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Abstract: A major cause of cancer cell resistance to chemotherapeutics is the blocking of apoptosis and
induction of autophagy in the context of cell adaptation and survival. Therefore, new compounds are
being sought, also among drugs that are commonly used in other therapies. Due to the involvement
of histamine in the regulation of processes occurring during the development of many types of cancer,
antihistamines are now receiving special attention. Our study concerned the identification of new
mechanisms of action of azelastine hydrochloride, used in antiallergic treatment. The study was
performed on HeLa cells treated with different concentrations of azelastine (15–90 µM). Cell cycle,
level of autophagy (LC3 protein activity) and apoptosis (annexin V assay), activity of caspase 3/7,
anti-apoptotic protein of Bcl-2 family, ROS concentration, measurement of mitochondrial membrane
potential (∆ψm), and level of phosphorylated H2A.X in response to DSB were evaluated by cytometric
method. Cellular changes were also demonstrated at the level of transmission electron microscopy
and optical and fluorescence microscopy. Lysosomal enzyme activities-cathepsin D and L and cell
viability (MTT assay) were assessed spectrophotometrically. Results: Azelastine in concentrations
of 15–25 µM induced degradation processes, vacuolization, increase in cathepsin D and L activity,
and LC3 protein activation. By increasing ROS, it also caused DNA damage and blocked cells
in the S phase of the cell cycle. At the concentrations of 45–90 µM, azelastine clearly promoted
apoptosis by activation of caspase 3/7 and inactivation of Bcl-2 protein. Fragmentation of cell nucleus
was confirmed by DAPI staining. Changes were also found in the endoplasmic reticulum and
mitochondria, whose damage was confirmed by staining with rhodamine 123 and in the MTT test.
Azelastine decreased the mitotic index and induced mitotic catastrophe. Studies demonstrated the
multidirectional effects of azelastine on HeLa cells, including anti-proliferative, cytotoxic, autophagic,
and apoptotic properties, which were the predominant mechanism of death. The revealed novel
properties of azelastine may be practically used in anti-cancer therapy in the future.

Keywords: azelastine; oxidative stress; autophagy; apoptosis; mitotic catastrophe

1. Introduction

Drug resistance is a very big problem in most advanced cancers [1,2]. The biggest
obstacle in cancer chemotherapy, including the treatment of cervical cancer, is resistance to
cisplatin, among others, resulting from the induction of autophagy and inhibition of tumor
cell apoptosis [3,4]. The process of programmed cell death can also be inhibited during
oncogenesis. Cancer cells with multiple genetic and epigenetic alterations avoid apoptosis,
which is initially triggered by the transformation process itself and then by the unfavorable
tumor environment and the implemented therapy [5,6]. The resulting limitations in cancer
therapy contribute to increased mortality. Therefore, recently, a new trend in worldwide
research has become the search for alternative treatments, also inducing other types of cell
death, especially among compounds already used in other therapies [5,7–9], an example of
which may be antihistamines (AHs).
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Antihistamines (AHs), due to their proven strong anti-inflammatory and anti-allergenic
properties, are widely used worldwide as first-line drugs in the treatment of numerous al-
lergic diseases [10]. Their mechanism of action involves stabilization of the inactive form of
histamine H1 receptor, thereby blocking the action of histamine [11–13], which, as a major
mediator of inflammatory response, not only underlies many allergic diseases [14], but is
also directly involved in the regulation of biological processes during the development of
various types of cancer, including cervical cancer [1,15,16]. Hence, in recent years, attention
has been focused on the potential antitumor properties of antihistamines, both among the
long-used and new second-generation representatives. Compounds have been identified,
that alone or in combination with other drugs show significant activity against various
types of cancer cells, confirmed both in vitro and in clinical trials. An example is astemi-
zole, a second-generation drug, that has been described as an inhibitor of hepatocellular
carcinoma proliferation [17] as well as an inducer of apoptotic death in various human
melanoma cell lines [18,19]. In the case of terfenadine, the ability to induce apoptosis in
prostate cancer cells has been demonstrated [20]. In turn, new representatives of AHs,
more often used in practice, i.e., loratadine and its active metabolite desloratadine, improve
survival in breast cancer [21–23] and skin melanoma [24]. Additionally, desloratadine
has properties to induce apoptosis of T-cell lymphoma cells [25], and loratadine interferes
with cell cycle progression of human colon cancer cells by increasing their sensitivity to
radiation [26], and improves survival for ovarian cancer [7].

Azelastine hydrochloride (a phthalazinone derivative) is commonly used especially
in the topical treatment of respiratory diseases, i.e., in allergic rhinitis (also in the course
of asthma and COPD), vasomotor rhinitis, and as part of the prophylaxis and therapy of
allergic conjunctivitis [27–30]. Furthermore, recent in vitro studies have demonstrated the
ability of this compound to prevent and inhibit SARS-CoV-2 infection in nasal tissue [31].
Azelastine was also included in the list of compounds that exhibit lysosomotropic proper-
ties and have the ability to accumulate in the lungs when administered systemically, which
creates the potential to achieve an effective drug concentration and was therefore recom-
mended for use in patients with SARS-CoV-2 [32]. It should be emphasized that azelastine
is a new representative of the second generation of H1 receptor antagonists, characterized
by a different chemical structure than other preparations from this group [33] and high
selectivity to the receptor, and thus low risk of side effects and very good tolerance both in
adults and children [34–38]. It was also found that this group has an equivalent or faster
onset of action compared to the first generation AHs [39]. Numerous scientific studies
confirm that the biological properties of H1 receptor antagonists, including azelastine,
also result from the possibility of non-receptor activity [13,40–42], which offers a broad
perspective for the discovery of new therapeutic properties of these compounds.

In recent years, azelastine has also been tested for anti-inflammatory [43], antibacte-
rial [44], and antiparasitic properties [45]. In turn, little attention has been paid to research
into the potential anticancer mechanisms of this compound. So far, the property of azelas-
tine to induce apoptosis in human colorectal adenocarcinoma cells (HT-29 line) has been
described, where the tested compound at concentrations of 10 µM-20 µM, independently
of the receptor, decreased the expression of Bcl-2 protein and caused significant changes in
mitochondria [46]. In another study [47], azelastine at a concentration of 5 µM sensitized
KBV20C cells to the effects of vincristine (in combination administration), leading to de-
creased cell viability, arrest in G2 phase, and increased apoptosis. The results of the cited
studies inspired the present study.

Therefore, due to the well-known resistance of HeLa cells to chemotherapy, which
manifests itself by induction of autophagy and blockade of apoptosis, we decided to study
the changes occurring in these cells under the influence of azelastine hydrochloride in the
context of induction of apoptosis as well as other types of cell death as potential anticancer
mechanisms of action of this compound.
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2. Results
2.1. Azelastine Induces Apoptosis in HeLa Cells

Exposure of cells to azelastine resulted in an increase in the frequency of both cells in
early (Annexin V-PE+/7-AAD−) and late apoptosis (Annexin V-PE+/7-AAD+).

At a concentration of 15 µM, apoptotic cells were over 26% (p ≤ 0.0001) and at
25 µM over 34% (p ≤ 0.0001) (Figure 1A,C). Azelastine at a concentration of 45 µM further
increased the number of apoptotic cells to 60.13% (p ≤ 0.0001). Subsequent concentrations
(60 µM and 90 µM) significantly increased the number of apoptotic cells, which were more
than 93% and 98%, respectively (p ≤ 0.0001), with a clear predominance of cells with a late
apoptotic phenotype.

Figure 1. Proapoptotic effects of azelastine hydrochloride. Control cells and treated for 48 h with
azelastine at concentrations of 15 µM, 25 µM, 45 µM, 60 µM, and 90 µM. (A) Level of apoptosis
determined by annexin V-PE/ 7-AAD staining. Live cells (annexin V-PE−/7-AAD−), cells in early
(annexin V-PE+/7-AAD−) and late-stage apoptosis (annexin V-PE+/7-AAD+), and necrotic cells
(V-PE−/7-AAD+). (B) Changes in 3/7 caspase activity. Live cells (caspase 3/7-/7-AAD−), cells
in early (caspase 3/7+/7-AAD−) and late apoptosis (caspase 3/7+/7-AAD+), dead cells (caspase
3/7-/7-AAD+). (C) Percentage of apoptotic cells dependent on azelastine concentration. (D) Cell
viability as determined by the MTT assay. (E) Changes in nuclei of cells labeled with 4′,6-diamidino-
2-phenylindole (DAPI). Control cells showing normal cell nuclei morphology. Cells treated with
azelastine showing changes typical of apoptosis, i.e., marked condensation of chromatin and frag-
mentation of cell nucleus. Images were taken at 4000×magnification. Data representative of three
parallel experiments correspond to mean values ± standard error (SE). Differences were statistically
confirmed at: *** p < 0.001.

Moreover, microscopic analysis (DAPI staining) showed that azelastine induces typical
nuclear changes for apoptosis i.e., chromatin condensation and nuclear fragmentation,
especially at concentrations of 60 µM and 90 µM (Figure 1E). The obtained results were
dependent on the concentration of the test compound.
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2.2. Azelastine Induces Caspase 3/7-Dependent Apoptosis

As shown in Figure 1B,C, caspase 3/7 activity increased significantly (p ≤ 0.0001)
under the azelastine concentrations used. At 15 µM and 25 µM, cells with active caspase
were more than 24% and 26%, respectively, and more than 55% at 45 µM concentration.
The highest caspase 3/7 activity was shown for concentrations of 60 µM (96.4%) and 90 µM
(98.7%). These results indicate a caspase 3/7 activation-dependent proapoptotic effect
of azelastine.

2.3. Azelastine Inhibits the Viability of HeLa Cells

The MTT assay showed a highly statistically significant (p ≤ 0.0001) reduction in the
ability of the cells to reduce the dye compared to the control, which was taken as 100%
(Figure 1D). Already at the lowest concentration of 15 µM, the cell viability was 86% and at
subsequent concentrations of 25 µM and 45 µM, it decreased significantly to 68.33% and
51.33%. However, the lowest percentage of living cells was obtained as a consequence of
the highest concentrations of the test compound, i.e., 60 µM (8%) and 90 µM (about 4%).
Azelastine inhibited mitochondrial metabolic activity to a concentration-dependent degree,
which was also indicative of mitochondrial membrane damage.

2.4. Azelastine Generates ROS Inducing Changes in Mitochondrial Structure and Induces
Endoplasmic Reticulum Stress

Compared to the control image (Figure 2(A1)), mitochondria with clear matrix and
an irregular arrangement of mitochondrial cristae were observed already at the lowest
azelastine concentration (15 µM) (Figure 2(A2)). As a result of 25 µM concentration, mito-
chondria showed a significant enlargement, a highly clear matrix, and a reduction in the
mitochondrial cristae. Swollen channels of the rough endoplasmic reticulum were also
visible in their close proximity (Figure 2A(3,3a)). In turn, the cytoplasm of cells exposed to
45 µM azelastine (Figure 2A(4,4a)) was dominated by swollen mitochondria with a strongly
clear matrix, with disorganization of the inner mitochondrial membrane and pronounced
damage to the cristae. Mitochondria were also characterized by disruption of the mitochon-
drial membrane, resulting in leakage of matrix contents into the cytoplasm (Figure 2(A4)).
In contrast, visible in the microphotographs the rough endoplasmic reticulum appeared as
dilated channels (Figure 2A(4,4a)). At subsequent azelastine concentrations of 60 µM and
90 µM (Figure 2A(5–6a)), the mitochondria were characterized by increased structure disor-
ganization indicating significant damage, and in the vicinity of these structures remained
the rough endoplasmic reticulum in the form of strongly widened and swollen cisterns.
Compared with the control group, in which ROS (+) cells constituted 3.29%, treatment of
HeLa cell with azelastine resulted in concentration-dependent intracellular ROS production
(Figure 2C,D). The concentrations of 15 µM and 25 µM showed a small but statistically sig-
nificant increase in ROS (+) cells to 12.4% and 24.8%, respectively (p ≤ 0.0001). Increasing
the azelastine concentration to 45 µM resulted in increased generation of reactive oxygen
species, ROS (+) cells accounted for more than 45% (p≤ 0.0001). Significant levels of cellular
ROS (+) were observed following azelastine treatment at concentrations of 60 µM (48.93%)
and 90 µM (49.99%) (p ≤ 0.0001). The induction of reactive oxygen species generation cor-
related with a progressive decrease in mitochondrial membrane potential (Figure 2E,F).The
lowest percentage of cells with mitochondrial membrane depolarization was shown at
a concentration of 15 µM (9.76%) (p ≤ 0.0001). At 25 µM and 45 µM, cells with reduced
mitochondrial membrane potential were 14.05% and 15.89%, respectively (p ≤ 0.0001). The
highest percentage of cells with mitochondrial membrane depolarization (being more than
50%; p ≤ 0.0001) was found for concentrations of 60 µM and 90 µM. These results were
confirmed in the imaging of rhodamine 123-labeled mitochondria, as it was shown that
with increasing azelastine concentration, there is a gradual extinction of green fluorescence
emission, significant in the range 45–90 µM (Figure 2B). The azelastine-induced increase in
the level of reactive oxygen species, contributed to increased oxidative stress and stress of
the rough endoplasmic reticulum and to the induction of apoptotic changes.
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Figure 2. Changes in mitochondria, induction of oxidative stress, and endoplasmic reticulum stress
in HeLa cells caused by the action of azelastine hydrochloride. Control cells (A1). Azelastine
concentration-dependent ultrastructural changes indicative of apoptosis (A2–6a); brightening of
the matrix and irregular arrangement of cristae in the mitochondria of cells subjected to the 15 µM
concentration (2); at 25 µM, visible enlarged mitochondria with reduction of mitochondrial cristae
remaining in close proximity to the dilated channels of the rough endoplasmic reticulum (3,3a);
at a concentration of 45 µM, mitochondria with enhanced damage characteristics are present, i.e.,
strongly enlarged with disruption of the mitochondrial membrane (4) and damaged mitochondrial
cristae (4a) and altered rough endoplasmic reticulum in the form of dilated channels (4,4a); at
concentrations of 60 µM (5,5a) and 90 µM (6,6a), visible mitochondria with severe disorganization
of the structure indicating damage, and rough endoplasmic reticulum located in their vicinity with
strongly enlarged and swollen cisterns. Explanation of abbreviations: N—nucleus, M—mitochondria,
AG—Golgi apparatus, RER—rough endoplasmic reticulum, AV—autophagic vacuoles, Lp—primary
lysosomes, Ls—secondary lysosomes. Images were taken at 11,500× magnification. (B) Gradual and
azelastine concentration-dependent loss of green fluorescence derived from rhodamine 123-labeled
mitochondria. (C) Generation of reactive oxygen species and (D) percentage of ROS (+) cells as a
result of azelastine. (E) Changes of mitochondrial membrane potential (∆ψm) and the percentage of
cells with mitochondrial membrane depolarization (F) at different azelastine concentrations. Each
sample was analyzed in triplicate. The differences were statistically confirmed at: *** p < 0.001.
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2.5. Azelastine Induces DNA Damage

The 48 h effect of azelastine induced a concentration-dependent increase in phos-
phorylated H2A.X in response to DNA double strand breaks (DSBs) (Figure 3B,C). The
increase in DNA damage was as follows for the subsequent concentrations: 15 µM (12.9%,
p ≤ 0.0001), 25 µM (18.38%, p ≤ 0.0001), 45 µM (24.44%, p ≤ 0.0001), and 60 µM (28.92%,
p ≤ 0.0001). At the highest concentration of 90 µM, cells with DBS accounted for more than
30% (p ≤ 0.0001) of all analyzed cells compared to the control (2.79%). DNA damage in
azelastine-treated cells could have led to apoptosis.

Figure 3. Bcl-2 protein inactivation and DNA damage demonstrated in cells exposed to 48 h action
of azelastine hydrochloride. (A) Cells expressing Bcl-2 are clustered in the top two quadrants of the
dot plot (inactivated and activated). Over 60% are dephosphorylated after treatment with azelastine
at 60 µM and 90 µM, confirming inactivation of the Bcl-2 signaling pathway. (B) Azelastine at
concentrations of 15–90 µM generates DNA damage that induces DNA repair mechanisms such
as γH2AX. (C) Azelastine concentration-dependent percentage of cells with double-stranded DNA
damage and (D) percentage of cells with Bcl-2 protein inactivation. Data representative of three
parallel experiments correspond to mean values ± standard error (SE). Differences were statistically
confirmed at: *** p < 0.001.

2.6. Azelastine Inactivates the Bcl-2 Protein

Azelastine induced inactivation of the anti-apoptotic protein Bcl-2 in HeLa cells (Figure 3A,D).
At concentrations of 15 µM and 25 µM, cells with inactivated Bcl-2 protein represented
13.17% and 22.47% (p ≤ 0.0001), respectively, relative to the control (3.1%). Progres-
sive changes in the expression of the test protein were shown at higher concentrations,
i.e., 45 µM (40.56%), 60 µM (62.82%), and 90 µM (65%) (p ≤ 0.0001), which indicates a
mechanism of proapoptotic action of azelastine involving the mitochondrial pathway.
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2.7. Azelastine Enhances Vacuolization and Apoptotic Changes in HeLa Cells—Morphological Evaluation

In cells exposed to 48 h of azelastine, a significant concentration-dependent increase in the
number of cells with vacuolization changes in the cytoplasm was observed (Figure 4D). Com-
pared to control values (16 cells), the highest number of cells with enhanced vacuolization
was observed at 15 µM (2119 cells) and 25 µM (2010 cells) (p ≤ 0.0001). Within the vacuole,
a strong eosinophilic material destined for degradation was visible (Figure 4A(2,2a,3)). In
contrast, at higher concentrations of the test compound, vacuolization changes showed
a decreasing trend (Figure 4D). A lower but equally highly statistically significant result
(1282 cells) was shown at a concentration of 45 µM (Figure 4A(4,4a)). On the other hand, at
concentrations of 60 µM and 90 µM (Figure 4A(5–6a)), the presence of the lowest number
of vacuolized cells was confirmed.

Figure 4. Morphological changes indicating the induction of vacuolating and apoptotic changes and
a decrease in the dividing capacity of Hela cells as a consequence of 48 h treatment with azelastine
hydrochloride. (A1) Control cells with normal morphology, including interphase cells and cells with
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multiple mitotic figures. (A2–6a) Cells treated with azelastine at concentrations of 15–90 µM;
(A2–3a) cells with numerous vacuolization changes in the cytoplasm, strongly eosinophilic ma-
terial is visible within the vacuoles, which is destined for degradation, indicating the process of
autophagy; (A4,4a) cells with intensive cytoplasmic vacuolization and a pyknotic cell nucleus
with visible partial chromatin condensation; (5–6a) strong pro-apoptotic effect of azelastine at
concentrations of 60 µM and 90 µM, expressed by the presence of numerous apoptotic cells and
cells with efferocytosis. Explanation of markings: 1—interphase, 2—prophase, 3—prometaphase,
4—metaphase, 5—telophase, 6—cytokinesis, 7—vacuolization of cytoplasm, 8—vacuoles with visible
digestion material, 9—apoptotic cells, 10—binucleated cells in apoptosis, 1—-binucleated cells with
vacuolization, 12—giant cells, 13—abnormal segregation of chromosomes, 14—multinucleated cells
in apoptosis, 15—cells with features of vacuolization and apoptosis, 16—multinucleated cells with
vacuolization, 17—efferocytosis, 18—cells with phagocytosed material (by efferocytosis), which were
directed toward the apoptotic pathway. Hematoxylin and eosin staining. Images were taken at
4000× magnification. (B) Cell cycle changes of HeLa line cells treated for 48 h with azelastine at
concentrations of 15–90 µM analyzed by flow cytometry. (C) Percentage of cells in different phases of
the cell cycle indicating blocking of cells in S phase. (D) Azelastine concentration-dependent number
of vacuolated and apoptotic cells; at concentrations of 15–25 µM, azelastine induced vacuolization
changes; at a concentration of 45 µM, there was a reduction in vacuolization changes in favor of
apoptotic cells, while at concentrations of 60–90 µM, azelastine promoted apoptosis. (E) Changes in
the mitotic index indicating an inhibition of the dividing capacity of azelastine. Average values from
three independent experiments. The differences were statistically confirmed at: *** p < 0.001.

The action of azelastine on tested cells resulted in the simultaneous appearance of cells
with apoptotic changes such as reduced size, increased cytoplasm staining, pyknotic nu-
cleus with chromatin condensation, and the presence of apoptotic bodies. At concentrations
of 15 µM and 25 µM, apoptotic cells accounted for 236 and 963 (p ≤ 0.0001), respectively
(Figure 4A(2–3a),D), compared to the control (11 cells). However, at 45 µM, the number
increased significantly to 1708 (p ≤ 0.0001) (Figure 4A(4,4a),D). The highest value was
observed at 60 µM (2988 cells) and 90 µM (2992 cells) (p ≤ 0.0001) (Figure 4A(5–6a),D).
It should be noted that at a concentration of 45 µM (Figure 4A(4,4a)), there were cells
with simultaneously observed features such as enhanced vacuolization of the cytoplasm
and a pyknotic cell nucleus with partial chromatin condensation, indicating a gradual
switch from vacuolization to apoptotic changes. The presence of phagocytosed apoptotic
cells was observed within the cytoplasm of living cells (Figure 4A(4a,5a)) and those that
were directed into the apoptosis pathway (Figure 4A(6,6a)), indicating induction of the
efferocytosis process.

2.8. Azelastine Blocks Cells in S Phase and Reduces Mitotic Index

Cytometric analysis (Figure 4B,C) showed a statistically significant (p ≤ 0.0001) in-
crease in the number of cells arrested in the S phase of the cell cycle, progressing with
azelastine concentration. At the concentration of 15 µM, these cells accounted for 34.23%.
Slightly higher results were obtained at a concentration of 25 µM (40.64%) and at 45 µM
(44.47%). However, at 60 µM and 90 µM, there was a 2-fold increase in the number of cells
in the above-mentioned phase as compared to the control (28.77%). At the same time, in
the concentration range of 25–90 µM, there was a significant reduction in the number of
cells in the G0/G1 phase (p ≤ 0.0001).

Comparison of cells incubated with azelastine at all concentrations used (15–90 µM)
with cells from the control group (considered as 100%) showed statistically significant
(p ≤ 0.0001) decrease in mitotic index (Figure 4E). Already at a concentration of 15 µM
azelastine, the dividing capacity of the cells decreased significantly to 22% and this was
also the highest recorded result, because at the other concentrations of the test compound,
i.e., 25 µM, 45 µM, 60 µM and 90 µM, the mitotic index decreased to, respectively, 7%, 3%,
2%, and 1%. These changes demonstrate the antiproliferative properties of azelastine.
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2.9. Azelastine Induces Mitotic Catastrophe

Morphological analysis showed that azelastine at 15 µM resulted in changes consid-
ered morphological markers of mitotic catastrophe (Figure 5). These included multiple
abnormalities occurring during mitotic division, such as the presence of anaphase bridges
(Figure 5(A2)), tripolar metaphase (Figure 5(A1)), and pentapolar anaphase (Figure 5(A3)).
Azelastine also induced the formation of micronuclei (micronucleation) (Figure 5B), which
were present in the highest and also statistically significant numbers at a concentration of
15 µM (Figure 5A(3–6)). Furthermore, the data obtained indicated clear multinucleation
due to the action of the test compound (Figure 5B). The highest results were recorded at a
concentration of 15 µM with 372 binucleated cells, 132 multinucleated cells, and 23 giant
cells (at p ≤ 0.0001). At the next concentration of 25 µM, the results remained high in the
range of statistically significant values, there were 267 binucleated cells, 90 multinucleated
cells, and 12 giant cells found. However, at 45 µM azelastine, the number of binucleated,
multinucleated, and giant cells significantly decreased to 47, 20, and 9, respectively, while
at high concentrations of 60 µM and 90 µM, it was further reduced to levels below control
values (Figure 5B).

Of note are the vacuolization (Figure 5C) and apoptotic (Figure 5D) changes ob-
served simultaneously in cells with multinucleation. At low concentrations of azelastine
(15 µM and 25 µM), vacuolization changes predominated over apoptotic ones, whereas
at 45–90 µM, bi- and multinucleated cells were directed towards the apoptotic pathway.
The results indicate that azelastine induces mitotic catastrophe, which precedes the onset
of apoptosis.

2.10. Azelastine Enhances Degradation Processes

Analysis of changes at the ultrastructural level revealed numerous autophagic vac-
uoles in the cytoplasm of cells with azelastine at a concentration of 15 µM (Figure 6A(1–1b));
vacuoles were differentiated in size and content indicating different stages of degradation.
In the studied cells, expanded Golgi apparatuses and dilated channels of the rough endo-
plasmic reticulum were present; these changes indicated the intensification of the process of
synthesis of proteins crucial for subsequent stages of intracellular digestion. The presence
of numerous mitochondria (Figure 6(A1a)) in the tested cells may result from the increased
demand for ATP necessary for the macroautophagy process. Also at 25 µM concentration
(Figure 6A(2–2b)), numerous and highly enlarged autophagic vacuoles containing material
at different stages of degradation were shown, and vacuoles at the formation stage were also
present (Figure 6(A2b)). In the lumen of these structures, large fragments of the cytosol with
organelles were visible (Figure 6A(2,2b)), and some vacuoles took the form of emptiness
and clearly demarcated from the cytoplasm spaces (Figure 6(A2a)). Swollen mitochondria
(Figure 6(A2a)), dilated channels of rough endoplasmic reticulum, and reduced Golgi
apparatus (Figure 6(A2)), whose membranes could be used for vacuole formation, were
also observed in the cells. In contrast, in cells exposed to azelastine at 45 µM concentration
(Figure 6A(3–3b)), the number of autophagic vacuoles was reduced; however, they had
different shapes and covered a large area of the cytosol. In addition, altered mitochondria
and single, slightly dilated channels of rough endoplasmic reticulum were present within
the cytoplasm of these cells. When cells were treated with high concentrations of azelastine
60 µM and 90 µM (Figure 6A(4–5b)), the presence of secondary lysosomes was clearly
marked alongside altered cell nuclei with local chromatin condensation (Figure 6(A4a),
an expanded nuclear envelope (Figure 6A(4a,5,5a)), often with features of fragmentation
(Figure 6(A5b)). There were also single, damaged mitochondria (Figure 6A(5a,5b)) and
dilated channels of rough endoplasmic reticulum (Figure 6A(4–5a)). The demonstrated
changes were dependent on the concentration of azelastine and indicated the intensification
of the degradation processes. The progressive degradation observed at high concentrations
may indicate a switch of cellular metabolism with the possibility of triggering programmed
cell death.
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Figure 5. Morphological markers of mitotic catastrophe induced in HeLa cells exposed to 48 h
treatment of azelastine hydrochloride. (A) Intensified changes (multipolar mitosis, micronucleation,
and multinucleation) in cells treated with 15 µM azelastine. Explanation of markings: 1—cells with
vacuolization, 2—binucleated cells with vacuolization, 3—apoptotic giant cell, 4—multinucleated cells
with vacuolization, 5—tripolar metaphase, 6—apoptotic cells, 7—cells with micronuclei, 8—anaphase
bridges, 9—multinucleated cells with micronuclei, 10—efferocytosis, 11—pentapolar anaphase,
12—giant cells, 13—binucleated cells in apoptosis, 14—multinucleated cells in apoptosis, 15—giant
cells with vacuolization and micronuclei. Hematoxylin and eosin staining. Images were taken at
a magnification of 4000×. (B) Distribution of cells with micronuclei, bi-, multinucleated cells, and
giant cells at different concentrations of azelastine 15–90 µM. Azelastine concentration-dependent
induction of vacuolization (C) and apoptotic (D) changes in bi-, multinucleated, and giant cells.
Average values from three independent experiments. The differences were statistically confirmed at:
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 6. The intensification of degradation processes in HeLa cells with azelastine hydrochloride.
(A) Ultrastructural changes; (1–1b) in the cytoplasm of cells very numerous autophagic vacuoles
filled with material at various stages of degradation can be seen, and an extensive Golgi apparatus
and dilated channels of the rough endoplasmic reticulum; (2–2b) clear changes in cells indicating a
progressive degradation process, i.e., multiple vacuoles at different stages of digestion; (3–3b), the
image shows vacuoles differentiated in terms of shape, covering large areas of the cytosol, indicating
intensive degradation; (4–5b) dominant changes in the form of numerous primary and secondary
lysosomes and changes at the level of the cell nucleus (local chromatin condensation, enlarged nuclear
envelope and fragmentation). The changes obtained in the concentrations of 60 µM and 90 µM of
azelastine indicate a progressive degradation as well as the initiation of cell death by apoptosis.
(B) Histograms of cells indicating azelastine-induced autophagy as manifested by an increase in
fluorochrome fluorescence intensity (red area) indicating LC3 protein activation. In the concentration
range of 45–90 µM, the fluorescence intensity decreased, which argued for a switch of autophagy
to apoptosis. Cells were stained with anti-LC3/Alexa Fluor® 555 conjugated antibody and the
fluorescence intensity was measured cytometrically. (C) Changes in cathepsin D and L activities
(mean ± SE) in the lysosomal fraction of HeLa cells after 48 h of exposure to different concentrations
of azelastine. Results are the average of three independent experiments. Differences were statistically
confirmed at: * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.11. Azelastine Activates Cathepsin D and L

As shown in the study, the effect of azelastine compared to control (which was
taken as 100%) resulted in concentration-dependent changes in cathepsin D and L ac-
tivity (p ≤ 0.0001) (Figure 6C). The highest increase in the activity of enzymes to 179.96%
and 177.54% occurred at the concentrations of 15 µM and 25 µM, respectively. At 45 µM,
the enzymes activity was found to be 173.89%. Further increase in the concentration of the
test compound to 60 µM and 90 µM resulted in reduction of cathepsin D and L activities to
144.33% and 120.53%, respectively. The behavior of lysosomal enzymes is a reflection of the
degradation processes activated by azelastine.

2.12. Azelastine Induces Autophagy by Increasing LC3 Protein Levels

According to the principle of the assay used, LC3 is a cytoplasmic protein involved in
autophagosome formation during autophagy, which is translocated from the cytoplasm to
the interior of autophagosomes, and its fluorescence is monitored cytometrically. According
to the studies performed, azelastine induced autophagy depending on the concentration
(Figure 6B). The highest intensity of fluorescence in cells was observed at concentrations of
15 µM and 25 µM, it was 139.3% and 143.36%, respectively, compared to the cells of the
control group (gray area) (48.9%). With increasing azelastine concentrations, a gradual
reduction in dye emission in labeled cells was observed to 95.3% at 45 µM and to 75.2% at
60 µM. At the highest concentration used (90 µM), a further reduction of the fluorescence
intensity to 46.9% was demonstrated.

3. Discussion

Despite continuous advances in anticancer therapy, low treatment efficacy with con-
comitant high side effects is still a major problem [16]. Therefore, in the search for potential
chemotherapeutic agents, particular attention is paid to the safety of the drug and its good
tolerability [18]. Such features may be possessed by the well-studied new-generation H1
antihistamines, which have almost completely displaced the old-generation drugs used in
anti-allergic treatment [48]. Another important aspect in the search for new oncological
treatment options is the complexity of the oncological disease. The success of cancer ther-
apy is also influenced by the possibility of modulating molecular and cellular factors found
in the tumor and its microenvironment [16]. Thus, the identification of compounds with
multidirectional mechanisms of action is crucial for the further development of anticancer
therapies [6], and azelastine, used in anti-allergy treatment, may be such a drug.

The results obtained from our study allow us to conclude that the studied compound
induced in HeLa cells two important processes for anticancer therapy, namely autophagy
and apoptosis (Figure 4D).

At low concentrations (15 µM and 25 µM), azelastine clearly promoted autophagy
while apoptosis remained low. The induction of autophagy is indicated by an increased
number of cells with intensified vacuolization of the cytoplasm (Figure 4A(2–3a),D). An im-
portant role in this process is played by the maintenance of an acidic pH inside the vacuole,
which was documented by the presence of a strongly eosinophilic content within the large
vacuoles of the studied cells (Figure 4A(2,3)). Adequate pH is necessary for the activity of
lysosomal enzymes required to digest cellular material [49,50]. In our study, we showed
that azelastine treatment caused a marked increase in the activity of lysosomal enzymes,
i.e., cathepsin D and L (Figure 6C). The revealed concentration-dependent increase in
lysosomal hydrolases activity was correlated with ultrastructural changes of studied cells,
indicating an increase in degradative processes. The numerous autophagic vacuoles seen
in the microphotographs (Figure 6A(1–2b)), which are very large and contain fragments of
cytosol with organelles, indicate the presence of macroautophagy. This was also confirmed
by examining the autophagy-specific marker, LC3 protein, where the highest fluorescence
intensity (i.e., 139.3% and 143.36%) was found at the lowest concentrations of azelastine
(15 µM and 25 µM, respectively) (Figure 6B).
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As shown in Figure 4D, cells with morphological features typical of apoptosis clearly
gained advantage at 45 µM azelastine, and with increasing concentrations of 60 µM and
90 µM, they constituted more than 90% of all analyzed cells. The switch of autophagy to
apoptosis is documented in Figure 4A(4,4a), where cells with characteristics of both types
of cell death are seen. Such a condition can be associated with progressive degradation of
organelles, confirmed by the presence of giant autophagic vacuoles in cells loaded with
45 µM of azelastine (Figure 6A(3,3a)), as well as the presence of increased numbers of
primary and secondary lysosomes at high concentrations (60 µM and 90 µM) of the test
compound (Figure 6A(4–5b)). In the studied cells, enlarged mitochondria were visible next
to the vacuoles (Figure 6A(5a,5b)), which according to the literature could be related to the
increasing demand for ATP, necessary for enhanced autophagy as well as for triggering pro-
grammed cell death [51]. The nuclei of the cells also showed altered morphology, including
chromatin condensation and fragmentation (Figure 6A(4a,5b)), which was confirmed by
DAPI staining (Figure 1E). The pro-apoptotic effect was additionally confirmed by the cyto-
metric method; it was shown that azelastine, depending on the concentration, significantly
induced the number of apoptotic cells with the dominance of the late-apoptotic phenotype.
These values increased as follows: up to 60% at a concentration of 45 µM, 93% at 60 µM,
and 98% at 90 µM (Figure 1A,C).

Autophagy and apoptosis are interconnected and can occur in the same cell in re-
sponse to a given stimulus simultaneously or separately [52,53]. According to Fimia and
Piacentini [54], induction of apoptosis is often associated with increased autophagy. In
the presence of apoptotic stimuli, autophagy may be an adaptive response or a distinct
type of cell death [55]. The tendency to change the regulation of both processes demon-
strated in our studies was dependent on the concentration of azelastine. The targeting of
cells to the apoptotic pathway was likely the result of a failed attempt to restore cellular
homeostasis as a consequence of increased cellular stress [56]. During excessive autophagy,
mitochondria tend to show accelerated production of reactive oxygen species due to in-
creased oxidative phosphorylation. A slight, but statistically significant increase in the
ROS level (Figure 2C,D), was noted already at the lowest concentrations of the tested
compound (15 µM and 25 µM). The ROS values increased significantly at the concentration
of 45 µM, which could have triggered the apoptosis process in the tested cells. Similar
results were obtained by the team of Nicolau-Galmés [55] in a study on terfenadine, an
old generation antihistamine, which enhanced autophagy and consequently led to the
induction of apoptosis.

The oxidative stress activated by azelastine in HeLa cells was correlated with the
simultaneous increase in the level of phosphorylated H2A.X (Figure 3B,C). The results
obtained in this study indicate the participation of ROS in inducing DNA damage, which
could have been a signal to trigger apoptosis. The significantly reduced division capacity
of HeLa cells (Figure 4E) and their arrest in the S phase of the cell cycle (Figure 4B,C) may
be associated with the DNA damage response. As shown in the literature, cell proliferation
may be crucial for tumor development and progression, and histamine may be the main
mediator of this process in various types of cancer [16]. On the other hand, DNA damage
and inhibition of cell proliferation are among the important mechanisms of action of
anticancer drugs [57]. The various properties of azelastine demonstrated in this study can
also be used in anticancer therapy.

The antiproliferative properties of azelastine are also confirmed by the mitotic catas-
trophe induction capacity demonstrated in studies, documented in Figure 5A showing
the abnormal course of mitosis. This process was most likely induced by DNA dam-
age, and resulted in demonstrated changes such as multinucleation and micronucle-
ation (Figure 5A(1–6),B). Of particular note is the presence of giant, multinucleated cells
(Figure 5(A4)). At high concentrations of the tested compound, cells with significant nu-
clear changes eventually underwent apoptosis (Figure 5D), which is considered one of the
necessary final steps in the course of mitotic catastrophe. The mitotic catastrophe shows a
strong mechanistic relationship with the cellular and molecular changes accompanying
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carcinogenesis and therefore seems to be a preferentially stimulated process in cancer
cells [58–60]. Compounds promoting mitotic death, such as azelastine, may be a promising
therapeutic alternative for apoptosis-resistant cancer cells.

In cells, the functions of “stress sensors” are performed by mitochondria and they
are the central executors of apoptosis [61] as well as the course of mitotic catastrophe [59].
As our results showed, the induction of apoptosis by azelastine was also associated with
the mitochondrial pathway. At the level of submicroscopic studies, already at low concen-
trations of azelastine, mitochondria were enlarged with a clear matrix (Figure 2A(2,3,3a)).
However, under the influence of high concentrations, enhanced changes were demon-
strated, with significant mitochondrial damage (Figure 2A(4–6a)) and disorganization of
the inner membrane. At the same time, the cytometric analysis determined the highest
percentage of cells with depolarization of the mitochondrial membrane (over 50%) for
the concentrations of 60 µM and 90 µM (Figure 2E,F). The violation of the mitochondrial
membrane integrity was confirmed by the concentration-dependent gradual quenching
of green fluorescence emissions from labeled mitochondria (Figure 2B), which was also
associated with the demonstrated inactivation of the Bcl-2 protein (Figure 3A,D) and acti-
vation of the executive caspases (Figure 1B,C). We also demonstrated the cytotoxic effect
of azelastine related to the reduction of metabolic activity of mitochondria using the MTT
test. Depending on the concentration, this compound reduced the viability of HeLa cells
(Figure 1D), which at the highest concentration (90 µM) was only 4%. According to the
studies by Cornet-Masana [62] conducted on leukemia lines, mitochondria in cancer cells
are characterized by numerous changes, which, according to Pathania’s team [63], makes
them more susceptible to therapies aimed at the metabolism of cancer cells.

The analysis performed at the level of submicroscopic changes revealed that mitochon-
drial disorganization is also accompanied by significant changes in the profile of the rough
endoplasmic reticulum. It has been reported that even at low concentrations of azelastine,
there is significant dilatation of reticulum channels (Figure 2A(3,3a)). These changes inten-
sified as a consequence of the action of increasing concentrations of the tested compound,
and at its high concentrations, they became significantly swollen (Figure 2A(5–6a)), which
can be explained by the stress of the reticulum. The revealed changes in the endoplasmic
reticulum homeostasis may be induced by an increased level of ROS [64,65], which is also
confirmed by the results of our research.

Cao and Kaufman [66] emphasize in their works the importance of spatial and func-
tional distribution in cells of organelles such as mitochondria and endoplasmic reticulum.
Also in the analyzed electronograms, close proximity of altered mitochondria and expanded
channels of rough endoplasmic reticulum was demonstrated (Figure 2A(5a–6a)), indicating
a functional relationship between these organelles and which may be relevant to the pro-
cesses regulating apoptotic cell death. Pro-apoptotic factors derived from mitochondria
induce signals from the rough endoplasmic reticulum, which in turn cause changes in the
mitochondria. On the other hand, reticulum stress can lead to mitochondrial dysfunction
and consequent oxidative stress, followed by impaired homeostasis and apoptosis [67–69].
Apoptosis involving endoplasmic reticulum stress has attracted a lot of attention in recent
years [64]. Mild stress of cancer cells can lead to the activation of adaptive mechanisms,
however, therapeutic benefits of compounds that induce endoplasmic reticulum stress
and put cells on the apoptosis pathway have been confirmed for certain types of cancer
cells [70,71]. In our studies, azelastine induced in HeLa cells oxidative stress, stress of
rough endoplasmic reticulum, and mitochondrial dysfunction, which by reinforcing each
other, disrupted cellular functions and activated proapoptotic signals [65,66,68]. A similar
mechanism of action has been reported for terfenadine, an old generation antihistamine
in relation to A375, HT144, and Hs294T cell lines [55]. However, in studies on the action
of rupatadine, ebastine, and loratadine in relation to acute myeloblastic leukemia cells,
the cytotoxicity of these compounds consisted of bidirectional, mitochondrial-lysosomal
action, ROS generation, and reduction of mitochondrial metabolic activity, which led to the
activation of caspase 3 and 7 and induction of the apoptosis pathway [62].
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Efferocytosis-phagocytosis of dead cells was also observed under the action of azelas-
tine (Figure 4A(4a,5,6,6a)). According to the literature, this process under certain conditions
can be performed by “non-professional phagocytes” [72–74]. In the context of carcino-
genesis, efferocytosis suppresses the body’s natural immune response, then facilitates
the immune escape of tumor cells while promoting the tumor microenvironment [50].
This process not only affects the proliferation, invasion, metastasis, and angiogenesis of
cancer cells, but also regulates adaptive responses and decreases the positive response to
radiotherapy and to many commonly used anticancer antibodies and chemotherapeutic
agents [75]. The data obtained in our study indicate, that initially azelastine at low con-
centrations (Figure 4(A4a)) induced efferocytosis in the context of an adaptive response of
HeLa cells, and then cells with phagocytosed apoptotic cells were directed to the apoptotic
pathway (Figure 4A(6,6a)). Such action is in contrast to that of traditional therapies, which
induce apoptosis of tumor cells and increase subsequent efferocytosis, which suppresses
the inflammatory response [76]. Thus, the demonstrated property of azelastine indicates
an additional possibility of the interference of the compound in the tumorigenesis, and at
the same time, fits in the current view of combining traditional therapies with therapies
targeting the efferocytosis process in order to improve their effectiveness [50].

4. Material and Methods
4.1. In Vitro Culture Conditions

Human cervical adenocarcinoma cells (HeLa cells) were cultured in a Direct Heat
incubator (Thermo Scientific, Waltham, MA, USA), under standard culture conditions,
i.e., 37 ◦C and 5% CO2, on a modified DMEM medium (GIBCO, New York, NY, USA),
containing 10% fetal calf serum (Biowest, Nuaillé, France) and a mixture of antibiotics
(penicillin G, streptomycin, amphotericin B) (Corning, Manassas, VA, USA). The HeLa
cells were purchased from the American Type Tissue Culture Collection (Rockville, MD,
USA). Cells were treated for 48 h with azelastine hydrochloride (≥98% HPLC), (4-[(4-
chlorophenyl)methyl]-2-(1-methylazepan-4-yl) phthalazin-1-one hydrochloride), which
was purchased from Sigma Aldrich (St. Louis, MO, USA). The following concentrations of
the test compound were used in the experiment: 15 µM, 25 µM, 45 µM, 60 µM, and 90 µM.

According to the literature data, the tested concentrations are used in research on
antihistamine drugs conducted on cancer cell lines. Control cells were cultured in complete
maintenance medium without the addition of the test compound.

4.2. Assessment of Cell Viability—MTT Test

The level of cytotoxicity of azelastine against HeLa cells was determined using MTT
(3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay. Cells seeded in
Falcon 96-well plates (Fisher Scientific, Waltham, MA, USA) after azelastine treatment
were stained with MTT solution (1 mg/mL) (Sigma Aldrich, St. Louis, MO, USA). After
2 h of incubation of the cells with the dye, dimethylsulfoxide (DMSO) was applied to
solubilize the formed formazan crystals. Optical density was measured at 570 nm using a
Synergy 2 multi-detector microplate reader (BioTek, Winooski, VT, USA). Cell viability was
calculated in comparison with the control group using Gen5 software.

4.3. Visualization of Apoptotic Cells under A Fluorescence Microscope

Morphological evaluation of nuclei of control and tested cells was performed using
4′,6-diamidino-2-phenylindole (DAPI) staining. Cells cultured in dishes (Falcon, Fisher
Scientific, Waltham, MA, USA) were stained with 2.5 µg/mL DAPI solution (Sigma Aldrich,
St. Louis, MO, USA) for 15 min and then washed with PBS. The preparations were analyzed
using a Nikon Eclipse Ti epi-fluorescence inverted microscope (Nikon Instruments Inc.,
Melville, NY, USA).
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4.4. Detection of Apoptosis

Phosphatidylserine externalization in azelastine-exposed cells was assessed using
Annexin V and Dead Cell test kit (Merck Millipore, Burlington, MA, USA). Control and
azelastine treated cells were detached using 0.25% trypsin-EDTA (Corning, New York, NY,
USA), centrifuged and washed with PBS. Then, cells were stained with annexin V (100 µL)
for 20 min at room temperature in the dark. The fluorescence intensity was analyzed using
a Muse analyzer (Merc Millipore, Burlington, MA, USA).

4.5. Activity of Caspase-3/7

The level of caspase-3/7 activation was measured using a caspase-3/7 assay kit
(Merck-Millipore, Burlington, MA, USA). After 48 h of incubation with azelastine, cells
were harvested by trypsinization and incubated at 37 ◦C with 5 µL of Caspase-3/7 working
solution (as per protocol). Then, 150 µL of Caspase 7-AAD working solution was added
to the cells. Detection of caspase-positive cells was performed using a Muse analyzer
(Merck-Millipore, Burlington, MA, USA).

4.6. Analysis of Ultrastructural Changes

Cells for electron microscopy were fixed in 3% glutaraldehyde (Serva Electrophore-
sis GmbH, Heidelberg, Germany) followed by 2% OsO4 (Spi, West Chester, PA, USA)
in cacodyl buffer. The material was then dehydrated in an ascending series of ethanol
solutions (10–99.8%) and embedded in Epon 812 epoxy resin (Serva Electrophoresis GmbH,
Heidelberg, Germany), followed by polymerization at 40 ◦C and 60 ◦C. The epoxy blocks
were cut into ultra-thin sections on a Leica EM UC7 ultramicrotome (Leica Biosystems,
Wetzlar, Germany), and the obtained preparations were further contrasted with uranyl
acetate and lead citrate. Analysis was performed using a Tecnai G2 Spirit transmission
electron microscope (FEI Company, Hillsboro, OR, USA) equipped with a Morada camera
(Olympus, Soft Imagine Solutions, Münster, Germany). The interpretation of the changes
in azelastine-exposed cells was based on the image of control cells.

4.7. Measurement of the Mitochondrial Membrane Potential (∆ψm)

The decrease in ∆ψm was analyzed using the Muse MitoPotential Assay kit (Merck
Millipore). Cells after incubation with azelastine were resuspended in 95 µL of Muse
MitoPotential working solution and incubated at 37 ◦C for 20 min. The cells were then
stained with 7-AAD dead cell marker (5 µL) at room temperature for 5 min, and the cell
suspension was analyzed by flow cytometry.

4.8. Microscopic Evaluation of Changes in the Potential of Mitochondrial Membrane

After 48 h incubation with azelastine, cells were fixed in 4% paraformaldehyde and
then incubated for 30 min with rhodamine 123 (Sigma Aldrich, St. Louis, MO, USA) at a
concentration of 5 µg/mL ethanol. The used fluorochrome binds to metabolically active
mitochondria, so the fading of fluorescence is proportional to the decrease in mitochondrial
membrane potential. The cells were then washed with PBS and analyzed under a Nikon A1
confocal microscope based on a Nikon Eclipse Ti inverted microscope (Nikon Instruments
Inc., Melville, NY, USA) and equipped with Nikon Nis Elements AR software (Nikon
Instruments Inc., Melville, NY, USA).

4.9. Oxidative Stress Analysis

The Muse Oxidative Stress Assay kit (Merck Millipore, Burlington, MA, USA) based
on intracellular detection of superoxide radicals was used to investigate the level of reactive
oxygen species. As according to the manufacturer’s instructions, cells were treated with
Muse Oxidative Stress Reagent working solution (190 µL) after 48 h incubation with
azelastine. Samples were then incubated at 37 ◦C for 30 min and the percentage of gated
ROS (−) and ROS (+) cells with ROS activity were analyzed.
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4.10. Assessment of Bcl-2 Protein Phosphorylation

Changes in Bcl-2 phosphorylation in HeLa cells were assessed using the Muse™ Bcl-2
Activation Dual Detection Assay kit (Merck-Millipore, Guyancourt, France) according
to the manufacturer’s instructions. Two direct conjugated antibodies were used in the
kit, i.e., phospho-specific anti-phospho-Bcl-2 (Ser70)-Alexa Fluor® 555 and a conjugated
anti-Bcl-2-PECy5 antibody to measure total Bcl-2 expression levels. The degree of activation
of the Bcl-2 pathway was assessed by measuring Bcl-2 phosphorylation relative to total
Bcl-2 expression in the tested cells.

4.11. DNA Damage Assessment

To determine whether azelastine causes DNA damage, cells were fixed and permeabi-
lized with Muse Fixation Buffer and Permeabilization Buffer reagents, followed by staining
with anti-phospho-Histone H2A.X (Ser139) and anti-phospho-ATM (Ser1981) antibodies
according to the instructions for the Muse H2A.X Activation Dual Detection kit (Millipore,
Darmstadt, Germany).

4.12. Cell Cycle Analysis

Cells were analyzed using the Muse Cell Cycle Assay Kit (Merck Millipore, Burlington,
MA, USA). Cells were trypsinized and centrifuged, and the obtained cell pellet was fixed
in 70% ice-cold ethanol. Cells were then treated with Muse Cell Cycle Reagent (Merck
Millipore, Burlington, MA, USA) for 30 min and then analyzed with a Muse analyzer
(Merck Millipore, Burlington, MA, USA).

4.13. Visualization of Morphological Changes and Assessment of the Dividing Capacity of HeLa Cells

Cells were cultured on sterile coverslips in Falcon dishes (Fisher Scientific, Waltham,
MA, USA) in DMEM medium supplemented with azelastine (test cells) or without test
compound (control cells). Methanol-fixed cells were stained with Harris hematoxylin
and eosin, then dehydrated in an ascending series of ethanol solutions and immersed
in xylene. Each preparation was analyzed based on a control image, taking into account
changes mainly concerning cell nucleus (presence of bi- and multinucleated cells, giant cells,
cells with micronuclei, with chromatin condensation, with pyknotic nucleus), cytoplasm
(increased or decreased pigmentation, vacuolization changes, presence of apoptotic bodies),
and mitotic division (presence of cells in particular phases of division and abnormal mitotic
figures). Quantitative and qualitative analysis of morphological changes in the studied cells
and photographic documentation were performed using a Nikon Eclipse 80i microscope
with Nikon NIS Elements D 3.10 software (Nikon Instruments Inc., Melville, NY, USA). The
mitotic index was evaluated by determining the number of cells in each phase of mitotic
division, and the result was expressed as a percentage. In preparations, 3000 cells each
were analyzed in three independent experiments (9000 cells/concentration), and the final
score for a given trait was the mean value.

4.14. Evaluation of Cathepsin D and L Activity Levels

After 48 h of incubation with azelastine, cells were trypsinized, resuspended in 0.25 M
sucrose solution and homogenized using a Potter S homogenizer (Sartorius, Gottingen,
Germany). The homogenate was initially centrifuged at an overload of 700× g, for 10 min.
The extranuclear supernatant was then centrifuged at 20,000× g overload for 20 min, and
the obtained lysosomal pellet was resuspended in Triton X-100 (Sigma-Aldrich, St. Louis,
MO, USA). The activities of degradative enzymes, cathepsin D and L, were determined
in the lysosomal fraction according to the modified Langner’s method. According to
the procedure, 2% azocasein (Sigma-Aldrich, St. Louis, MO, USA), 0.2 M acetate buffer
pH = 5.0, and 10% TCA (+4 ◦C) were used. After incubation at 37 ◦C, samples were
centrifuged, and enzyme activity was measured by colorimetric method at 366 nm using a
Spekol 1500 spectrophotometer (Analytik Jena GmbH, Jena, Germany). Simultaneously,
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the total protein content (at 680 nm) was determined using the Lowry’s method modified
by Kirschke and Wiederanders. Enzyme activity was expressed as µmol/mg protein/hour.

4.15. LC3-Antibody Detection

The level of azelastine-induced autophagy was assessed by cytometric assay using
Autophagy LC3 antibody (Merck Millipore, Burlington, MA, USA). The kit includes reagent
to selective membrane permeabilization (Autophagy Reagent A) that allows to distinguish
between cytosolic and autophagic LC3. This is accomplished by extracting the cytosolic
protein while protecting the LC3 that is translocated to and remains intact in autophago-
somes. Addition of Anti-LC3 Alexa Fluor® 555 and Autophagy Reagent B to the cells
allows quantification of LC3 by measuring fluorescence using flow cytometry. According
to the protocol, cells were seeded in Falcon 96-well plates. Autophagy A reagent in EBSS
medium (Corning, Corning, NY, USA) was then added to the cells and incubated for 4 h
under CO2 atmosphere, followed by washing with HBSS (Corning, Corning, NY, USA),
trypsinization, and centrifugation. The supernatant was removed and anti-LC3 Alexa
Fluor® 555 and Autophagy Reagent B were added to the cells and incubated on ice for
30 min in the dark. The samples were then analyzed using flow cytometry technique. Cells
that were treated with serum-free medium for 4 h were used as a positive control.

4.16. Statistical Analysis

Statistical analysis of the study results was performed using one-way analysis of
variance (ANOVA) with multiple post-hoc comparisons using Tukey’s test. Differences
were considered statistically significant at p < 0.05. Statistica 10.0 software (StatSoft, Krakow,
Poland) was used for data analysis.

5. Conclusions

In our study we demonstrated potential anticancer properties of azelastine based on
autophagic, proapoptotic, cytotoxic, or antiproliferative activity, which, taking into account
safety of its application and potent anti-inflammatory properties, can be regarded as features
of a compound that is part of the current canon of fight against cancer. Azelastine may be
therefore an alternative method of oncological treatment, which requires further research.
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