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ABSTRACT
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy
and may result in short- and long-term complications for both mother and offspring. The
complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene
interactions and lifestyle interacting with clinical factors. There is strong evidence that not only
the adverse genetic background but also the epigenetic modifications in response to nutritional
and environmental factors could influence the maternal hyperglycemia in pregnancy and the
foetal metabolic programming. In this view, the correlation between epigenetic modifications and
their transgenerational effects represents a very interesting field of study. The present review
gives insight into the role of gene variants and their interactions with nutrients in GDM. In
addition, we provide an overview of the epigenetic changes and their role in the maternal-
foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications
induced by an adverse intrauterine and perinatal environment could shed light on the potential
pathophysiological mechanisms of long-term disease development in the offspring and provide
useful tools for their prevention.
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Introduction

It is now widely accepted that environmental insults,
including poor or unhealthy nutrition, lack of exercise,
tobacco smoking, alcohol consumption, environmen-
tal pollutants, and psychological stress, increase an
individual’s risk of metabolic diseases during the life-
time. As a consequence, many efforts are currently
taken to gain knowledge about the mechanisms by
which metabolic pathways are coordinated by
acquired and genetic factors, in order to obtain novel
insights into the treatment of these conditions [1–3].

As to genetic susceptibility, to date, several genetic
loci correlated with metabolic disease risk have been
identified by genome-wide association studies
(GWAS) [4–7]. However, the gene variants, in form
of single nucleotide polymorphisms (SNPs) or copy
number variants (CNVs), explain only a small pro-
portion of the individual risk.

The missing heritability component of the com-
plexity of phenotypic outcomes may be revealed
by epigenetic processes [8,9]. Epigenetics can be

defined as the study of molecular mechanisms that
establish and maintain mitotically stable patterns
of gene expression yet do not alter DNA sequence
[10]. These mechanisms can be affected by envir-
onmental factors such as diet, pollution, stress,
smoke and others. As matter of fact, scientific
literature has highlighted that the risk of develop-
ing diseases in later life can be also influenced by
adverse condition exposures during early life
[11,12]. This domain of research is solid, but the
knowledge of the underlying mechanism is still in
its infancy.

During specific periods (e.g. pre-conception,
oocyte fertilization, gestation and the first few
years of life), tissues and organs are particu-
larly sensitive to several environmental insults
and to lifestyle factors that condition the
organism and shape susceptibility to disease
later in life [13,14].

The analysis of epigenetic modifications occur-
ring during pregnancy represents an interesting
topic in the study of the environmental influence
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and foetal metabolic programming [15]. Several
studies have showed how epigenetic changes
induce life-long consequences in offspring exposed
to unhealthy maternal nutrition and lifestyle, obe-
sity, and Gestational Diabetes Mellitus (GDM)
[16–19]. In this regard, the present review pro-
vides an overview on the role played by maternal
genetic variants and epigenetic modifications in
GDM and other metabolic conditions, as well on
the maternal-foetal transmission of increased sus-
ceptibility to chronic diseases. We also examine
future topics of research and the potential preven-
tive interventions during early development to
reduce the risk of metabolic diseases in both
mothers and offspring.

Gestational diabetes and nutrigenetics

GDM can be defined as ‘diabetes diagnosed in
the second or third trimester of pregnancy that
was not clearly overt diabetes prior to gestation’
[20]. GDM shows a prevalence ranging between
1% and 28% worldwide, and generally regresses
after delivery [21]. Consistent evidence has
shown the relationships between GDM and sub-
sequent type 2 diabetes (T2DM), hypertension,
dyslipidaemia, vascular dysfunction, atherosclero-
sis and other markers of cardiovascular risk in the
mother [22,23]. In addition, GDM can cause com-
plications on the offspring, with short-term effects
[24] including macrosomia, shoulder dystocia,
birth injury, and prematurity as well as, in line
with Freinkel hypothesis [25], long-term conse-
quences upon body composition as well as anthro-
pometric and metabolic functions [24,26].

The GDM prevalence has increased by more
than 30% within one or two decades in a number
of countries including the developing ones [27].
One of the possible causes of this increased pre-
valence could be ascribed to the advanced age of
pregnancy, which in turn is related to the presence
in pregnant women of risk factors, such as obesity
and overweight, making them more susceptible to
hyperglycemia during pregnancy [21,28].

However, some women developing GDM are
not obese; suggesting that other factors, such as
unhealthy nutrition and low physical activity
before or during pregnancy may also represent
risk factors of GDM [19,29].

In this scenario, as demonstrated by recent
advances in molecular technology, a crucial role
is played by genetic factors in the development,
treatment response, and complications of diabetic
pregnancy. In a systematic review, Zhang et al.
[30] showed variants in seven genes significantly
associated with GDM risk (ORs ranging from 1.15
to 1.46). Among these, six were related to insulin
secretion (TCF7L2, GCK, KCNJ11, CDKAL1,
IGF2BP2, MTNR1B) and one (IRS1) to insulin
resistance, suggesting that inherited abnormalities
of pancreatic islet b-cell function and/or b-cell
mass may be implicated in the GDM aetiology.
All these genes have been previously related to
the T2DM risk [31,32].

Meta-analysis of candidate gene studies and
GWAS have identified other T2DM-related common
variants associated with GDM susceptibility [4,7],
confirming an at least partly shared genetic basis
between GDM and T2DM, given that insulin resis-
tance and defects in insulin secretion play a central
role in the pathogenesis of both these conditions.

A very important issue in the field of genetic
susceptibility is represented by gene variants confer-
ring individual differences in response to nutrition
and diet-related chronic diseases [33]. Nutritional
genomics, which encompasses nutrigenomics and
nutrigenetics, studies the interaction-mechanisms
of nutrients with DNA in human health. In this
regard, nutrigenetics studies the effects of genetic
variations on the nutritional response, while nutri-
genomics investigates how nutrients and bioactive
food compounds affect gene functions via epigenetic
modifications [34].

Therefore, the nutrigenetics concept related to
obesity, metabolic syndrome (MetS) and T2DM is
largely based on the data associated with dietary fat,
carbohydrate and fibres [35–37]. Through linkage
analysis, candidate gene association studies and
GWASs, polymorphisms in or near genes related to
carbohydrate metabolism, lipid/lipoprotein metabo-
lism, appetite control/food intake, energy expendi-
ture and glucose homeostasis have been identified,
suggesting the possible relationship among diet, gene
expression and glucose homeostasis.

Nutrigenetic studies provide proof of how the
inter-individual variability in response to dietary
modifications is largely determined by genetic fac-
tors [38–47].
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In this context, the nutrigenetics approach could
be helpful to define genetic factors influencing
maternal metabolism during GDM. Recently, the
relationship between SNPs located in genes related
to nutrients and metabolism, GDM risk and cardio-
metabolic risk factors was identified [48,49], by evi-
dencing a significant correlation between lipid para-
meters and variants in PPARγ, APOA5, MC4R,
LDLR and FTO genes in GDM.

The presence of these gene variants and routinely
assessed markers (such as lipid profile during preg-
nancy) could provide an opportunity to use genetic
information in clinical practice to predict early car-
diovascular disease (CVD) in previous GDMwomen
as demonstrated by Franzago et al. in two studies
carried out on 102GDMcases versus 66 controls and
104 versus 124, respectively [48,49].

Recently, in light of these results, Franzago et al.
[50] have also assessed the predictive role in CVD
susceptibility of 3rd trimester lipid profile together
with markers of subclinical atherosclerosis in
a cohort of women three years after diagnosis of
GDM, evidencing an association between 3rd tri-
mester triglycerides and carotid artery intima-
media thickness (cIMT). In addition, they found
significant associations between APOA5 gene var-
iant and cIMT as well as between CC APOA5/CC
LDLR interaction and cIMT [50]. Although the
results obtained in these studies need to be vali-
dated on a larger number of patients, these data
highlight that GDM may represent a clinical win-
dow to identify ‘cardio-metabolic vulnerability’,
therefore providing clinicians with an opportunity
to plan early postpartum interventions [49].

Moreover, future studies are required to suc-
cessfully implement innovative approaches in the
field of Precision Nutrition through the analysis
and monitoring of dietary behaviours, physical
activity and phenotyping. Therefore, the identifi-
cation of the nutrigenetic markers might be crucial
in order to set up a strategy for the prevention,
early diagnosis, and treatment of GDM.

However, the presence of constitutional genetic
variants is not the only mechanism triggering the
interaction between genes and diet-related disorders.
In fact, due to the availability of novel high-
throughput technologies, it has been possible to
study not only genetic inheritance and its variations,
but also genome stability, epigenome alterations,

RNA and miRNA alterations, metabolite changes
and their role in human metabolism, nutritional
homeostasis and molecular events involved in nutri-
tion-related diseases [51]. A clear example of such
mechanisms is provided by recent epigenome-wide
studies aimed to identify differentially methylated
regions (DMRs) in the offspring, as a consequence
of intrauterine exposure to maternal diabetes [52–54].
Del Rosario et al. [52] did not identify any specific
differentially methylated promoter in human periph-
eral blood DNA from 28 nondiabetic Pima Indians,
born from mothers with and without type 2 diabetes
during pregnancy. However, the same authors on
a larger series of 388 cases identified differentially
methylated cytosine guanine dinucleotides (CpGs)
in 39 genomic regions that achieved epigenome-
wide significance in their association with exposure
to a diabetic intrauterine environment [53].

These findings suggest that there is a need for
more studies that are highly focussed on epigenetic
mechanisms and their impact at any stage of life.

Epigenetic mechanisms

The main epigenetic mechanisms of gene expres-
sion regulation are represented by DNA methyla-
tion, histone modifications and small non-coding
RNAs. These types of modifications play an
important role in vast biological processes at the
level of chromatin structure and organization [55].
Epigenetic changes can give rise to transgenera-
tional inheritance, which can be carried through
both male and female germline.

DNA methylation is a dynamic process and it is
the best understood epigenetic system. It occurs at
the 5′- position of cytosine residues, mainly within
CpGs, 60–80% of which are methylated within the
promoter regions of genes. In most instances,
highly methylated DNA regions act to reduce
gene expression [56]. Most DNA methylation
states are stably maintained and inherited during
cell division by the maintenance methyltrans-
ferases (DNMT1). These marks are critical for
maintaining the physiological differentiated states
of tissues and organs. Furthermore, DNMT3A,
DNMT3B and co-factor DNMT3L are de novo
DNA methyltransferases (DNMTs) which methy-
late DNA during embryogenesis and in differen-
tiated cells.
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Other mechanisms able to affect DNA methyla-
tion exist. In fact, the methyl group on the fifth
carbon of the cytosine residue within the CpG can
be oxidized by the ten-eleven translocation (TET)
dioxygenase family, creating the ‘sixth base’
defined as 5-hydroxymethylcytosine (5hmC) [55].
High levels of 5hmC are generally found near the
transcription start sites, making them essential for
important regulatory functions [57].

The secondmechanism of epigenetic regulation of
gene activity is represented by modifications of his-
tone tails. Histonemarks are dynamic processes [58];
in fact, they can be easily induced and removed by
many different enzymes. Histone modifications may
increase the exposure of DNA to the transcription
factors in the gene expression regulation [59].

Finally, microRNAs (miRNAs) are endogenous
18–22 nucleotides, small non-coding RNAs, that
play an important role in the modulation of gene
expression in many biological processes, including
the development, differentiation, and regulation of
cell cycle [60], and immune system homeostasis
[61]. Additional evidence has shown that miRNAs
are involved in multiple sides of beta-cell function
and differentiation, contributing to the regulation
of insulin secretion and beta cell identity and phe-
notype maintenance [60,62]. In spite of the pre-
sence of discordant data, lately, growing evidence
indicates that circulating miRNAs may potentially
represent new biomarkers of several diseases sug-
gesting new pathogenic mechanisms [63,64].

Epigenetics and maternal nutrition

The current evidence

Nutrition is significant for the ‘metabolic memory’
[1], but it is not fully understood how nutrient
signals during developmental stages influence
metabolism and the associated lifestyle-related dis-
eases in later life [65]. In any case, maternal nutri-
tional disturbances are one of the most important
foetal programming stimulus. In line with the
‘Barker hypothesis’ concept [66], intrauterine
under- or over-nutrition program adaptations of
the foetal metabolism to an adverse postnatal
environment, deprived or enriched, respectively
[67]. As extensively reported in the literature, diet-
ary patterns, nutrients and bioactive compounds
affect metabolic traits by epigenetic modifications,

leading to changes in gene expression levels and
genome stability.

Godfrey et al. [68] showed that in DNA extracted
from umbilical cord tissue obtained at birth, methy-
lation within the promoter of retinoid X receptor-a
(RXRA), which encodes a transcription factor impli-
cated in fat metabolism and insulin sensitivity, was
correlated with body adiposity, as measured by ima-
ging at age 6 or 9 years in two independent cohorts.
Moreover, the methylation at this site was in turn
strongly associated with maternal carbohydrate
intake during early pregnancy.

Evidence from animal models

Novel biological insights evidenced that obesity pre-
disposition andweight loss outcomes are correlated to
changes in epigenetic patterns. Significantly, nutrients
and related metabolites can directly modify elements
of chromatin in different ways. For example, several
findings in animal model studies, suggest that mater-
nal high fat (HF) diet can alter foetal chromatin
structure via covalent histone modifications [69–71]
(Table 1). Gestational choline supply regulates the
methylation of histone H3, the expression of histone
methyltransferases G9a (Kmt1c) and Suv39h1
(Kmt1a), and DNA methylation of their genes in rat
foetal liver and brain [69]. On the other hand, Tosh
et al. [70] observed that Igf1mRNA expression mod-
ifications related to altered levels of demethylation of
histone H3 at lysine residue 4 (H3K4Me2) during
gestational food restriction in rats. Strakovsky et al.
[71] investigated the HF diet in the gestational period,
independent from maternal obesity and diabetes
development. They showed, for the first time, an
elevated amount of mRNA expression of several
genes is associated with the hepatic gluconeogenic
pathway in the liver of foetal offspring, corresponding
to elevated glucose levels in the offspring at the time of
delivery. Moreover, the authors also showed that HF
diet during gestation was able to program phosphoe-
nolpyruvate carboxykinase (Pck1) expression by his-
tone modifications in offspring liver. Therefore, they
suggested that an increase in hepatic glucose produc-
tion will inevitably lead to altered glucose handling,
with increased potential for the development of
T2DM into adulthood [71].

Consistent with the premise that in utero pro-
gramming leads to epigenetic changes, several
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studies have shown that maternal diet can influ-
ence metabolism in rat offspring also by affecting
DNA methylation [72–77] (Table 1). Specifically,
Borengasser [72] demonstrated that maternal obe-
sity enhances white adipose tissue differentiation
and alters genome-scale DNA methylation in male
rat offspring. By using a combination of methyl-
DNA immunoprecipitation (MeDIP) and methy-
lation-sensitive restriction enzyme sequencing
(MRE-seq), it has been demonstrated that HF
diet also alters the DNA methylation of critical
hepatic signaling genes [73]. Another study indi-
cated that maternal obesity during gestation and
lactation alters epigenetic and gut microbiome
pathways to favour the development of fatty liver
disease and inflammation in the offspring [74].
Moody et al [75] studied the relationship between
DNA methylation and metabolic outcomes in
response to a postnatal diet following a maternal
HF diet. Although the maternal HF diet lays an
epigenetic foundation, the authors showed that
different postweaning diets result in a high degree
of differential genome-wide DNA methylation in
rat liver, especially within genes involved in meta-
bolic pathways. These data provide evidence that
DNA methylation responds to postnatal dietary
changes, emphasizing the importance of dietary
choices after birth and across the lifespan. Just
recently, Keleher et al [76] identified dozens of
differentially expressed genes due to maternal
diet, along with tens of thousands of DMRs in
the offspring. In the daughters, these epigenetic
effects were accompanied by phenotypic changes
relevant to obesity and diabetes. These data pro-
vided different conclusions as compared to pre-
vious investigations of Cannon et al. [77], who
although highlighted the influence of maternal
diet on adult tissue regulation, suggested that tran-
scriptional changes were unlikely to be caused by
DNA methylation differences in adult liver.

The Predictive Adaptive Response (PAR) theory
highlighted that the foetus actively responds to its
nutritional environment in preparation for its postna-
tal nutritional environment [78,79]. It should be noted
that when the prenatal and postnatal environments do
not match (e.g. prenatal undernutrition followed by
postnatal nutritional abundance), the risk ofmetabolic
disease increases, while when the prenatal and

postnatal nutrition match, the offspring remains
healthy. This theory is widely validated in animals,
while the evidence in humans is controversial. The
PAR hypothesis has received considerable support
[80], but overall it has been criticized for some limita-
tions. In fact, it has been derived from studies that
relied on lowbirth-weight as an oversimplifiedmarker
of maternal nutrition and it does not adequately
explain the increased disease risk of non-
communicable disease (NCD) in offspring exposed
to over-nutrition in both their prenatal and postnatal
environments [19]. These studies allowed the devel-
opment of the more integrative Developmental
Origins of Health and Disease (DOHaD) theory,
encompassing several key developmental periods as
conception, gestation, infancy, and puberty, when
specific exposures can protect or predispose indivi-
duals to chronic disease development. In particular,
theDOHaD theory proposes that the origin of chronic
diseases (e.g. obesity, diabetes, cardiovascular and
neuropsychiatric diseases) is related to an early expo-
sure to a suboptimal foetal environment [81].

Evidence from human studies

The 1944–1945 Dutch famine has provided us with
a unique opportunity to study the effects on the off-
spring of a severe period of maternal undernutrition
during different stages of gestation [82,83]. During
this period, food rations decreased gradually from
about 1800 calories (December 1943) to below 800
calories (April 1945) and the extra rations allowed for
pregnant and lactating women and young children
could not be provided. Studies carried out on the
offspring of these women [82,83] demonstrated that
chronic diseases in adult life were strongly related to
the occurrence of the gestation during the exposure to
the famine. In light of these insights, Heijmans [84]
showed decreased methylation (likely related to
a deficiency in methyl donors, such as the amino
acid methionine) in the DMR of the maternally
imprinted IGF2 gene in individuals exposed to the
Dutch famine as compared with their unexposed,
same-sex siblings, six decades later. During the critical
period of development (i.e. gestation), maternal nutri-
tional imbalance may influence the offspring health.
Epidemiological and animal studies have shown the
link between suboptimal early nutrition and poor
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growth in utero, with an increased risk of hypercho-
lesterolemia, hypertension, T2DM and obesity in
adulthood [85,86].

In their pilot study, Quilter et al. [87] examined the
effects of various adverse intrauterine environments
on DNA methylation at birth, by studying infants
exposed to GDM or to prenatal growth restriction,
as indicated by subsequent postnatal catch-up growth.
The 14,000 genes analysis present on the methylation
array revealed that many genes associated with sig-
nificantly differentially methylated CpGs were com-
mon to both exposures, suggesting that these separate
developmental trajectories to adult disease share com-
mon biological mechanisms. In addition, the majority
of these differentially methylated genes were involved
inmetabolic disease, or growth and development, and
indicate candidate mechanisms involved in the devel-
opmental programming of adult disease risk.

Epigenetics and gestational diabetes

The current evidence

Current research is increasingly focused on GDM and
its foetal complications such as an increased risk of
macrosomia (birth weight over 4 kg) or large-for-
gestational-age (LGA; birth weight above the 90th
centile for gestational age and gender) at birth [88].
In addition, there is a great interest in understanding
the mechanistic impact of maternal obesity and
hyperglycemia during pregnancy on the metabolic
health of the next generation. Therefore, GDM repre-
sents a notable example of the Barker hypothesis [89]
and fits well with the foetal metabolic programming
and DOHaD hypotheses, since foetal exposure to
diabetes and diabetes related metabolic derangements
may alter the functional development of key organs
and thus potentially increase children’s susceptibility
to chronic diseases, as supported by several published
reports [90,91]. Boney et al. [90] found that LGA
children, exposed to an intrauterine environment of
either diabetes or maternal obesity, are at increased
risk of developing MetS in adult age. Subsequently,
based on the data collected from the multi-ethnic
(non-Hispanic white, African-American, and
Hispanic) SEARCH Case-Control Study, Dabelea
et al. [91] observed that intrauterine exposures to
maternal diabetes and obesity accounted for 47% of
cases of T2DM before 22 years of age in the offspring,
likely as a consequence of intrauterine exposure to

hyperglycemia. Despite this evidence to date, the lit-
erature displays a sizable knowledge gap in the field of
epigenetics and GDM, since experimental data
demonstrating that the increased risk of chronic dis-
eases in the offspring of GDMmothers are associated
to epigenetic mechanisms are still lacking.
Nevertheless, the hypothesis that GDM may trigger
these changes and that the differential epigenetic sig-
natures could therefore serve as key biomarkers is
taking off.

Epigenetic alterations in the placenta

In this view, a key role is likely to be played by the
placenta, which is a critical protagonist in regulat-
ing foetal growth and development, by controlling
maternal foetal nutrient exchanges via epigenetic
mechanisms, which are mainly carried out by
genomic imprinting. Adverse conditions in utero,
such as GDM have been related with placental
anatomy and physiology alterations, inducing per-
turbations in placental nutrient supply and, con-
sequently, foetal growth and development. It is
increasingly clear that proper epigenetic regulation
is significant in placental development and func-
tion [92].

Evidence from animal models
Recently, Jiang et al. [93] used a GDMmouse model
of intrauterine hyperglycemia, to demonstrate that
the GDM intrauterine environment affects the pla-
centa in both the first and the second filial genera-
tions. The authors revealed by microarray analysis
of placental RNA, 35 upregulated and 10 down-
regulated imprinted genes. In particular, Dlk1 was
down-regulated and Gtl2 was up-regulated, as
a consequence of their abnormal methylation status
in the first and the second generation of mice. In
detail, Dlk1 promotes the insulin/IGF-I signalling
pathway activation and adipogenesis inhibition,
while Gtl2 is a regulator of TGF-β and notch signal-
ling pathway. In addition, these authors suggested
that intrauterine hyperglycemia decreased placental
weight in the first generation, transmitting it to
the second generation through the paternal line

Evidence from human studies
Reichetzeder et al. [94] were the first to perform
a robust quantitative assessment of placental global

EPIGENETICS 221



DNA methylation in over a thousand human pla-
cental samples, showing evidence that placental
global DNA hypermethylation is associated with
GDM, independently from the established risk
factors.

Recently, a few studies carried out in humans
have supported the epigenetic role in foetal meta-
bolic programming of newborn exposed to mater-
nal hyperglycemia during pregnancy, suggesting
an important role of epigenetic alterations
[78,95–103] (Table 2). Bouchard et al. [95,96]
demonstrated that maternal hyperglycemia is asso-
ciated with placental DNA methylation alterations
at the leptin (LEP) and adiponectin (ADIPOQ)
genes. The authors found a significant correlation
between the 2-h glucose value and the degree of
DNA methylation of the LEP gene in placenta on
both foetal and maternal side in GDM women.
Higher glucose values were correlated with lower
degree of methylation on the foetal side, but with
a higher degree of methylation on the maternal
side [95]. Regard ADIPOQ, the authors reported
that a high level of maternal insulin resistance in
the second and third trimester was associated with
lower DNA methylation of this gene on the mater-
nal side. Because ADIPOQ and LEP are involved in
energy metabolism and insulin sensitivity control,
these epigenetic adaptations may have the poten-
tial to induce sustained glucose metabolism
changes in the mother and the offspring later in
life. The link between LEP and ADIPOQ epigenetic
alterations and insulin sensitivity has been also
confirmed by García-Cardona et al. [104], who
determined the methylation levels of the promo-
ters of these two genes in DNA from peripheral
blood in one hundred and six adolescents. This
study demonstrated that obese children with insu-
lin resistance showed significantly decreased DNA
methylation levels of ADIPOQ, associated with
serum adiponectin levels. The authors supposed
that the epigenetic modifications might underpin
the development of obesity and other related
metabolic disorders.

Another study showed that DNA methylation
levels at the maternally imprinted MEST gene were
significantly lower in placenta and cord blood
tissues exposed to GDM than in non-GDM
women [103]. In addition, obese adults showed
MEST hypomethylation compared with normal-

weight controls (sex- and age-matched) in the
blood. These findings support the hypothesis that
epigenetic malprogramming of MEST in newborns
of GDM mothers may contribute to obesity pre-
disposition throughout life.

Houde et al. [97] assessed the associations
between the maternal metabolic profile and ATP-
binding cassette transporter A1 (ABCA1) DNA
methylation levels in placenta and cord blood in
GDM pregnancies. ABCA1 is a transporter of cho-
lesterol from cells to apolipoproteins A1 and
a contributor to high-density lipoprotein (HDL) for-
mation. The authors reported that ABCA1 DNA
methylation levels on the maternal side of the pla-
centa were correlated with maternal HDL- choles-
terol levels and glucose levels 2 h post-OGTT (oral
glucose tolerance test). On the foetal side of the
placenta,ABCA1DNAmethylation levels were asso-
ciated with cord blood triglycerides levels. ABCA1
DNA methylation variability on both sides of the
placenta were also associated with ABCA1 mRNA
levels. By contrast, cord blood DNA methylation
levels were negatively correlated with maternal glu-
cose 2 h post-OGTT.

Houde et al. [98] reported for the first time
associations between lipoprotein lipase (LPL)
DNA methylation levels and changes in maternal
glucose and lipid profiles in placenta samples
exposed to GDM. In fact, the LPL DNA methyla-
tion in foetal placental tissue was lower in 27
GDM pregnancies as compared to 99 controls
with a 1.6-fold higher expression of LPL as evi-
denced by mRNA analysis. Then, the same authors
demonstrated that foetal placental DNA methyla-
tion levels at the LPL gene locus are positively
associated with the anthropometric profile and
body composition (fat mass, birth weight, mid-
childhood weight) in children at 5 years of age.
Overall, these results suggest the presence of
GDM-induced placental LPL epivariations and
support the evidence of foetal metabolic program-
ming of childhood obesity through epigenetic
alterations, underlining the harmful consequences
of some in utero exposures [17].

Another relevant contribution has been provided
by Côté et al. [105], who suggested that maternal
glycemia is associated with foetal DNA methylation
variations in placenta at PR domain-containing pro-
tein 16 (PRDM16), bone morphogenetic protein 7
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(BMP7) and peroxisome proliferator-activated
receptor-γ coactivator-1α (PPARGC1α) genes,
involved in the regulation of newborns’ brown adi-
pose tissue (BAT) and beige adipocytes (wBAT).
Overall, the authors suggested that epigenetic pro-
gramming at these loci is responsive to metabolic
variations related to glucose homeostasis during
pregnancy, which might affect BAT/wBAT activa-
tion and the development of obesity and T2DM later
in life.

Using a cross-species approach in human and rat,
Petropoulos et al. [102] evidenced that diabetes during
pregnancy in rats and GDM in humans alter the
methylome in the placenta of both the species, as
well as in the liver of the rat offspring . These altera-
tions involve similar functional processes (i.e. meta-
bolic diseases and cardiovascular diseases) by affecting
27 overlapping genes in both species known to be
associated with cytokinemediated signalling, immune
processes, and metabolism. In particular, 12 of these
genes displayed a methylation mark in the same
direction in both the species, in which four were
methylated and eight were demethylated. This study
demonstrated that a genome-wide DNA methylation
profile in the placenta significantly overlaps with the
one in the offspring’s liver, supporting the use of the
placenta in identifying biomarkers for predicting foe-
tal outcomes. These data are consistent with
a previous study by Ruchat et al. [100] that showed
DNA methylation alterations in metabolic genes in
cord blood and placenta of GDM offspring. In detail,
3,271 and 3,758 genes in placenta and cord blood,
respectively were differentially methylated between
samples exposed or not to GDM, with more than
25% (n = 1,029) being common to both tissues. Up
to 115 of these genes (11%) were involved in the
metabolic diseases pathway including diabetes
mellitus.

Epigenetic alterations in other tissues

Placenta, however, does not appear to represent
the only relevant tissue for the study of the epige-
netic changes in GDM (Table 2). Interestingly,
DNA methylation patterns can occur in a tissue-
specific manner, but they can also be similar in
other tissues. Some cross-tissue studies provided
additional findings on alterations of DNA methy-
lation patterns in hyperglycemic maternal-foetal

conditions. For example, offspring born from
GDM mothers who had been given dietary advice
showed significantly increased ADIPOQ DNA
methylation and decreased mRNA expression of
ADIPOQ and RETN genes in subcutaneous adi-
pose tissue (SAT); nevertheless, altered methyla-
tion and expression levels were not reflected in
plasma protein levels [106]. This is an elegant
human study proposing epigenetic, transcriptomic
and proteomic data from a metabolically signifi-
cant target tissue as SAT. It is worth noting that
Ott et al. [107] analysed paired SAT and visceral
adipose tissue (VAT) as well as blood samples of
25 GDM women vs 30 controls of mother-child
dyads. GDM women were characterized by hypoa-
diponectinemia and presented significantly
decreased mRNA levels in both SAT and VAT,
independently of body mass index (BMI). Inverse
relationships were observed between maternal adi-
ponectin vs. glucose, C-peptide, insulin and
homeostatic model assessment of insulin resis-
tance (HOMA-IR). The altered maternal DNA
methylation patterns appeared rather marginally
involved, whereas they were variously altered in
GDM offspring. In addition, plasma adiponectin
levels were similar in offspring of both women
with or without GDM. These studies emphasize
the importance of investigating multiple tissues to
understand the full scope of the effects of
a maternal hyperglycemia in the offspring. In
GDM, the investigations on molecular mechan-
isms of insulin resistance (IR) in VAT are lacking.
Thereafter, the same authors [108] reported that,
both in SAT and in VAT, insulin receptor (IR)
mRNA/protein expressions were significantly
reduced in GDM women, but the decrease was
more pronounced in VAT and was independent
of maternal BMI. In addition, VAT IR protein
levels were inversely associated with maternal
and neonatal anthropometric/metabolic para-
meters. Finally, DNA methylation patterns were
similar in AT and blood cells, with small size
modifications between groups in mothers and off-
spring [108].

miRNAs and GDM

DNAmethylation is not the only epigeneticmechan-
ism involved in GDM. More recently, also the
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miRNAs have been investigated as possible biomar-
kers of epigenetic modifications in GDM (Table 3).
In fact, upregulation of miRNA miR-330-3p in the
plasma of GDM patients has been recently demon-
strated [109]. Previously, Zhao et al. [110] showed
that miRNAs (miR-132, miR-29a, and miR-222) are
differentially expressed between GDM women and
controls in serum collected at 16th–19th gestational
weeks. In contrast to Zhao et al. [110], Tagoma et al.
[111] showed that miR-222 expression was higher in
the plasma of GDMwomen compared to controls, as
well as miR-195-5p evidenced the highest fold upre-
gulation in GDM.

Zhu et al. [112] demonstrated that five miRNAs
(hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR- 19a-3p,
hsa-miR-19b-3p, and hsa-miR-20a-5p) were upre-
gulated in diabetic pregnant women with respect
to controls. Shi et al. [113] determined the differ-
ential expression patterns of miRNAs in omental
adipose tissues taken at the time of caesarean sec-
tion from GDM patients and controls, suggesting
miR-222 as a potential regulator of ER expression
in estrogen-induced insulin resistance in GDM;
and hence, it could be considered as a candidate
biomarker and therapeutic target for GDM.

Cao et al. [114] examined the relationship between
maternal GDM and miR-98. The authors found
reduced expression of methyl-CpG-binding protein
2 (MECP2) and transient receptor potential cation
channel subfamily C member 3 (TRPC3) in placental
tissues from GDM patients, as a consequence of the
increase of miR-98, especially for GDM patients over
the age of 35 years. In addition, miR-98 over-
expression was found to be associated with increased
global DNA methylational level, which was reduced
in miR-98 knockdown. Therefore, this study showed
that miR-98 not only directly targetsMECP2, but also
indirectly regulates the target genes ofMECP2. These
findings imply that the expression of miR-98 may
suggest a novel regulatory mechanism in GDM by
theMECP2-TRPC3 pathway.

Noteworthily, the study by Houshmand-
Oeregaard et al. [115] was the first to demonstrate
that foetal exposure to maternal diabetes is asso-
ciated with an increased expression of miR-15a
and miR-15b inside the skeletal muscle cells in
the offspring of 26- to 35-year-old.

It is also worth mentioning that obesity, dia-
betes, hypertension and CVD risk in offspring

may originate from the altered epigenetic modifi-
cations in oocytes [116]. There are a few studies in
humans about the effects of hyperglycemia on
DNA methylation of oocytes. Wang et al. [117],
using an in vitro maturation model, elucidated the
effects of high-glucose concentration on DNA
methylation of human oocytes. The authors sug-
gested that in humans the high risk of chronic
diseases in offspring from diabetic mothers may
originate from abnormal DNA modifications in
oocytes. This study presents several limitations,
since it reports that the high-glucose concentra-
tions altered the DNA methylation status of pater-
nally expressed gene 3 (PEG3) and adiponectin in
human IVM oocytes, without explaining whether
this alteration is positive or negative for embryo
development and offspring health. In addition, the
number of oocytes used was limited and the effects
of glucose levels on the whole process of oocyte
maturation were not been elucidated.

Epigenetic modifications induced by lifestyle

In the last few years, animal and human studies
have linked lifestyle factors to epigenetic changes,
identifying the timing of early-life exposures as the
factors for the different health outcomes in the off-
spring. In this regard, pregnant women are inevita-
bly exposed to environmental insults of
heterogeneous nature: not only nutrition, but also
physical activity, tobacco smoking, alcohol con-
sumption, environmental pollutants, psychological
stress, and shift-work, all of which have been iden-
tified to modify epigenetic patterns [118–132]
(Figure 1).

Sex-specific effects in the offspring

Evidence has shown that male and female offspring
have different responses to the same early life expo-
sure. For example, some rodent findings underscore
the importance of including both males and females
in diet studies [76,77,133,134]. The authors demon-
strated that offspring’s sex affects the response to
maternal diet; in fact, the daughters of high-fat-fed
mothers had higher plasma leptin levels [135], higher
blood pressure [77], and smaller livers than that of
male counterpart [133], while the sons had a more
marked difference in their transcriptomes [134].
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Garbory et al. [136] observed sex-specific func-
tional differences based on both epigenetic and tran-
scriptomic analyses related to diet response in the
mouse placenta. In detail, the authors reported that
males and females diverged not only in terms of
number and variation of the genes involved, but
also more specifically in the functions and networks
involved. In particular, the function and networks
associated with sexually dimorphic genes for females
were mainly related with cell signalling involving
immune cells and the metabolism of aminoacids,
whereas in males they were related with the devel-
opment and function of the vascular system and
metabolism of glucose and fatty acids. Remarkably,
the pronounced sex-specificity of the offspring
regarding nature and severity of the maternal diet
effects should encourage us to consider the impact of
the biological sex of the offspring also on GDM-
induced epigenetic patterns in the offspring.

Regarding GDM, the sex-specificity effects are
unclear and require further research. In humans,
a meta-analysis of 20 studies showed an increased
risk of GDM in women carrying a male foetus com-
pared with women carrying a female one [137]. In
addition, male foetus is correlated to β cell dysfunc-
tions and higher postprandial glycemia suggesting
a probable influence on the maternal glucose metabo-
lism during pregnancy [138]; whereas the GDM
development when carrying a female foetus predicted
an overall future risk of early progression to T2DM
[139]. Very recently, O’Neill [140] proposed that the
sex-specific alterations in GDM maternal–foetal

metabolism may clarify the sex-specific metabolic
outcomes in offspring exposed to GDM in utero. In
fact, the authors, characterizing the metabolome of
2nd trimester amniotic fluid (AF), identifying 44 and
58 metabolites altered by GDM exposure in male and
female offspring, respectively. The significant changes
in the metabolic pathways involved glucose, glu-
tathione, fatty acid, sphingolipid, and bile acid meta-
bolism, with specific changes identified based on
offspring sex. These findings highlight the need to
perform larger human studies that compare the
GDM effects on the offspring of both the sexes.

Paternal influences

Finally, it must be stressed that, although literature is
mainly focused on maternally mediated effects, the
role of paternal contribute in modulating offspring’s
health warrants attention, too [141]. In fact, several
studies demonstrated a transmission of epigenetic
alterations of spermDNA related to paternal exposure
to various contaminants, nutrition, and lifestyle-
related conditions able to change the sperm epigen-
ome [142,143]. The new and growing field of transge-
nerational epigenetics has introduced the Paternal
Origins of Health and Disease (POHaD) para-
digm [144].

Conclusions and future perspectives

Growing evidence has shown that epigenetic modifi-
cations mediated by maternal nutrition, gestational

Figure 1. Epigenetic modifications induced by nutrition, hyperglycemia, smoking, radiation, psychological stress, alcohol consump-
tion, etc. can lead to range of long-term metabolic disorders in offspring.
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weight gain and metabolic perturbations during preg-
nancy can lead to a range of long-term metabolic
disorders in the offspring (Figure1). The recent litera-
ture established the role of epigenetic marks as poten-
tial modulators and future predictors of human
disease with a special focus on the very early stage of
development. Furthermore, although there are gaps in
the knowledge about the accurate mechanisms
involved, recent suggestions have focused on peri-
conceptional, intrauterine and postnatal periods as
the most influential in foetal programming. The peri-
conceptional period may represent the best window
of opportunity to prevent foetal programming of
NCDs. Yajnik et al. [145] defined gametogenesis,
fertilisation, implantation, embryogenesis and placen-
tation as periods of ‘primordial’ prevention. These
authors suggested that not only conventional genetic
inheritance shapes the future of the growing foetus,
but also epigenetic influences, defined as ‘malleable’,
determine its future [145]. In fact, epigenetic modifi-
cations are a modifiable component of the inter-
generational transmission of phenotypic traits and
thus can provide new exciting findings for suscept-
ibility to obesity, diabetes, CVD, neuropsychiatric
disorders and cancers. Recent epidemiological and
experimental studies have demonstrated the impor-
tance and utility of possible future prognostic epige-
netic analyses in healthcare [88].

In this regard, it has been demonstrated that
GDM influences cellular and organ systems during
the early life of the offspring and interacts with
postnatal environmental and lifestyle factors. In
fact, an increasing number of research studies
have identified gene variants of susceptibility to
GDM [9,48,49] as well as epigenetic alterations
[100] that participate in the complexity of meta-
bolic status of both GDM mothers and their off-
spring, inducing different levels of modifications
bringing to hyperglycemia, impaired insulin sensi-
tivity and correlated complications.

Over the last decade, the concept of ‘microbiome’
has come under increasing scrutiny and the knowl-
edge about it is constantly expanding, suggesting
potential future avenues of study on mechanisms
linking maternal health to neonatal microbiota
[146, 147]. Both maternal and neonatal microbiome
could be influenced by GDM [147]; therefore,
further studies are required to understand possible

remodelling of the gut microbiome composition
during the infant stage. Understanding maternal-
foetal microbial vertical transmission effects and
early-life colonisation could elucidate the long-term
health impact of the offspring and develop interven-
tion strategies in a timely manner.

Therefore, the knowledge of molecular mechan-
isms underlying health consequences of an altered
in utero condition, such as in GDM, will help to
both develop effective prenatal preventive strate-
gies and limit the vicious cycle across generations.
Overall, the primary goal is to shape the GDM
impact on the epigenome-wide level by identifying
genes and their pathways epigenetically involved.
Additionally, it is also to establish how dietary
patterns, nutrients, bioactive compounds and exer-
cise affect the epigenome to trigger the develop-
ment of the metabolic disturbances.

Understanding diabetes-related metabolic traits
from an epigenetic perspective may offer new and
optimal strategies to prevent or treat the occur-
rence of GDM complications in women and their
children. To progress in this direction, it is clear
that we should not only promote healthy nutrition
and lifestyle during and after pregnancy in women
of fertile age [23], but also assess the individual’s
genetic predisposition and lifestyle [51]. Practising
effective prevention by influencing the lifestyle of
young girls and pregnant women in the relatively
short period of peri-conceptional and gestational
windows appears to be very attractive [145].
Therefore, a multi-sectoral approach combining
all ‘omic’ levels (including nutrigenetic, epige-
nomic, and metagenomic data) will be required.

In light of the findings above discussed, further
interventional and longitudinal research studies
are required to widen the knowledge on this
field. In this scenario, nutrigenetics and epige-
netics in GDM can provide essential information
and insights.
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