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ABSTR ACT: The diffusion-weighted-dependent attenuation of the MRI signal E(b) is extremely sensitive to microstructural features. The aim of this 
study was to determine which mathematical model of the E(b) signal most accurately describes it in the brain. The models compared were the monoexpo-
nential model, the stretched exponential model, the truncated cumulant expansion (TCE) model, the biexponential model, and the triexponential model. 
Acquisition was performed with nine b-values up to 2500 s/mm2 in 12 healthy volunteers. The goodness-of-fit was studied with F-tests and with the Akaike 
information criterion. Tissue contrasts were differentiated with a multiple comparison corrected nonparametric analysis of variance. F-test showed that the 
TCE model was better than the biexponential model in gray and white matter. Corrected Akaike information criterion showed that the TCE model has the 
best accuracy and produced the most reliable contrasts in white matter among all models studied. In conclusion, the TCE model was found to be the best 
model to infer the microstructural properties of brain tissue.
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Introduction 
Diffusion MRI (dMRI) is a powerful in vivo method for 
exploring biological microstructures.1 The contrast of diffusion- 
weighted (DW) images is dependent on the magnitude of the 
diffusion-weighting factor (b-value). In clinical practice, espe-
cially for fast and early detection of ischemic stroke, DW images 
are generally acquired with a unique b-value (b = 1000 s/mm2). 
The geometric mean of DW images over three spatial directions 
is then used to calculate apparent diffusion coefficient (ADC) 
maps2 with the help of a monoexponential model (MEM) for-
malism. As it uses the same limited range of b-values but is 
acquired for 6–60 spatial directions,3 diffusion tensor imag-
ing is also an MEM that includes the effect of water diffusion 
anisotropy3 and leads to the calculation of a rotationally invari-
ant form of the ADC, the mean diffusivity.

On the other hand, the higher the b-value, the more 
sensitive the DW images are to smaller absolute random dis-
placements of water molecules, and therefore to the micro-
scopic structures of brain tissue.1 Therefore, high b-value 
dMRI consists of recording series of DW images with succes-
sively increasing b-values up to relatively high values (b ~2500 
to ~12,000 s/mm2). The number of spatial direction measures 
acquired is adapted depending on the time constraints. The 

DW-dependent attenuation of the MRI signal obtained in 
each image pixel is related by Fourier transformation to the 
water displacement probability distribution (q-space method). 
In brain tissue, the standard deviation of this distribution has 
a characteristic length scale of tenths of µm,4,5 making it pos-
sible to investigate some microstructural changes related to 
cerebral insults.5 However, Fourier transformation of the DW-
dependent attenuation of the MRI signal (q-space) requires 
experimentally challenging conditions, whereas signal model-
ing is more flexible. Indeed, the DW-dependent attenuation of 
the MRI signal (designed as E(b)) acquired with intermediate 
or high b-values needs to be modeled numerically with a math-
ematical function describing its non-exponential decay, which 
is relevant to the postulated properties of the microscopic 
structures present in brain tissues.4,6–8 High b-value dMRI 
modeling and q-space are very sensitive to microscopic water 
displacements, highlighting white matter (WM) structures7,8 
or cerebral insults in animals9–12 and in human brains,5,13 and 
thus having a potential clinical interest.

Two types of models are needed for the study of diffu-
sion imaging. The first (signal models) describes empirically 
how the E(b) signal decays, whereas the second (tissue mod-
els) describes how the signal relates to the underlying tissue 
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microstructure. However, for the former, several signal mod-
els have been developed to perform high b-value dMRI mod-
eling, ie, to fit the E(b) signal4,6–8: the biexponential model 
(BEM),7,14–18 the triexponential model (TEM),3,7,12 the 
stretched exponential model (SEM),19–23 and the truncated 
cumulant expansion (TCE) model.1,24–26 The latter is closely 
related to the diffusional kurtosis imaging model.1,24–26 How-
ever, to date, no studies have compared the contrast and good-
ness-of-fit of all of these four different models on the same 
scans and the best model to be used in research imaging pro-
tocols remains a matter of debate. The aim of this study was to 
determine which mathematical model is the best to analyze the 
DW-dependent attenuation of the MRI signal of the human 
brain in a range of clinically accessible b-values, in terms of 
accuracy, contrast, and insensitivity to artifacts. Accuracy was 
studied with the Akaike information criterion (AIC), which 
is a reference statistical index of goodness-of-fit that makes it 
possible to test simultaneously the accuracy of different mod-
els potentially differing by their degrees-of-freedom.

Methods
Acquisition design.
Subjects and patients. For the purpose of this study, we 

included 12 healthy human control subjects without memory 
dysfunction. The study protocol (ClinicalTrials.gov Identifier: 
NCT01686516) complied with the principles of the Declara-
tion of Helsinki and was approved by the local ethics commit-
tee (South West France and Overseas French Departments 
I–II, France). Five subjects were young (26  ±  4  years) and 
seven were old (66 ± 6 years). To illustrate the clinical interest 
and the feasibility of high b-value dMRI acquisitions in hos-
pital emergencies, a patient was scanned 4 days after a serious 
stroke infarct with a protocol identical to those employed for 
healthy subjects. Written informed consent was obtained from 
every subject/patient before participation.

MRI acquisitions. Magnetic resonance images were 
acquired with a Philips Achieva® 3 T magnet (maximum mag-
netic field gradient intensity: 40 mT/m) equipped with an eight-
channel coil. DW spin echo images (31 slices covering the entire 
brain) were acquired with a pulsed gradient spin echo dMRI 
pulse sequence (Δ/δ  =  34.5/25 ms, constant diffusion time 
td = 27 ms) with an echo-planar (EP) imaging readout (TR/
TE = 4212/70 ms). DW images were recorded with an increas-
ing range of b-values (0, 100, 200, 500, 750, 1000, 1500, 2000, 
and 2500 s/mm2, Nb = 9) obtained by increasing the intensity 
of the magnetic field gradients. For each b-value, the scanner 
provided the geometric mean of DW images acquired in the 
read (R), phase (P), and slice (S) encoding directions. Spatial 
resolution used was 2 mm × 2 mm (matrix size 128 × 128) and 
slice thickness was 4  mm. Reconstruction for parallel imag-
ing with sensitivity encoding for fast MRI (SENSE) was used 
with a SENSE factor of 2. Total dMRI scan duration was seven 
minutes, a duration compatible with the use of our protocol in 
hospital emergencies.

Image processing.
Image registration. Otsu’s method of histogram analy-

sis27 was used to extract the brain image from skull and 
background noise. To limit the effect of the patient’s head 
motion28 and susceptibility-related geometrical distortions of 
EP images,28 Matlab® methods applying, respectively, soft 
linear registration and soft local, nonlinear registration of EP 
images were used.29–31 DW images were also visually checked 
for other remaining artifacts. Pixel-by-pixel division of reg-
istered DW images S(b) by S0 image (image acquired with no 
diffusion weighting) was performed to obtain images of the 
normalized DW-dependent attenuation of the MRI signal 
E(b) = S(b)/S0.

Segmentation and regions-of-interest (ROIs). Seg-
mentation accuracies of the packages FreeSurfer, SPM, and 
FSL have been previously compared, and for WM, a higher 
volumetric segmentation accuracy was found with the FSL 
package.32 In this study, higher significance was given to WM 
compared to gray matter (GM). WM is less prone to partial 
volume effects of cerebrospinal fluid (CSF), so it is more reli-
able for unbiased diffusion model accuracy comparisons. EP 
images can be segmented, but care must be taken when doing 
so.33 Segmentation of EP images was done with the FSL seg-
mentation algorithm FAST (FMRIB’s automatic segmenta-
tion tool), which provided binary masks that served as ROIs 
corresponding to CSF, GM, and WM.

Models of the E(b) signal. The parameter S0 was not 
considered as a free parameter in any of the models. To fit pixel-
by-pixel the S(b)/S0 images, the following models were used:

Monoexponential model. This model of the E(b) signal 
approximates water diffusion in the tissue as Gaussian. It 
also has the following form for diffusion approximated as 
isotropic14,15:

 = = − ⋅0( ) ( )/ exp ( )E b S b S b ADC  (1)

where ADC is the previously defined apparent diffusion coef-
ficient. The MEM is generally used for a low b-value range 
(300–1500 s/mm2), where the Gaussian diffusion approxima-
tion is valid.14,15 For the intermediate b-value range used here, 
deviations of the E(b) signal from an MEM are known,4 but 
MEM was used in this work as a reference model for compari-
son of accuracies. The MEM has only one degree-of-freedom 
(Ndof = 1).

Stretched exponential model. The SEM has the following 
form19–23:

 E b b DDC( ) ( )= − exp ⋅ α  (2)

where DDC is the distributed diffusion coefficient, ie, it is the 
abscissa relative to the peak of a distribution of diffusion coef-
ficients, hypothesized in the SEM to exist in the tissue.19–23 In 
brain, DDC exhibits lower values than ADC does.20–23 A weak 
anomalous exponent α indicates a strongly non-exponential 
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E(b) signal, equivalent in the SEM hypothesis to a broad 
distribution of diffusion coefficients.19–23 The SEM is a low-
degree-of-freedom model (Ndof = 2).

Truncated cumulant expansion. The second-order TCE of 
the signal E(b) is a mathematical model closely related to the 
q-space method,24,25 but it does not use Fourier transforma-
tion as it has the following analytical formulation1,24–26:

  = − ⋅ + ⋅ ⋅ 
2

app app app( ) exp ( ² )/6E b b D b D K  (3)

where Dapp is the cumulative ADC and Kapp is the apparent 
kurtosis. The second-order TCE has a low degree-of-freedom 
(Ndof = 2). The diffusional kurtosis imaging model is a tensorial 
form of the second-order TCE model acquired in clinically 
feasible conditions, ie, with two non-null b-values and at least 
15 directions.24,25

In brain, Dapp exhibits higher values than ADC does.24–26 
Apparent kurtosis Kapp is commonly interpreted as: (i) rep-
resentative of the presence of restricted diffusion4,24 or (ii) 
representative of the presence of tissue microscopic heteroge-
neity.1,25 Indeed, in the latter case, it is possible to calculate 
the standard deviation of the local diffusivities (σ) in the fol-
lowing manner1,25:

 = ⋅ 2
app app( )/3K Dσ  (4)

The parameter σ represents the dispersion of the cor-
relation function of the disorder existing in the biological 
medium, ie, σ is a parameter estimating the structural disor-
der frequency of barriers encountered during the diffusion of 
water molecules in the tissue, like those created by the spatial 
distribution of biomembranes.1

Biexponential model. The BEM has the following 
form15–18:

 ⋅ − ⋅ + ⋅ − ⋅fast fast slow slow( ) exp ( ) exp ( )E b F b D F b D=  (5)

with

 + =fast slow 1F F  

This models the sum of the contribution (with no 
exchange) of two water pools (Ffast and Fslow), each associated, 
respectively, with expected “fast” and “slow” ADCs (Dfast and 
Dslow).15–18 The BEM has three degrees-of-freedom (Ndof = 3).

Triexponential model. To estimate the signal attenuation 
properties both at low14 and high b-values,15 three exponential 
functions are combined3,7,12 to express the TEM as:
 

= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅1 1 2 2 3 3( ) * exp( *) exp( ) exp( )E b F b D F b D F b D  

with

 ∗ + + =1 2 3 1F F F  (6)

where ∗
1F  and ∗

1D  could be related to the properties of the 
blood micro-circulation water fraction with intravoxel inco-
herent motions (IVIM)14, CSF water fraction,3,14 or a mix of 
both.14 As it is representative of blood microcirculation pseudo-
diffusion, ∗

1D  could attain values of tenths of µm²/ms, which is 
much greater than the true diffusion coefficient of free water,14 
which is 3 µm2/ms. F2 is analogous to Ffast, F3 is analogous to 
Fslow. The TEM has six degrees-of-freedom (Ndof = 6).

Numerical implementation. E(b) images were fitted 
pixel-by-pixel over the full b-value range (0–2500 s/mm2) 
with an in-house Matlab® program implementing the mod-
els presented (MEM, SEM, TCE, BEM, TEM). Regression 
convergence of nonlinear systems described by equa-
tions (1), (2), (3), (5), and (6) was performed by simple least 
square minimization of the sum of squared residuals (SSR) 
of the fit, using 800 iterations of the Nelder–Mead simplex 
algorithm (fminsearch Matlab® function).34 This procedure 
allowed the rapid calculation of the SSR maps and paramet-
ric maps corresponding to the free parameters of the mod-
els (ADC, DDC, α, Dapp, Kapp, Dfast, Ffast, Dslow, Fslow, ∗

1D ,  
∗

1F , D2, F2, D3, F3).
Statistical analysis.
Analysis of model contrasts. Parametric images were visually 

checked for artifacts. The contrast comparison between ana-
tomically neighboring structures (ie, CSF compared to GM, 
GM compared to WM) for values of spatially averaged quan-
titative parameters (ADC, DDC, α, Dapp, σ, Kapp, Dfast, Ffast, 
Dslow, Fslow, D*1, F *1, D2, F2, D3, F3) was tested with a Kruskal–
Wallis nonparametric one-way analysis of variance with a 
P-value correction for multiple comparisons using the Holm–
Bonferroni method. This was performed with the R statistical 
software35 using the “kruskal” function of the “agricolae” pack-
age. Conventions used for statistical significance were the fol-
lowing: P  0.001 (***), P  0.01 (**), P  0.05 (*).

Spearman’s rank correlation implemented in Matlab® 
was used to obtain the coefficient of correlation R between 
the values of different diffusion parameters measured in the 
WM for the 12 subjects, together with the corresponding risk 
probability. The significant risk probability level chosen was 
P  0.05.

Analysis of goodness-of-fit.
F-tests. To calculate the F-statistic associated with 

model comparisons,26,36,37 the approach proposed in the work 
of Yoshiura et al was used,36 where the F-value is defined as:

( ) ( ) ( )
( )

− −
= − − =

−

1 2 2 1

2 1 2
2 2

/

/

dof dof

dof dof b dof

b dof

SSR SSR N N
F N N , N N

SSR N N

 (7)

where SSR1 is the SSR of model 1 and SSR2 those of model 2, 
each having Ndof1

 and Ndof2
 degrees-of-freedom, respectively, 

and where Nb is the number of b-values. Practically, F-values 
were obtained after spatial averaging of segmented SSR maps35 

http://www.la-press.com
http://www.la-press.com/magnetic-resonance-insights-journal-j115


Nicolas et al

14 Magnetic Resonance insights 2015:8

in ROIs. F-values were also averaged over the population 
sample. Fexp (the experimental F-value) was then compared to 
Ftheo (the theoretical F-value) at risk probability P  0.05 in 
the Fisher–Snedecor table.37

AIC. The AIC has a particularly simple form when the 
E(b) signal is fitted by simple least square38:

= ⋅ + ⋅2
dofln ( ) 2AIC N Nχ

with

 
=

 − 
= =

∑ 2exp fit

12

( ) ( )
Nb

i i
i

b b

E b E b
SSR

N N
χ

 (8)

where Eexp(b) is the experimental DW-dependent attenuation 
of the MRI signal and Efit(b) is the discrete model used for 
fitting, and where [Eexp(b) − Efit(b)] is the residual of the fit. 
N represents the number of subjects and Ndof represents the 

degrees-of-freedom of a given model. When using limited 
sample sizes (when N/Ndof  40), it is also convenient to define 
a corrected AIC termed AICc38:

 
+

= +
− −

dof dof

dof

2 ( 1)
1

N N
AICc AIC

N N
 (9)

Indeed, to be able to compare efficiently the accuracy of 
the models, an accurate penalty for models with high degrees-
of-freedom needs to be taken into account.38 The lower the 
AICc value, the better the model describes the experimental 
data obtained in the population sample.38

Results
Contrast analysis. Parametric maps and corresponding 

contrasts are shown in Figure 1 (for MEM, SEM, and 
TCE) and Figure 2 (for BEM and TEM), and quantitative 
values are given in Table 1. The tissue contrasts between 
adjacent tissues are shown in the bar charts in Figures 1 and 2.

Figure 1. Parametric images (one slice) of the MeM (ADC images, top), of the seM (DDC and α maps, bottom) and of the second-order TCE (Dapp, Kapp, and 
σ maps) in a representative (aged) subject. Bar charts show the values of the free parameters of the models (mean ± the standard deviation in the population 
sample). Statistically significant tissue contrast differences for anatomically-neighboring tissues are also shown (*P0.05, **P0.01, ***P0.001).
Abbreviations: MEM, monoexponential model; ADC, apparent diffusion coefficient; SEM, stretched exponen tial model; DDC, distributed diffusion 
coefficient; TCE, truncated cumulant expansion; CSF, cerebrospinal fluid; GM, grey matter; WM, white matter.
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Figure 2. Parametric images (one slice) of the BeM and of the teM in a representative (aged) subject. Bar charts show the values of the free parameters 
of the model (mean ± the standard deviation in the population sample). Statistically significant tissue contrast differences for anatomically-neighboring 
tissues are also shown (*P0.05, **P0.01, ***P0.001).
Abbreviations: BEM, biexponential model; TEM, triexponential model; CSF, cerebrospinal fluid; GM, grey matter; WM, white matter.

Artifacts and reproducibility. High sensitivity to CSF pul-
satile motion artifacts was often observed in the SEM, BEM, 
and TEM parametric images (see Figs. 1 and 2, artifacts 
around the ventricles in α, Ffast, Fslow, Dfast, Dslow, F2 maps). ∗

1D  
in CSF, GM, and WM and Dfast in CSF showed values higher 
than 3 µm2/ms (Table 1), the value for the diffusion coefficient 

of free water. This is known to be an effect of blood circula-
tion random flows in microvessels (IVIM phenomenon)14 or 
to CSF pulsations.14 In addition, TEM parameters ∗

1D  and 
∗

1F  showed a high variability and weak reproducibility, as 
indicated by their high standard deviation in the population 
sample (Fig. 2 bar charts) compared to other parameters.  
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Table 1. Quantitative values of parameters of models of the DW-dependent attenuation of the MRi signal E(b), displayed as intersubject 
mean ± the intersubject standard deviation.

MODEL PARAMETER (UNITS) CSF GM WM

MeM ADC (µm2/ms) 1.96 ± 0.104 0.768 ± 0.011 0.658 ± 0.0096

seM
DDC (µm2/ms) 1.96 ± 0.106 0.747 ± 0.010 0.627 ± 0.010

α 0.744 ± 0.018 0.842 ± 0.013 0.825 ± 0.011

tce

Dapp (µm2/ms) 2.36 ± 0.114 0.923 ± 0.022 0.824 ± 0.015

Kapp 0.592 ± 0.016 0.789 ± 0.029 0.992 ± 0.027

σ (µm2/ms) 0.682 ± 0.021 0.474 ± 0.019 0.474 ± 0.013

BeM

Dfast (µm2/ms) 3.88 ± 0.274 2.19 ± 0.379 1.33 ± 0.368

Dslow (µm2/ms) 0.687 ± 0.284 0.490 ± 0.058 0.206 ± 0.071

Ffast (%) 65.4 ± 3.29 34.6 ± 8.77 60.5 ± 8.38

Fslow (%) 34.6 ± 3.29 65.4 ± 8.77 39.5 ± 8.38

teM

D1* (µm2/ms) 6.16 ± 2.39 13.03 ± 8.5 29.05 ± 6.02

D2 (µm2/ms) 2.16 ± 0.144 1.21 ± 0.106 1.05 ± 0.067

D3 (µm2/ms) 0.393 ± 0.031 0.321 ± 0.054 0.127 ± 0.048

F1* (%) 2.49 ± 1.13 1.32 ± 0.648 0.66 ± 0.494

F2 (%) 67.90 ± 3.81 48.7 ± 8.21 69.4 ±5.19

F3 (%) 29.62 ± 4.41 50.0 ± 8.31 30.0 ± 5.30

Abbreviations: MeM, monoexponential model; seM, stretched exponen tial model; tce, truncated cumulant expansion; BeM, biexponential model; teM, 
triexponential model; ADC, apparent diffusion coefficient; DDC, distributed diffusion coefficient; CSF, cerebrospinal fluid; GM, grey matter; WM, white matter.

ADC, Dapp, and Kapp maps were free of artifacts, especially 
those related to pulsatile motions (Fig. 1). The vascular 
network of the brain appeared as null values in Kapp maps 
as areas where the TCE fit was not as accurate as in the 
 tissue (Fig. 1).

Tissue contrasts. ADC (Fig. 1), DDC (Fig. 1), Dfast (Fig. 2),  
D2 and D3 (Fig. 2) maps showed a significant intensity decrease 
from CSF to WM (bar charts of Figs. 1 and 2 and Table 1).

Parametric maps modeled with the BEM and the TEM, 
especially water fractions Ffast, Fslow, F1, F2, and F3, appeared noisy 
and did not exhibit any evident anatomical contrast (Fig. 2).

Maps of the parameter α (Fig. 1) showed a significant 
but weak contrast between GM and WM (P  0.05). Con-
versely, a particularly strong and anatomically well-defined 
contrast (P  0.001) appeared in Kapp maps, clearly revealing 
the structure of the WM and the GM (Fig. 1). Areas with 
higher intensities on Kapp maps appeared to be WM substruc-
tures, maybe areas of high tissular complexity (Fig. 1). In σ 
maps, a strong contrast differentiating GM/WM tissues and 
CSF (P  0.001) was observed (Fig. 1).

Contrast correlations. The correlation between the diffu-
sion parameters obtained in WM was then examined. There 
was a strong correlation between DDC and ADC (R = 0.9580, 
P   0.05), but not between DDC and Dapp (R  =  0.4964, 
P  0.05) or between DDC and α (R = −0.1049, P  0.05).

However, there was a positive correlation between Dapp and 
ADC (R = 0.6130, P  0.05), between Dapp and Kapp (R = 0.6224, 
P  0.05), and between Dapp and σ (R = 0.9161, P  0.05), as 
shown in Figure 3. The parameters extracted from BEM and 

TEM, especially the ADCs of the models, showed no correlation 
either with ADC or with Dapp (P  0.05, data not shown).

Diffusion model contrast in stroke. The E(b) signal attenu-
ation was also modeled in a stroke patient. The classical high 
T2-weighted signal and the decreased intensity of the ADC 
maps2 were observed in the lesion (Fig. 4A and 4B, respectively). 
There was a similar decrease in DDC and decrease in Dapp in 

Figure 3. Positive correlation between Dapp values and Kapp values (top), 
Dapp values and ADC values (middle), Dapp values and σ values (bottom), 
obtained for the 12 subjects in the white matter of the sample population. 
Spear man’s coefficient of rank correlation (R) is also indicated for each 
linear regression (P  0.05).

http://www.la-press.com
http://www.la-press.com/magnetic-resonance-insights-journal-j115


Accuracies of models of the DW attenuation of the MRI signal 

17Magnetic Resonance insights 2015:8

Figure 4. an MRi slice of multi-parametric imaging in a patient with stroke (four days after the infarct), showing both grey and white matter insults in (A) 
T2-weighted images (t2W) acquired with te/tR = 80/8624 ms; (B) maps of the MeM: ADC; (C) maps of the seM; (D) maps of the second-order tce 
model; (E) maps of the BeM; and (F) two maps of the teM: F1* and D1*.
Abbreviations: MeM, monoexponential model; seM, stretched exponen tial model; tce, truncated cumulant expansion; BeM, biexponential model;  
TEM, triexponential model; ADC, apparent diffusion coefficient.
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the entire lesion. In the stroke lesion infarcted WM (Fig. 4D), 
there was a strong increase in Kapp in infarcted WM (from 0.9 
to 1.81) and a decrease in σ (from 0.46 to 0.42 µm²/ms). In the 
GM of the lesion, σ maps showed a greater decrease (from 0.61 
to 0.43 µm²/ms). For BEM in infarcted GM (Fig. 4E), there 
were both a strong increase in Fslow (up to 69%) and a strong 
decrease in Dslow (from 0.57 to 0.18 µm²/ms). ∗

1F  maps repre-
senting the magnitude of the IVIM microcapillary perfusion 

were very noisy as in the healthy population sample, but the 
delineation of the infarcted area in ∗

1F  maps showed a larger 
extension of the lesioned area than in the ADC map (Fig. 4F, 
arrowhead).

Models’ goodness-of-fit. For the sake of clarity, we 
present the modeled E(b) signals obtained in the WM of a 
representative subject (Fig. 5, left) and the corresponding 
SSR maps (Fig. 5, right). The SSR maps correspond to the 

Figure 5. Left: the experimental diffusion-weighted-dependent attenuation of the MRi signal (the E(b) signal, empty triangles ∇) and the absolute value of 
the residual of the fit times the degree-of-freedom Ndof (dotted lines, black squares .■., values multiplied by a factor 10) obtained in WM in a representative 
subject. Separate subfigures show the modeling by the MEM, by the SEM, by the second-order TCE model, by the BEM, and by the TEM, all represented 
by black dots (-●-). Right: SSR times Ndof maps of the models for an anatomical slice, which corresponds to the slice presented for the parametric images 
of the models in Figure 1 and Figure 2.
Abbreviations: WM, white matter; MeM, monoexponential model; seM, stretched exponen tial model; tce, truncated cumulant expansion;  
BeM, biexponential model; teM, triexponential model; SSR, sum of squared residuals.
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However, the F-test approach does not make it possible to 
compare more than two models simultaneously and efficiently. 
The additional strength of our methodology is that we estimated 
the models’ goodness-of-fit in a larger sample size and used a 
powerful statistical index (AICc). This allowed us to compare 
more than two models irrespective of their degree-of-freedom. 
We were thus able to compare the TCE model simultaneously 
with other models such as the SEM, BEM, and TEM. Our 
results showed an apparent discrepancy between the accuracies 
obtained with the F-test (equation (7)) and AICc (equations (8) 
and (9)). Indeed, the latter method lead to a better accuracy of 
the MEM (Ndof = 1) compared to the TEM (Ndof = 6). This is 
because the equation (9) has a term in 2N²dof + 4Ndof whereas 
equation (7) scales only in Ndof, and because a larger penalty 
is applied to models with a high degree-of-freedom when the 
AICc approach is used (Table 2).

In our work, the TCE was found to be superior not only to 
the BEM but also to the TEM and the SEM in terms of accu-
racy, contrast, and insensitivity to artifacts. The TCE provided 
a strong contrast between GM and WM in Kapp maps, whereas 
α, Ffast, or Fslow and F1, F2, or F3 maps gave a poorly defined 
anatomical tissue contrast. The poor contrast and low reproduc-
ibility of the quantitative parameters of the BEM and the TEM 
and the poor fit stability of the TEM7 may also be because of the 
fact that only one water pool might be present in the tissue,1,26 
contrary to the assumptions of these models. It has been noted 
that overfitting errors may accumulate along the b-value range, 
especially for TEM, which is overdetermined.7 It could be noted 
that the BEM is almost always used with CSF-suppressed 
dMRI sequences,7,16,17 thus avoiding the presence of CSF water, 
which could be mistaken for an additional water pool. On the 
contrary, the low-degree-of-freedom TCE model, which has no 
a priori hypothesis concerning the number of water pools, has 
previously been shown to be robust to infer WM properties both 
for acquisitions with or without CSF suppression.39

However, for the TCE fit, relatively high SSR values 
were observed in the GM area contaminated by CSF partial 
volume effects, as has already been reported.26 The mixing 
between partial volume effects of CSF water and tissue water 
was suspected to favor a large and non-physiologic bicompart-
mental attenuation of the E(b) signal.26

A correlation between the related parameters ADC and 
Dapp was found in WM, and this strong linear relationship is 
an experimental confirmation that the TCE model adequately 
extends the MEM. Self correlation was also found between 
the TCE parameters Dapp, Kapp, and σ. This means that the 
parameters of the TCE model are self-consistent. In other 
words, there is a relation between quantity Dapp (related to the 
cumulant of order one in b) and between quantity Kapp (related 
to the cumulant of order two in b). DDC also correlated well 
with ADC, but there was no correlation between DDC and α, 
the two SEM parameters. Furthermore, no significant cor-
relations were found between ADC and the diffusion coeffi-
cients of BEM and TEM.

anatomical location of the slice of the parametric maps pre-
sented in Figures 1 and 2. To be visually indicative of the com-
pared goodness-of-fit, both the residual of the E(b) signal and 
the SSR maps were multiplied by Ndof, the degree-of-freedom 
of each model (Fig. 5). Figure 5 is also an illustration that 
an objective mathematical method is needed to differentiate 
which functions given by equations (2)–(5) are the best to 
describe the E(b) signal experimentally.

F-tests. When analyzed with F-tests in all the segmented 
brain regions, the BEM, TEM, and TCE all performed bet-
ter than the MEM for modeling the E(b) signal (P  0.05). 
The BEM performed better than the TEM in all the brain 
areas (P  0.05). The TCE was found to be a better model 
than the BEM in GM and WM (P  0.05). The TCE and 
SEM have the same number of degrees-of-freedom (Ndof = 2), 
so they cannot be compared with the F-test method given in 
the work of Yoshiura et al, equation (7).36

AICc. When analyzed with AICc, the accuracy of 
models measured in the WM were as follows: TCE     
BEM  SEM  MEM  TEM (Table 2). The accuracy (weak 
AICc) for modeling the E(b) signal in the WM tissue with the 
TCE model was better than the others (Table 2).

In the representative fit accuracy provided, the residual 
values for bmax =2500 s/m² was high for MEM, SEM, BEM, 
TEM but was low for the TCE model (Fig. 5), which illus-
trates the good convergence of this latter model for the high-
est b-values used in this work. However, for very low b-values  
(b = 100 and 200 s/mm²), a slight deviation of the TCE fit was 
observed (Fig. 5). Although the accuracy of the TCE model 
was the best in the WM, relatively high SSR values were also 
observed for the TCE fit in the GM area contaminated by 
CSF partial volume effects (Fig. 5, right).

Discussion
The main finding of the present study is that the TCE is 
the most appropriate mathematical function to model the 
DW-dependent attenuation of the MRI signal E(b) in the 
WM tissue. Our results showing the excellent goodness-of-fit 
of the TCE model in WM compared to the BEM model agree 
well with those in the previous study,26 which used the geo-
metric mean of DW images of five subjects, with Nb = 16 and 
b-factors up to 2500 s/mm2 and compared only the BEM and 
TCE models.26 The accuracy of these two models was com-
pared using a ratio of F-values, a noise-independent method.26 

Table 2. AICc measured in the white matter of the entire population 
sample and assessing the best accuracy of the tce model 
compared to other models.

MODEL MEM SEM TCE BEM TEM

AICc −31 −37 −47 −45 −28

Abbreviations: MeM, monoexponential model; seM, stretched exponen tial 
model; tce, truncated cumulant expansion; BeM, biexponential model;  
teM, triexponential model.
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dMRI makes it possible to obtain signals related to tissue 
microstructure, but it has some drawbacks. In fact, the spatial 
resolution of EP images is lower than those of T1-weighted 
images (anatomical MRI). Consequently, segmentation of EP 
images is far from providing an accurate differentiation of the 
GM and of the subcortical WM like those obtained with the 
segmentation of T1-weighted images.40 Owing to these intrin-
sic limitations of EPI-related methods, our study focused only 
on WM, which dominates by its large volume both the vol-
ume of the GM and the volume of the subcortical WM. Apart 
from this point, our study has the following limitations:

First, using more directions of diffusion measures might 
potentially refine the comparisons of accuracies. Nevertheless, 
considering that the microstructures present in tissue are of 
unknown nature, different tensorial forms of equations (2),23 
(5),41 and (6)3 with different degrees-of-freedom exist. On the 
other hand, for a given model, the degrees-of-freedom must 
be unequivocally defined in equations (8) and (9). This further 
complicates the comparisons of models but will be addressed 
in a future study. Consequently, at present, we are using acqui-
sition conditions very close to those in the study of Kiselev and 
Il’yasov,26 where unidirectional fitting of the geometric aver-
age of DW images was used. This could potentially limit the 
study of WM, which has a non-null degree of anisotropy,26 
but a simple modeling design has the advantage of defining 
unequivocally the degrees-of-freedom of the models com-
pared, a condition required for efficient accuracy comparisons.

Secondly, our conclusions about the accuracy of the 
models might be in part limited because model’s accuracies 
were measured in a defined experimental context determined 
by the maximum b-value used (bmax = 2500 s/mm²). How-
ever, this b-value range is considered to be suitable for medi-
cal imaging in routine protocols24–26 and the aim of our study 
was to determine the best model of the E(b) signal in such 
conditions. The use of b-values higher than 2500 s/mm² has 
the potential to better resolve the microstructural features 
of tissue but also has the disadvantage to decrease the sig-
nal-to-noise ratio. Some studies suggested that SEM20,22 or 
BEM13,16,17 are efficient models only when the b-value range is 
sufficiently high, and supposedly less effective for an interme-
diate b-value range. However, the precise b-value range where 
these models were considered as accurate was not explicitly 
nor consensually defined, as it was found to varies between 
studies (for SEM19–23 and for BEM15–18) and was not system-
atically compared to the theoretical b-value limit of model-
ling accuracy given by the radius of convergence26 of their 
mathematical formulations. On the other hand, using the 
TCE model for a well-defined b-value range (0–2500 s/mm²)  
is consistent with its theoretical limit of accuracy.26 Then, it is 
arguable that an adequate and flexible model that can accu-
rately fit the E(b) signal over a high b-value range can also 
fit it accurately over an intermediate b-value range. This is 
at least the case for the more general cumulant expansion, 
which is adequate over an intermediate b-value range and can 

be extended to higher orders to describe the signal for higher 
b-values.42

In addition, using data acquired with high b-values 
raises the important problem of noise, which is known to 
have a detrimental effect on model comparisons.43 Indeed, 
the higher the b-value, the weaker the signal-to-noise ratio 
and also the higher the risk that the positive noise level is fit-
ted by overdetermined mathematical functions.42 In parallel 
imaging, the noise in DW images is strictly positive definite43 
and is known to follow a Rician distribution for SENSE 
acquisitions.43 In addition, non-homogeneity of the variance 
of noise occurs locally in dMRI data acquired with SENSE 
owing to the reconstruction process. Model accuracy compar-
isons in the high b-value range, especially when using high-
degree-of-freedom models, may benefit from appropriate 
local denoising.44 Combined model accuracy comparisons and 
denoising method comparisons will be used to model dMRI 
images acquired at high b-values and high directional resolu-
tion in subsequent work.

Conclusion
In summary, this work confirms that the low-degree-of-
freedom TCE model is superior to the BEM for modeling and 
analyzing accurately the DW-dependent attenuation of the 
MRI signal E(b) in the brain tissue. Additionally, the TCE 
model was also found to be superior not only to the BEM but 
also to the SEM and the TEM, at least in WM. This rein-
forces the hypothesis that the phenomenological TCE model is 
sensitive to accurate microscopic properties of tissues, whereas 
the SEM, BEM, and TEM are not.1,4,18,26 The parameter σ 
deducted from the TCE acquisition, an indicator of tissue 
microscopic heterogeneity, might prove particularly interesting 
as a new biomarker of microstructural changes occurring in 
stroke, as it would signal a change in biomembrane disorder.1
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