescence Spectroscopy

Furthermore, the SF gel was observed using a fluorescent spectrophotometer. To analyze the
changes in the structure and composition of the SF gels in both the solution and the dry state,
respectively, a fluorescence photometer (Varian cary clipse, Varian, Middelburg, The Netherlands) was
used. The excitation wavelength was 365 nm, and the emission wavelength was from 376 to 700 nm.

4. Conclusions

The fast gelation of a Bombyx mori SF/formic acid solution was induced by the addition of nitrate
salts. The salts with nitrate stimulated the consumption of tyrosine and the generation of nitrotyrosine
and dityrosine, and this reaction in the tyrosine residue led to an SF organogel. The gelation of the
SF was greatly influenced by the amount of NaNO3. The SF gelation occurred within a few minutes
at below 4% NaNO3 in a 5% SF/formic acid solution, but the SF gelation did not occur at above that
condition, owing to the viscosity reduction of the gel. In this study, a unique way to promptly and
efficiently fabricate the SF organogel is suggested, and if the SF organogel can be transformed to the SF
hydrogel by a solvent exchange, the SF gel will be applicable to a variety of fields.
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