data reports

open ∂ access

Crystal structure of {[2-hydroxy-2-(3methoxyphenyl)cyclohexyl]methyl}dimethylammonium benzoate

S. N. Sheshadri,^a P. Nagendra,^b B. P. Siddaraju,^c K. H. Hemakumar,^d K. Byrappa,^e N. K. Lokanath^f and S. Madan Kumar^g*

^aDepartment of Chemistry, GSSS Institute of Engineering Technology for Women, Mysuru 570 016, India, ^bDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571 422, India, ^cDepartment of Engineering Chemistry, Cauvery Institute of Technology, Mandya 571 402, India, ^dDepartment of Chemistry, Cambridge institute of Technology, Bengaluru 560 036, India, ^eDepartment of Materials Science, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, ^fDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570 006, India, and ⁸PURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India. *Correspondence e-mail: madan.mx@gmail.com

Received 1 October 2015; accepted 13 October 2015

Edited by J. Simpson, University of Otago, New Zealand

The title compound, $C_{16}H_{26}NO_2^+ \cdot C_7H_5O_2^-$, is a benzoate salt of the painkiller Tramadol. The six-membered cyclohexane ring of the cation adopts a slightly distorted chair conformation and carries OH and 3-methoxyphenyl substituents at the 2-position and a protonated methylazaniumylmethyl group at the 3-position. In addition, a weak intramolecular C-H···O hydrogen bond is observed in the cation. In the crystal, weak O-H···O, N-H···O and C-H···O hydrogen bonds link the components into chains along [010]. A C-H··· π contact is also observed.

Keywords: crystal structure; Tramadol; intermolecular hydrogen bonds.

CCDC reference: 1425991

1. Related literature

For pharmaceutical applications of Tramadol and related analgesics, see: Scott & Perry (2000). For related structures, see: Tessler & Goldberg (2004); Arman *et al.* (2010); Hemamalini & Fun (2010); Siddaraju *et al.* (2011); Lin & Zhang (2013); Smith (2014); Jasinski *et al.* (2015); Sun *et al.* (2012).

 $\gamma = 76.493 \ (16)^{\circ}$

Z = 2

T = 293 K

 $R_{\rm int} = 0.029$

257 parameters

 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

V = 1050.3 (8) Å³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.55 \times 0.51 \times 0.3 \text{ mm}$

11931 measured reflections

5660 independent reflections

3504 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

2. Experimental

2.1. Crystal data $C_{16}H_{26}NO_2^+ \cdot C_7H_5O_2^ M_r = 385.49$ Triclinic, $P\overline{1}$ a = 9.013 (4) Å b = 9.767 (4) Å c = 12.726 (6) Å $\alpha = 75.008$ (16)°

 $\beta = 89.79 \ (2)^{\circ}$

2.2. Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (NUMABS; Rigaku 1999) $T_{min} = 0.955, T_{max} = 0.975$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.134$ S = 1.035660 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C6-H6···O10	0.93	2.42	2.775 (2)	102
$C14 - H14B \cdot \cdot \cdot O28^{i}$	0.97	2.41	3.251 (2)	144
$N17 - H17 \cdot \cdot \cdot O28^{i}$	0.98	1.65	2.6120 (18)	165
O10−H10···O27 ⁱⁱ	0.82	1.94	2.7269 (17)	161
$C23-H23\cdots Cg1^{iii}$	0.93	2.83	3.684 (3)	153

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y - 1, z; (iii) x, y + 1, z.

Data collection: *CrystalClear SM Expert* (Rigaku, 2011); cell refinement: *CrystalClear SM Expert*; data reduction: *CrystalClear SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2*.

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. PN thanks Bharthi College, Maddur, for research facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5480).

References

Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2813.
 Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 0479-0480.
- Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, 077–078.
- Lin, H. & Zhang, Y.-P. (2013). Acta Cryst. E69, 077.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.
- Scott, L. J. & Perry, C. M. (2000). Drugs, 60, 139-176.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, 02351.
- Smith, G. (2014). Acta Cryst. C70, 315-319.
- Sun, Z.-Q., Ding, Z.-Y. & Shao, Z.-Y. (2012). Acta Cryst. E68, 03029.
- Tessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868-o1869.

supporting information

Acta Cryst. (2015). E71, o864–o865 [doi:10.1107/S2056989015019362]

Crystal structure of {[2-hydroxy-2-(3-methoxyphenyl)cyclohexyl]methyl}dimethylammonium benzoate

S. N. Sheshadri, P. Nagendra, B. P. Siddaraju, K. H. Hemakumar, K. Byrappa, N. K. Lokanath and S. Madan Kumar

S1. Comment

2-((dimethylamino)methyl)-1-(3-methoxyphenyl)cyclohexanol hydrochloride (Tramadol) is used in the treatment of disorders of the central nervous system and in treating extreme pain. This molecule is analogous to the phenanthrene alkaloid codeine and is used in the control of pre-operative pain (Scott & Perry, 2000).

There are number of crystal structures reported available related to this salt. These include Venlafaxine [(*RS*)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]- cyclohexanol] (Tessler & Goldberg, 2004), benzoic acid-2-{(*E*)-[(*E*)-2-(2pyridylmethylidene) hydrazin-1-ylidene]methyl}pyridine (2/1) (Arman *et al.*, 2010), 2,3-diaminopyridinium benzoate benzoic acid solvate (Hemamalini & Fun, 2010), Tramadol hydrochloride-benzoic acid (1/1) (Siddaraju *et al.*, 2011), 4-(*cyclo*-propane-carboxamido) benzoic acid (Sun *et al.*, 2012), 3,5-bis[(pyridin-4-yl)meth-oxy]benzoic acid (Lin & Zhang, 2013). The hydrogen-bonded two- and three-dimensional polymeric structures of the ammonium salts of 3,5-dinitro-benzoic acid, 4-nitro-benzoic acid and 2,4-di-chloro-benzoic acid (Smith, 2014) and 4-[1-(2-hydroxypropyl)-4,5-diphenyl-1*H*-imidazol-2-yl]benzoic acid (Jasinski *et al.*, 2015) have also been reported. In the view of the importance of Tramadol, we report herein the crystal structure of the title compound 2-hydroxy-2-(3-methoxy-phenyl)-cyclohexylmethyl-dimethyl-ammonium benzoate.

In the title molecule (Fig. 1), the six membered cyclohexane ring (C9/C11–C15) adopts a slightly distorted chair conformation with ring puckering parameters Q, θ and φ of 0.5605 (16) Å, 5.06 (16)°, and 210.3 (6)°, respectively. An intramolecular C6—H6…O10 hydrogen bond (Fig 1, Table 1) is found in the cation. Bond lengths are within normal ranges.

The crystal structure is stabilized with weak intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds and a weak intermolecular C23—H23···*Cg1* interaction is also observed Table 1, Fig. 2.

S2. Experimental

Tramadol (3 g, 0.01 mol) and benzoic acid (1 g, 0.01 mol) were each dissolved in 10 ml of ethanol. The solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. Colourless X-ray quality crystals were formed and one was used for the data collection

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms were fixed geometrically (C—H = 0.93–0.96 Å, N—H = 0.98 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Figure 1

A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level and an intramolecular hydrogen bond is drawn as a dashed line.

Figure 2

A viewed along the *a* axis of the crystal packing of the title compound. Hydrogen bonds are drawn as a dashed lines.

{[2-Hydroxy-2-(3-methoxyphenyl)cyclohexyl]methyl}dimethylammonium benzoate

Crystal data	
$C_{16}H_{26}NO_2^+ \cdot C_7H_5O_2^-$	<i>a</i> = 9.013 (4) Å
$M_r = 385.49$	b = 9.767 (4) Å
Triclinic, $P\overline{1}$	c = 12.726 (6) Å

Mo *K* α radiation, $\lambda = 0.71075$ Å

 $\theta = 3.0 - 29.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.029$

 $h = -12 \rightarrow 11$

 $k = -13 \rightarrow 13$

 $l = -17 \rightarrow 14$

Block, colourless

 $0.55 \times 0.51 \times 0.3 \text{ mm}$

11931 measured reflections

 $\theta_{\rm max} = 29.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$

5660 independent reflections

3504 reflections with $I > 2\sigma(I)$

Cell parameters from 5660 reflections

 $\alpha = 75.008 (16)^{\circ}$ $\beta = 89.79 (2)^{\circ}$ $\gamma = 76.493 (16)^{\circ}$ $V = 1050.3 (8) \text{ Å}^{3}$ Z = 2 F(000) = 416 $D_{x} = 1.219 \text{ Mg m}^{-3}$

Data collection

Rigaku Saturn724+ diffractometer Radiation source: Sealed tube, Rotating Anode Confocal monochromator Detector resolution: 28.5714 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*NUMABS*; Rigaku 1999) $T_{\min} = 0.955, T_{\max} = 0.975$

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.053$ Hydrogen site location: inferred from $wR(F^2) = 0.134$ neighbouring sites S = 1.03H-atom parameters constrained 5660 reflections $w = 1/[\sigma^2(F_0^2) + (0.0598P)^2]$ 257 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.51600 (17)	0.30154 (17)	0.58415 (12)	0.0418 (4)	
C2	0.39216 (17)	0.38352 (18)	0.62190 (13)	0.0502 (4)	
H2	0.2941	0.3959	0.5925	0.060*	
C3	0.41457 (17)	0.44717 (17)	0.70353 (14)	0.0520 (4)	
Н3	0.3314	0.5032	0.7290	0.062*	
C4	0.56018 (16)	0.42788 (16)	0.74757 (13)	0.0448 (4)	
H4	0.5738	0.4708	0.8029	0.054*	
C5	0.68653 (15)	0.34553 (14)	0.71072 (11)	0.0332 (3)	
C6	0.66294 (15)	0.28320 (15)	0.62715 (11)	0.0366 (3)	
H6	0.7459	0.2291	0.6001	0.044*	
C8	0.6071 (2)	0.1648 (2)	0.45646 (15)	0.0697 (5)	
H8A	0.5688	0.1311	0.4000	0.104*	
H8B	0.6659	0.0829	0.5111	0.104*	

H8C	0 6707	0 2297	0 4258	0 104*
C9	0.84766 (14)	0.31719 (13)	0.76345 (10)	0.0310 (3)
C11	0.85527 (17)	0.21038 (15)	0.87622 (11)	0.0406(3)
HIIA	0 7688	0.2473	0.9152	0.049*
H11B	0.8451	0.1174	0.8670	0.049*
C12	1 00060 (18)	0 18474 (16)	0.94543(12)	0.0465 (4)
H12A	1 0865	0 1338	0.9130	0.056*
H12B	0.9923	0.1239	1 0176	0.056*
C13	1.0282(2)	0.32939 (16)	0.95426(12)	0.0491 (4)
H13A	0.9471	0.3760	0.9979	0.059*
H13R	1 1243	0.3118	0.9954	0.059*
C14	1.03296 (17)	0.42967 (16)	0.84145 (11)	0.039
H144	1 1171	0.3845	0.8044	0.050*
H14R	1.0512	0.5210	0.8486	0.050*
C15	0.88435 (15)	0.3210	0.77334 (10)	0.030
H15	0.80455 (15)	0.5100	0.8107	0.0317 (3)
C16	0.88662 (16)	0.56049 (14)	0.65004 (10)	0.0358(3)
U16A	0.03002 (10)	0.50049 (14)	0.6335	0.0338 (3)
U16R	0.3703	0.5144	0.0233	0.043*
C18	0.7929 0.77644 (17)	0.3088 0.70335 (16)	0.0190 0.70608 (14)	0.043
	0.77044 (17)	0.79555 (10)	0.70098 (14)	0.0308 (4)
	0.0803	0.8004	0.0709	0.076*
	0.7903	0.8890	0.7003	0.076*
П16C	0.7707	0.7434 0.70224 (17)	0.7820 0.54202 (12)	0.070°
	0.9145 (2)	0.79324 (17)	0.54205 (12)	0.0572(5)
HI9A	0.9985	0.7395	0.5112	0.080*
HI9B	0.9315	0.8870	0.5410	0.086*
HI9C	0.8215	0.8062	0.5001	0.086*
NI/	0.90203 (13)	0.71131 (11)	0.65610 (9)	0.0337(3)
HI/	0.9976	0.7013	0.69/0	0.040*
0/	0.48324 (13)	0.23977 (15)	0.50425 (10)	0.0642 (3)
010	0.96103 (10)	0.26098 (10)	0.69699 (8)	0.0372 (2)
HIO	0.9774	0.1717	0.7133	0.056*
C20	0.38473 (18)	0.75688 (18)	0.88067 (13)	0.0492 (4)
H20	0.3598	0.6668	0.8964	0.059*
C21	0.29160 (16)	0.8/614 (15)	0.80738 (11)	0.0376 (3)
C22	0.33245 (18)	1.00897 (17)	0.78461 (12)	0.0471 (4)
H22	0.2706	1.0903	0.7362	0.056*
C23	0.4632 (2)	1.0218 (2)	0.83276 (14)	0.0564 (4)
H23	0.4902	1.1110	0.8155	0.068*
C24	0.5540 (2)	0.9031 (2)	0.90636 (14)	0.0595 (5)
H24	0.6417	0.9121	0.9396	0.071*
C25	0.51482 (19)	0.7706 (2)	0.93080 (13)	0.0597 (5)
H25	0.5757	0.6903	0.9809	0.072*
C26	0.15086 (16)	0.86086 (15)	0.75316 (12)	0.0385 (3)
027	0.05139 (13)	0.97122 (11)	0.70637 (10)	0.0600 (3)
028	0.14406 (12)	0.73144 (11)	0.75774 (9)	0.0529 (3)

supporting information

Atomic displacement parameters (Å	²)
-----------------------------------	----------------

	<i>U</i> / ¹¹	L /22	<i>U</i> ³³	<i>U</i> ¹²	1/13	1/23
$\overline{C1}$	0.0387 (8)	0.0477 (9)	0.0414 (8)		0,0007 (7)	-0.0132(7)
C_{1}	0.0337(3)	0.0477(9)	0.0414(0)	-0.0087(7)	-0.0007(7)	-0.0132(7)
C_2	0.0321(8)	0.0301(10)	0.0001(10)	-0.0087(7)	-0.0010(7)	-0.0132(8)
	0.0344(8)	0.0490(9)	0.0740(12)	-0.0033(7)	0.0123(8)	-0.0243(8)
C4	0.0378 (8)	0.0443 (9)	0.0602 (10)	-0.0115 (7)	0.0102 (7)	-0.0262 (7)
05	0.0323 (7)	0.0281 (7)	0.0405 (8)	-0.0102 (5)	0.0069 (6)	-0.0088 (6)
C6	0.0330 (7)	0.0382 (7)	0.0400 (8)	-0.0092 (6)	0.0056 (6)	-0.0123 (6)
C8	0.0581 (11)	0.0930 (15)	0.0678 (12)	-0.0084 (10)	-0.0036 (9)	-0.0474 (11)
C9	0.0315 (7)	0.0276 (6)	0.0357 (7)	-0.0079 (5)	0.0060 (6)	-0.0110 (5)
C11	0.0485 (9)	0.0320 (7)	0.0422 (8)	-0.0154 (6)	0.0049 (7)	-0.0066 (6)
C12	0.0566 (10)	0.0363 (8)	0.0421 (8)	-0.0103 (7)	-0.0034 (7)	-0.0031 (6)
C13	0.0608 (10)	0.0446 (9)	0.0418 (8)	-0.0145 (8)	-0.0104 (8)	-0.0094 (7)
C14	0.0459 (8)	0.0378 (8)	0.0459 (8)	-0.0181 (7)	-0.0024 (7)	-0.0117 (6)
C15	0.0373 (7)	0.0265 (6)	0.0340 (7)	-0.0107 (5)	0.0048 (6)	-0.0103 (5)
C16	0.0453 (8)	0.0308 (7)	0.0353 (7)	-0.0145 (6)	0.0059 (6)	-0.0109 (6)
C18	0.0457 (9)	0.0358 (8)	0.0688 (11)	-0.0039(7)	0.0084 (8)	-0.0157 (8)
C19	0.0827 (13)	0.0446 (9)	0.0448 (9)	-0.0267 (9)	0.0087 (9)	-0.0026 (7)
N17	0.0359 (6)	0.0283 (6)	0.0367 (6)	-0.0095 (5)	0.0029 (5)	-0.0068(5)
07	0.0439 (7)	0.0989 (10)	0.0628 (7)	-0.0173 (6)	-0.0012 (6)	-0.0441 (7)
O10	0.0351 (5)	0.0303 (5)	0.0485 (6)	-0.0063 (4)	0.0100 (4)	-0.0159 (4)
C20	0.0484 (9)	0.0480 (9)	0.0520 (9)	-0.0139 (7)	0.0082 (8)	-0.0130 (7)
C21	0.0389 (8)	0.0382 (8)	0.0414 (8)	-0.0117 (6)	0.0102 (7)	-0.0181 (6)
C22	0.0516 (9)	0.0422 (9)	0.0537 (9)	-0.0166 (7)	0.0031 (8)	-0.0189 (7)
C23	0.0552 (10)	0.0590 (11)	0.0692 (11)	-0.0273(9)	0.0082 (9)	-0.0298(9)
C24	0.0468 (10)	0.0835 (14)	0.0627 (11)	-0.0240 (10)	0.0060 (9)	-0.0373 (10)
C25	0.0486 (10)	0.0716 (12)	0.0551 (10)	-0.0090 (9)	-0.0020(8)	-0.0146 (9)
C26	0.0404 (8)	0.0322(7)	0.0480 (9)	-0.0109(6)	0.0092 (7)	-0.0180(6)
027	0.0577(7)	0.0345 (6)	0.0870 (8)	-0.0044(5)	-0.0161(7)	-0.0205(6)
028	0.0277(7)	0.0321(5)	0.0872(8)	-0.0119(5)	-0.0046(6)	-0.0178(5)
020	0.0441 (0)	0.0521 (5)	0.0002 (0)	0.0117 (3)	0.00+0(0)	0.0170(3)

Geometric parameters (Å, °)

C1—C2	1.377 (2)	C14—C15	1.5229 (19)	
C1—C6	1.389 (2)	C15—H15	0.9800	
C1—07	1.3739 (19)	C15—C16	1.5204 (18)	
С2—Н2	0.9300	C16—H16A	0.9700	
C2—C3	1.379 (2)	C16—H16B	0.9700	
С3—Н3	0.9300	C16—N17	1.5000 (17)	
C3—C4	1.381 (2)	C18—H18A	0.9600	
C4—H4	0.9300	C18—H18B	0.9600	
C4—C5	1.3881 (18)	C18—H18C	0.9600	
C5—C6	1.3944 (19)	C18—N17	1.4771 (17)	
С5—С9	1.5359 (19)	C19—H19A	0.9600	
С6—Н6	0.9300	C19—H19B	0.9600	
C8—H8A	0.9600	C19—H19C	0.9600	
C8—H8B	0.9600	C19—N17	1.4833 (18)	

supporting information

C8—H8C	0.9600	N17—H17	0.9800
C8—O7	1.4126 (19)	O10—H10	0.8200
C9—C11	1.5314 (19)	С20—Н20	0.9300
C9—C15	1.5507 (18)	C20—C21	1.385 (2)
C9—O10	1.4257 (15)	C20—C25	1.386 (2)
C11—H11A	0.9700	C21—C22	1.389 (2)
C11—H11B	0.9700	C21—C26	1.502 (2)
C11—C12	1.515 (2)	С22—Н22	0.9300
C12—H12A	0.9700	C22—C23	1.376 (2)
C12—H12B	0.9700	С23—Н23	0.9300
C12—C13	1.522 (2)	C23—C24	1.376 (2)
C13—H13A	0.9700	C24—H24	0.9300
C13—H13B	0.9700	C24—C25	1.379 (2)
C13—C14	1.521 (2)	С25—Н25	0.9300
C14—H14A	0.9700	C26—O27	1.2412 (17)
C14—H14B	0.9700	C26—O28	1.2661 (17)
C2-C1-C6	120.59 (14)	C9—C15—H15	107.9
07-C1-C2	115.75 (14)	C14—C15—C9	110.98 (11)
07-C1-C6	123.65 (14)	C14—C15—H15	107.9
C1-C2-H2	120.2	C16—C15—C9	109.26 (10)
C1—C2—C3	119.53 (14)	C16—C15—C14	112.67 (11)
C3—C2—H2	120.2	С16—С15—Н15	107.9
C2—C3—H3	119.9	C15—C16—H16A	108.4
$C_2 - C_3 - C_4$	120.17 (15)	C15—C16—H16B	108.4
C4—C3—H3	119.9	H16A—C16—H16B	107.5
C3—C4—H4	119.4	N17—C16—C15	115.49 (10)
$C_3 - C_4 - C_5$	121.20 (14)	N17—C16—H16A	108.4
C5-C4-H4	119.4	N17—C16—H16B	108.4
C4-C5-C6	118 22 (13)	H18A—C18—H18B	109.5
C4-C5-C9	121 36 (12)	H18A - C18 - H18C	109.5
C6-C5-C9	120.36(12)	H18B— $C18$ — $H18C$	109.5
$C_1 - C_2 - C_2$	120.30(12) 120.28(13)	N17-C18-H18A	109.5
C1-C6-H6	119.9	N17-C18-H18B	109.5
C5—C6—H6	119.9	N17—C18—H18C	109.5
H8A—C8—H8B	109.5	H19A—C19—H19B	109.5
H8A—C8—H8C	109.5	H19A—C19—H19C	109.5
H8B-C8-H8C	109.5	H19B - C19 - H19C	109.5
07—C8—H8A	109.5	N17—C19—H19A	109.5
07—C8—H8B	109.5	N17—C19—H19B	109.5
07—C8—H8C	109.5	N17-C19-H19C	109.5
C_{5} C_{9} C_{15}	111 34 (10)	$C_{16} N_{17} H_{17}$	107.6
$C_{11} - C_{9} - C_{5}$	107 75 (10)	C18 - N17 - C16	112.99 (11)
$C_{11} - C_{9} - C_{15}$	110 47 (11)	C18 - N17 - C19	110 77 (12)
010-09-05	110.85 (11)	C18—N17—H17	107.6
010 - C9 - C11	111 47 (11)	C19 - N17 - C16	110 13 (10)
010 - C9 - C15	105 01 (10)	C19—N17—H17	107.6
C9—C11—H11A	108.6	C1	117.87 (12)

С9—С11—Н11В	108.6	С9—О10—Н10	109.5
H11A—C11—H11B	107.6	C21—C20—H20	119.7
C12—C11—C9	114.67 (12)	C21—C20—C25	120.58 (16)
C12—C11—H11A	108.6	C25—C20—H20	119.7
C12—C11—H11B	108.6	C_{20} C_{21} C_{22}	118 47 (14)
C_{11} C_{12} H_{12A}	100.6	C_{20} C_{21} C_{26}	120.42(13)
$C_{11} = C_{12} = H_{12} R$	109.0	$C_{20} = C_{21} = C_{20}$	120.42(13)
C11 - C12 - C12	109.0	$C_{22} = C_{21} = C_{20}$	121.10 (13)
	110.42 (12)	$C_{21} = C_{22} = H_{22}$	119.5
HI2A—CI2—HI2B	108.1	C23—C22—C21	120.94 (15)
C13—C12—H12A	109.6	C23—C22—H22	119.5
C13—C12—H12B	109.6	С22—С23—Н23	119.9
C12—C13—H13A	109.6	C24—C23—C22	120.10 (16)
C12—C13—H13B	109.6	С24—С23—Н23	119.9
H13A—C13—H13B	108.1	C23—C24—H24	120.1
C14—C13—C12	110.39 (12)	C23—C24—C25	119.87 (16)
C14—C13—H13A	109.6	C25—C24—H24	120.1
C14—C13—H13B	109.6	С20—С25—Н25	120.0
C13—C14—H14A	109.3	C24—C25—C20	120.03 (16)
C13—C14—H14B	109.3	C_{24} C_{25} H_{25}	120.0
C_{13} C_{14} C_{15}	11170(12)	027 - 026 - 021	120.0 120.10(13)
$H_{14A} = C_{14} = H_{14B}$	107.0	027 - 020 - 021 027 - 026 - 028	120.10(13) 124.15(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9	027 - 020 - 028	124.15(14) 115.75(12)
C15 - C14 - H14A	109.3	028-020-021	115.75 (15)
C15—C14—H14B	109.3		
C1—C2—C3—C4	-0.4 (2)	C12—C13—C14—C15	59.28 (17)
C2-C1-C6-C5	1.2 (2)	C13—C14—C15—C9	-56.84 (15)
C2—C1—O7—C8	174.83 (15)	C13—C14—C15—C16	-179.74 (12)
C2—C3—C4—C5	0.4 (2)	C14—C15—C16—N17	-63.19 (16)
C3—C4—C5—C6	0.4 (2)	C15—C9—C11—C12	-51.00 (15)
C3—C4—C5—C9	-176.79 (13)	C15—C16—N17—C18	-59.79 (16)
C4—C5—C6—C1	-1.23 (19)	C15—C16—N17—C19	175.76 (12)
C4—C5—C9—C11	71.47 (15)	O7—C1—C2—C3	178.80 (14)
C4—C5—C9—C15	-49.81 (16)	O7—C1—C6—C5	-177.88 (13)
C4—C5—C9—O10	-166.32(11)	O10—C9—C11—C12	65.34 (15)
C5-C9-C11-C12	-172.82(11)	O10-C9-C15-C14	-68.97(13)
C5-C9-C15-C14	171.00(10)	010-09-015-016	55 87 (13)
C_{5} C_{9} C_{15} C_{16}	-64.15(13)	C_{20} C_{21} C_{22} C_{23}	0.7(2)
C_{1}^{6} C_{1}^{1} C_{2}^{2} C_{3}^{2}	-0.3(2)	C_{20} C_{21} C_{22} C_{23}	164.70(14)
$C_{0} = C_{1} = C_{2} = C_{3}$	-6.0(2)	$C_{20} = C_{21} = C_{20} = O_{27}$	-16.20(14)
$C_{0} - C_{1} - C_{0} - C_{0}$	-0.0(2)	$C_{20} = C_{21} = C_{20} = C_{20}$	-10.30 (19)
C6C9C11	-105./1(14)	C21—C20—C25—C24	-1.2 (2)
C6-C5-C9-C15	133.01 (13)	C21—C22—C23—C24	-1.4 (2)
C6—C5—C9—O10	16.51 (16)	C22—C21—C26—O27	-16.0(2)
C9—C5—C6—C1	176.03 (12)	C22—C21—C26—O28	163.00 (13)
C9—C11—C12—C13	53.62 (16)	C22—C23—C24—C25	0.8 (2)
C9—C15—C16—N17	172.96 (11)	C23—C24—C25—C20	0.5 (2)
C11 - C9 - C15 - C14			
011 07 015 014	51.32 (14)	C25—C20—C21—C22	0.6 (2)
C11—C9—C15—C16	51.32 (14) 176.17 (11)	C25—C20—C21—C22 C25—C20—C21—C26	0.6 (2) 179.94 (13)

Hydrogen-bond geometry (Å, °)

Cg1	is the	centroid	of the	C1-C6	benzene ring.	
-----	--------	----------	--------	-------	---------------	--

D—H	H···A	$D \cdots A$	D—H···A
0.93	2.42	2.775 (2)	102
0.97	2.41	3.251 (2)	144
0.98	1.65	2.6120 (18)	165
0.82	1.94	2.7269 (17)	161
0.93	2.83	3.684 (3)	153
	<i>D</i> —H 0.93 0.97 0.98 0.82 0.93	D—H H…A 0.93 2.42 0.97 2.41 0.98 1.65 0.82 1.94 0.93 2.83	D—HH···AD···A0.932.422.775 (2)0.972.413.251 (2)0.981.652.6120 (18)0.821.942.7269 (17)0.932.833.684 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*-1, *z*; (iii) *x*, *y*+1, *z*.