
J Cell Mol Med. 2021;25:1725–1738.     |  1725wileyonlinelibrary.com/journal/jcmm

 

Received: 22 September 2020  |  Revised: 14 December 2020  |  Accepted: 29 December 2020

DOI: 10.1111/jcmm.16275  

O R I G I N A L  A R T I C L E

Identification of key candidate biomarkers for severe influenza 
infection by integrated bioinformatical analysis and initial 
clinical validation

Shuai Liu1,2 |   Zhisheng Huang2,3 |   Xiaoyan Deng4 |   Xiaohui Zou1,2,3 |   Hui Li1,2,3 |   
Shengrui Mu1,2 |   Bin Cao1,2,3,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

Shuai Liu and Zhisheng Huang contributed equally to this work.  

1China-Japan Friendship Hospital, National 
Clinical Research Center for Respiratory 
Diseases, Clinical Center for Pulmonary 
Infections, Capital Medical University, 
Beijing, China
2Department of Pulmonary and Critical Care 
Medicine, Center for Respiratory Diseases, 
China-Japan Friendship Hospital, Beijing, 
China
3Institute of Respiratory Medicine, Chinese 
Academy of Medical Sciences, Peking Union 
Medical College, Beijing, China
4Tsinghua University-Peking University 
Joint Center for Life Sciences, Tsinghua 
University, Beijing, China

Correspondence
Bin Cao, Department of Pulmonary and 
Critical Care Medicine, China-Japan 
Friendship Hospital, Beijing 100029, China.
Email: caobin_ben@163.com

Funding information
National Key Research and Development 
Program of China, Grant/Award Number: 
2018YFC1200102; CAMS Innovation Fund 
for Medical Sciences, Grant/Award Number: 
CIFMS 2018-I2M-1-003; National Natural 
Science Foundation of China, Grant/Award 
Number: 81970010/H0102; China-Japan 
Friendship Hospital, Grant/Award Number: 
PYBZ1820

Abstract
One of the key barriers for early identification and intervention of severe influenza 
cases is a lack of reliable immunologic indicators. In this study, we utilized differen-
tially expressed genes screening incorporating weighted gene co-expression network 
analysis in one eligible influenza GEO data set (GSE11 1368) to identify hub genes 
associated with clinical severity. A total of 10 genes (PBI, MMP8, TCN1, RETN, OLFM4, 
ELANE, LTF, LCN2, DEFA4 and HP) were identified. Gene set enrichment analysis 
(GSEA) for single hub gene revealed that these genes had a close association with 
antimicrobial response and neutrophils activity. To further evaluate these genes' abil-
ity for diagnosis/prognosis of disease developments, we adopted double validation 
with (a) another new independent data set (GSE10 1702); and (b) plasma samples col-
lected from hospitalized influenza patients. We found that 10 hub genes presented 
highly correlation with disease severity. In particular, BPI and MMP8 encoding pro-
teins in plasma achieved higher expression in severe and dead cases, which indicated 
an adverse disease development and suggested a frustrating prognosis. These find-
ings provide new insight into severe influenza pathogenesis and identify two signifi-
cant candidate genes that were superior to the conventional clinical indicators. These 
candidate genes or encoding proteins could be biomarker for clinical diagnosis and 
therapeutic targets for severe influenza infection.
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1  | INTRODUC TION

Seasonal influenza infection is associated with 84 000-92 000 
deaths every year in China.1 Some special population, particu-
larly the elderly and immunodeficient people, are more likely to 
develop into refractory hypoxaemia and even respiratory failure.2 
To assess illness status timely and predict disease progression cor-
rectly is important for influenza patient-management, but remains 
a challenge. Circulating T lymphocytes counts and virus-specific 
CD4+ and CD8+ T cells levels, as detectable markers, have been 
identified as the indicators related to infection severity.3-5 In addi-
tion, procalcitonin and C-reactive protein, as widely used biomark-
ers in clinical practice, potentially assist in the identification from 
alone influenza invasion to secondary bacterial or fungi infections 
that follow and predict hospital mortality.6,7 These studies, how-
ever, consisted of small sample sizes and miscellaneous factors, 
which could be partial and inadequate to reflect illness status or 
predict disease progression. Given higher morbidity and mortality 
in severe influenza, it is highly demanded to further investigate the 
molecular mechanisms of severe influenza procession, discover 
additional reliable biomarkers for early effective clinical diagnosis 
and therapy.

In recent years, transcriptomics studies of circulating leuco-
cytes provided a unifying framework to assess host response at 
gene expression levels and these findings showed that host re-
sponse displayed distinctively changes across the full range of 
healthy, moderate and severe influenza infection.8-11 And many 
screened host factors were closely associated with the progression 
of severe influenza, which may assist in the discrimination of dif-
ferent immune response signatures between severe influenza and 
others.12 However, owing to samples heterogeneity and sampling 
differences, different technology platforms and analysis strategy 
usage in individual studies, it is difficult to perform statistical anal-
ysis and extract valuable information. Therefore, the integrated 
bioinformatics methods combining with expression profiling tech-
niques could provide comprehensive and valuable clues to study 
the molecular pathogenesis of influenza infection and identify in-
novative biomarkers.

Our study aimed to identify candidate biological markers to pre-
dict severe illness progression and to discover underlying therapeu-
tic targets of severe influenza. Firstly, one microarray data set GSE11 
13689 from NCBI-Gene Expression Omnibus database (NCBI-GEO) 
were analysed to identify differentially expressed genes (DEGs) be-
tween influenza patients and matched controls. And the data set 
was analysed to find key modules associated with clinical severity 
using weighted gene co-expression network analysis (WGCNA) 
as well. Secondly, 43 overlapped genes from two analysis results 
were identified to further perform Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis. And then, 
these genes were subjected to protein-protein interaction (PPI) 
network construction and modular analysis. Lastly, four seldomly 
reported hub genes, LCN2, BPI, ELANE and MMP8, were selected to 
explore their potential biological functions with gene set enrichment 

analysis (GSEA) and to assess clinical value associated with disease 
severity or illness outcome. Overall, these findings will contribute to 
identifying more reliable biomarkers for early diagnosis and prog-
nosis, or conducting accurate host-targeted therapy after influenza 
infection.

2  | MATERIAL S AND METHODS

2.1 | Ethics statement

Experiments involving human participants were conducted accord-
ing to the Declaration of Helsinki and approved by the China-Japan 
Friendship Hospital Ethics Committee (approval no. 2018-120-K86) 
in accordance with its guidelines for the protection of human volun-
teers. The participants provided their written informed consent to 
participate in this study.

2.2 | Clinical samples

Whole-blood samples were obtained from influenza patients who 
were admitted to China-Japan friendship hospital, and plasma 
were isolated. Severe influenza was defined as a severe influenza 
pneumonitis and hypoxic respiratory failure that receives invasive 
mechanical ventilation and (or) emergency extracorporeal mem-
brane oxygenation; Moderate influenza was defined as a signifi-
cant flu-like symptomatic disease with or without supplemental 
oxygen therapy (including nasal high-flow oxygen therapy and 
(or) non-invasive mechanical ventilatory support). Twenty-five 
peripheral blood samples of healthy donors with no history of 
influenza infection were used as controls. A total of 63 influenza 
patients were recruited in 2017-2018 and 2019-2020, 34 were 
classified as ‘Moderate’ and 29 as ‘Severe’ according to criteria 
described above. Sufficient blood samples were screened and 
collected in our study. Flow chart of enrolled patients was shown 
in Figure S6. Influenza patients enrolled had at least one comor-
bidity. For blood tests performed at admission, severe patients 
had a lower proportion of lymphocytes (P = 0.0252) and a higher 
proportion of neutrophil (P = 0.0005) than moderate patients. 
24 patients (70%) required supplemental oxygen in the moderate 
group. 26% (9/34) and 96% (28/29) of the patients in the moder-
ate and severe group were admitted to the intensive care unit, 
respectively. The hospital mortality rates in severe cases of influ-
enza pneumonitis were 48% (14/29). Cohort characteristics are 
listed in Table 1.

2.3 | Microarray data information

The NCBI-GEO (http://www.ncbi.nlm.nih.gov/geo) is a public data 
storage of microarray profiles and next-generation sequencing. 
We screened and downloaded data sets from GEO. The selection 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368
http://www.ncbi.nlm.nih.gov/geo


     |  1727LIU et aL.

criteria were as follows: (a) Inclusion of gene expression profiles 
of influenza patients and healthy donor's blood samples, conva-
lescent phase samples were excluded; (b) Influenza patients were 
diagnosed by reverse transcription polymerase chain-reaction 
testing of respiratory tract sample; (c) Influenza patients had se-
verity classification, and criteria were generally similar; (d) Data 
sets contained a minimum of 10 influenza patients and healthy 
donors' blood samples. According to the above criteria, two gene 

expression profiles GSE11 1368 and GSE10 1702 were obtained. 
The microarray data of GSE11 1368 included 109 influenza pa-
tients and 130 healthy controls. 179 whole-blood samples were 
collected from 109 enrolled patients. An outlier sample (GSM30 
29336) was removed according to value of genes' expression. The 
microarray data of GSE10 1702 included 107 influenza patients 
and 52 healthy controls. 107 whole-blood samples were collected 
from 107 enrolled patients. The two data sets performed the 

Total (N = 63)
Moderate 
(N = 34) Severe (N = 29) P value

Gender 0.5074

Female 30 (48%) 18 (53%) 12 (41%)

Male 33 (52%) 16 (47%) 17 (59%)

Age/y (mean (SD)) 55.88 (14.52) 59.00 (11.23) 52.24 (17.11) 0.0753

Flu virus strains 0.0654

Influenza type A 41 (65%) 25 (74%) 16 (55%)

Influenza type B 20(32%) 7(20%) 13(45%)

Influenza type A and B 2 (3%) 2 (6%) 0 (0%)

Comorbidity

Pneumonia disease 52 (82%) 23 (67%) 29 (100%) 0.0023

Cancer 3 (4%) 3 (8%) 0 (0%) 0.2427

Hypertension 20 (31%) 12 (35%) 8 (27%) 0.7012

Diabetes 15 (23%) 6 (17%) 9 (31%) 0.3437

Laboratory tests (mean (SD))

Total leucocytes 
(×109/L)

9.68 (6.34) 8.80 (5.80) 10.70 (6.88) 0.1949

Neutrophil (×109/L) 8.01 (5.88) 6.73 (5.01) 9.51 (6.53) 0.0557

Proportion of 
neutrophil (%)

80.25 (13.56) 74.71 (15.63) 86.76 (6.16) 0.0005

Lymphocytes (×109/L) 0.92 (0.57) 1.03 (0.66) 0.80 (0.41) 0.2639

Proportion of 
lymphocytes (%)

13.36 (12.09) 15.55 (11.12) 10.78 (12.85) 0.0252

Respiratory support

Extracorporeal 
membrane 
oxygenation

12 (19%) 0 (0%) 12 (41%) 0.0001

Invasive mechanical 
ventilation

29 (46%) 0 (0%) 29 (100%) 0.0000

Non-invasive 
mechanical ventilatory 
support

31 (49%) 16 (47%) 15 (51%) 0.9073

Require supplemental 
oxygen

53 (84%) 24 (70%) 29 (100%) 0.0011

Outcome

Hospitalization 63 (100%) 34 (100%) 29 (100%) 0.5287

Admission to ICU 37 (58%) 9 (26%) 28 (96%) 0.0000

Death 14 (22%) 0 (0%) 14 (48%) 0.0000

Note: Data are mean (SD) or n (%). P values were calculated by Student's t test, Mann-Whitney U 
test, chi-square test or Fisher's exact test, as appropriate.
Abbreviation: ICU, intensive care unit.

TA B L E  1   Demographics and clinical 
characteristics of influenza patients
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same diagnostic criteria and defined severe or milder illness status 
based on whether invasive mechanical ventilation was used or not. 
GSE11 1368 was used to screen DEGs and construct WGCNA for 
this study. GSE10 1702 was used for validation of hub genes. A 
flow chart of this study was shown in Figure S1.

2.4 | Identification of DEGs and functional 
enrichment analyses

We downloaded the matrix files of two data sets from GEO. The R 
package ‘limma’ was performed for DEGs identifying between in-
fluenza samples and healthy samples. Cut-off criteria for screening 
DEGs were false discovery rate < 0.05 and |log2fold change| ≥ 1. GO 
enrichment and KEGG pathway analyses were conducted using the 
R package ‘clusterprofiler’. GO terms or KEGG pathways with ad-
justed P < 0.05 were considered statistically significant. GO terms 
consisted of three aspects: biological process (BP), cellular compo-
nent (CC) and molecular function (MF).

2.5 | Analysis of hub genes expression and 
immune cells

To quantify the difference of immune cells between influenza pa-
tients and healthy donors, we used the x-Cell tool (http://xcell.ucsf.
edu/) to evaluate 34 immune cell types, which is a gene signature-
based method that integrates the advantages of gene set enrich-
ment with deconvolution approaches. We utilized ‘ggstatsplot’ (R 
package, https://cran.r-proje ct.org/web/packa ges/ggsta tsplo t/) to 
investigate the correlation between the hub genes expression and 
immune cells.

2.6 | Gene set enrichment analysis

We performed GSEA analysis between influenza and healthy 
samples with the R package ‘clusterprofiler’.13 We also used GSEA 
analysis to explore biological function of hub genes. Based on 
correlation coefficient between each hub gene and other genes, 
influenza samples were divided into two groups (positive correla-
tion vs negative correlation). P < 0.05 was regarded as statisti-
cally significant. Annotated gene sets ‘c2.cp.kegg.v7.1.symbols.
gmt’ and ‘c5.bp. v7.1.symbols.gmt’ were selected as the reference 
gene sets.

2.7 | Weighted co-expression network analysis

We extracted 3488 genes (according to variance) to construct a 
weight co-expression network using the R package ‘WGCNA’.14 
The adjacency matrix was converted into topological overlap matrix 
when the power of β = 9 (R2 = 0.851). Then, genes were categorized 

into different modules with a module minimum size cut-off of 30. 
Similar modules were merged together with a height cut-off of 0.25. 
The module with the highest correlation with clinical traits was 
selected to explore its biological function through GO and KEGG 
analyses.

2.8 | Hub genes detection

The genes with the most clinical correlation were defined as hub 
genes. Firstly, hub genes were screened according to the criteria that 
gene significance (GS) > 0.5 and module membership (MM) > 0.8 in 
the most significant module. Then, we identified common genes 
through Venn analysis (http://bioin forma tics.psb.ugent.be/webto 
ols/Venn/) to compare hub genes and DEGs. Further, we selected 
common genes and used the STRING (https://strin g-db.org/) data-
base to construct PPI network and looked for hub genes. Molecular 
complex detection (MCODE) is a plug-in to Cytoscape software plat-
form and is used to detect and screen densely interconnect gene 
modules from the PPI network. The following cut-off values set-
ting: Degree cut-off = 4; Node score cut-off = 0.2; K-core = 2; Max. 
depth = 100.

2.9 | Validation in external data set

We used data set GSE10 1702 to validate the difference of hub 
genes between healthy donors and influenza patients with dif-
ferent severity. The gene expression profile was obtained from 
GEO. The clinical samples of GSE10 1702 included 107 influenza 
patients (63 Moderate and 44 Severe) and 52 healthy controls. 
Then, we compared the difference of hub genes expression be-
tween healthy donors and influenza patients with different 
severity.

2.10 | Enzyme-linked immunosorbent assay and 
clinical validation

Protein was the product of gene expression and the primary execu-
tor of biological function. The expression products of 10 hub genes 
were secretory proteins. We conducted ELISA to measure these 
expression products of hub genes. The concentration levels of 
human resistin (RETN), human matrix metalloproteinase-8 (MMP8), 
human lipocalin 2 (LCN2), human haptoglobin (HP), human olfac-
tomedin 4 (OLFM4), human neutrophil elastase (ELANE), human 
bactericidal/permeability-increasing protein (BPI), human lacto-
ferrin (LTF; Elabscience, Wuhan, China), human transcobalamin I 
(TCN1) and human defensin α4 (DEFA4) (mlbio, Shanghai, China) in 
the plasma samples were measured according to manufacturer's in-
structions, respectively. The clinical samples included 63 influenza 
patients (34 Moderate and 29 Severe) and 25 healthy controls. We 
analysed the difference of hub genes expression between healthy 
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donors and influenza patients with different severity. Meanwhile, 
we compared the difference of hub genes expression between sur-
vived and dead cases. Then, we used R packages (‘pROC’ and ‘veri-
fication’) to draw ROC curves, calculate p value of hub genes and 
clinical indicators.

2.11 | Statistical analysis

Statistical analysis was performed with Graph-Pad Prism 5.0 and R 
3.6.2. And statistical significance was calculated by Student's t test, 
Mann-Whitney U test, chi-square test or Fisher's exact test, as ap-
propriate. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 
represent significant differences.

3  | RESULTS

3.1 | Identification of stable DEGs and 
function characteristics between influenza samples 
and healthy donors

We applied principal component analysis (PCA) to the 13 952 tran-
scripts among 308 whole-blood samples. The PCA plot showed 
that composition of the healthy controls and influenza patient 
groups were apart from each other, suggesting gene expression 
profile in the illness group was significantly different from that 
in the healthy group (Figure 1A). The DEGs between illness and 
normal people were obtained using R package ‘limma’ analysis 
method, among which 224 genes were significantly up-regulated 
and 133 genes were significantly down-regulated. The top 25 up- 
and down-regulated DEGs were shown in the heat map (Figure 1B). 
The interferon-stimulated gene (ISG) IFI27 was extremely elevated 
and immunoglobulin E receptor α (FcεRIα) gene usually decreased. 
To further characterize the functional status derived from these 
DEGs, we conducted GO analysis and GSEA across the whole 357 
DEGs. These genes were mainly involved in BPs associated with 
neutrophil activation, neutrophil degranulation, neutrophil acti-
vation involved in immune response (Figure 1C). In terms of CCs, 
the DEGs were mainly enriched in integral components of spe-
cific granule and secretory granule lumen (Figure S2A). And the 
MF terms were glycosaminoglycan binding and lipopolysaccharide 
binding (Figure S2B). In addition, GSEA results showed that up-
regulated signalling pathways were mainly enriched in neutrophils 
functions, virus and bacteria-related immune response in influenza 
patients (Figure 1D).

3.2 | Immune landscape associated with 
characteristics of influenza infection

Functional enrichment analysis showed that neutrophil function 
was different between influenza and healthy groups. To explore 

the distribution characteristics of immune cells in the progres-
sion of severe influenza, the microarray data of 308 whole-blood 
samples from data set GSE11 1368 were analysed to evaluate the 
immune landscape. The specific enrichment scores of 34 immune 
cell types were calculated by ssGSEA score-based method (x-Cell 
tool) based on specific gene markers between normal controls and 
influenza samples. The results revealed that neutrophils, mono-
cytes, eosinophils and CD4+ T and CD8+ T subsets were abun-
dant in the data set, as presented in the corresponding heat map 
in Figure 2A. Moreover, it was demonstrated that the enrichment 
score of NKT, monocytes and neutrophils were higher in influenza 
samples. However, the CD4+ T and CD8+ T subsets, and B cells 
were significantly enriched in normal controls compared with in-
fluenza samples (Figure 2B). Data from the GSE11 1368 data set 
was also used to analyse the enrichment score of immune cell 
subsets in different severity of influenza infection. The results 
showed that CD4+ T and CD8+ T cells significantly decreased in 
severe influenza patients, but neutrophils increased with disease 
severity (Figure 2C).

3.3 | Identification of the key module with 
WGCNA and its related functions

To identify the key modules related to severity of influenza infec-
tion, data set GSE11 1368 derived from 308 samples was used to 
construct the co-expression network through WGCNA analysis. 
Clinical traits, including disease status, illness severity, age and sex, 
were retrieved from raw files (Figure 3A). By setting soft-thresh-
olding power as 9 (scale-free R2 = 0.85) and cut height as 0.25, we 
eventually identified 13 modules (Figure 3B-D). The association 
between the modules and clinical samples traits was measured 
by the correlation between module eigengene (ME) values and 
sample traits and visualized by the heat map profiles. The results 
showed that the cyan module was the most closely corrected with 
disease severity (Pearson coefficient = 0.82, P = 2E-75) and was 
highly related to disease status as well (Pearson coefficient = 0.67, 
P = 5E-42) (Figure 3E). We plotted dendrogram and heat map to 
further illustrate the correlated eigengenes, and the dendrogram 
indicated that the cyan module was significantly related to dis-
ease severity (Figure 3F). To elucidate the potential functions of 
these genes, we conducted GO and KEGG analysis. The enrich-
ment of GO terms in BP, CC and MF, as well as KEGG pathways, 
were shown in Figure S3A-B. Function enrichment analysis indi-
cated that genes within the cyan module were mainly involved in 
neutrophil function and ‘cell cycle’.

3.4 | Identification of hub genes

To screen stable and robust hub genes accurately, 83 key genes 
with significant correlation both GS and MM were selected by 
setting MM > 0.8 and GS > 0.5, as shown by the scatter plots 
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(Figure 4A). Furthermore, 43 commonly changed genes shared 
by cyan module and DEGs were selected (Figure 4B), and these 
genes had consistently up-regulated expressed trends. Then, 43 
overlapping genes were filtered and constructed into PPI network 
complex, and the core module was identified with the MCODE 
score = 10 (Figure 4C). Lastly, these hub genes, including RETN, 
MMP8, LCN2, HP, OLFM4, ELANE, TCN1, DEFA4, BPI and LTF, were 
selected from core module.

3.5 | GSEA reveal a close relationship between hub 
genes and neutrophils functions

To clarify the potential functions of hub gene, we performed GSEA. As 
shown in Figure 5A-D and Figure S4, seven gene sets, including ‘anti-
microbial humoral response’, ‘defence response to bacterium’, ‘defence 
response to fungus’, ‘neutrophil activation’, ‘neutrophil activation in-
volved immune response’, ‘neutrophil degranulation’ and ‘neutrophil 

F I G U R E  1   Identification of differentially expressed genes and functional enrichment analyses. A, Principal component analysis was 
performed with normalized gene expression data, including healthy controls (n = 130) and influenza patients (n = 178) from data set GSE11 
1368. B, Heat map representation of top 50 significant genes, ordered by fold change. Up-regulated genes are shown in red, and down-
regulated genes are shown in blue. C, Chord plot depicting the relationship between genes and Gene Ontology terms of biological process. 
D, Gene set enrichment analysis showed seven pathways enriched in influenza patients, and the lines in the lower figure correspond to the 
genes of each pathway

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368
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mediated immunity’, were enriched in groups with positive correlated 
with RETN, MMP8, LCN2, HP, OLFM4, ELANE, TCN1, DEFA4, BPI and LTF. 
Overall, these gene sets with higher enrichment scores were all closely 
associated with neutrophils functions of anti-bacteria and anti-fungi.

3.6 | Neutrophils is associated with hub 
genes' expression

The result of GSEA showed a close relationship between hub genes 
and neutrophils function. To further investigate the association 
between the hub genes expression and neutrophils, we utilized R 
package ‘ggstatsplot’ to perform correlational analysis between hub 
genes expression and enrichment score of neutrophils from x-Cell 
tool. Interestingly, significant positive associations were observed 
between these hub genes and enrichment score of neutrophils 
(Figure 5E-H; Figure S5). Taken together, all ten hub genes' expres-
sion was related to neutrophils.

3.7 | Validation of candidate genes related to 
disease severity

To verify the results above, the expression levels of the above ten 
hub genes were first validated in another data set (GSE10 1702). The 
mRNA microarray data set GSE10 1702 consists of 107 influenza pa-
tients and 52 healthy controls. 107 whole-blood samples were taken 

from whole enrolled patients (including 63 moderate patients and 
44 severe patients). The reconfirmed results showed that expression 
levels of ten hub genes in influenza patients were higher than normal 
controls and significantly increased with disease severity (Figure 6).

3.8 | Candidate gene encoding proteins could 
evaluate disease severity and predict patient outcome

Given the prominent roles displayed by candidate genes in the pro-
cession of influenza infection, we suggested that their expression 
levels could reflect disease status and predict patient outcome. To 
verify this hypothesis, the protein levels of key candidate gene en-
coding proteins were detected using ELISA. The concentrations of 
the RETN, MMP8, LCN2, ELANE and BPI in plasma tended to be 
higher in influenza patients than healthy donors. In addition, MMP8, 
LCN2, ELANE and BPI encoding proteins increased with disease sever-
ity. However, in terms of HP, no or weak differences were observed 
when plotted against illness severity. Furthermore, concentrations 
of TCN1 proteins decreased in plasma in patients with relatively 
severe disease (Figure 7A). Furthermore, receiver operating charac-
teristic (ROC) curves showed their diagnostic value as biomarkers 
for severe influenza. Area under the curve (AUC) analysis of ROC 
showed that LCN2, BPI, ELANE and MMP8 expression represented 
severe influenza infection. In addition, BPI and MMP8 expression 
better distinguished severe from non-severe than the proportion of 
lymphocytes and neutrophils. (BPI: AUC 0.774; MMP8: AUC 0.872) 

F I G U R E  2   Analysis of immune landscape associated with influenza infection. A, Heat map showing the enrichment score of immune cells 
between healthy controls and influenza patients from data set GSE11 1368. The specific enrichment scores of 34 immune cell types were 
calculated by ssGSEA score-based method (x-Cell tool) based on specific gene marker. B, Immune cells abundance in healthy controls and 
influenza patients. The blue indicates samples of healthy controls, and the red designates the samples of influenza patients. P values were 
obtained using Wilcoxon test. C, Different abundance of Neutrophils, CD4+ T cells and CD8+ T cells in mild, moderate and severe patients. 
GSEA, gene set enrichment analysis; ns, not significant. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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(Figure 7B). To further evaluate whether expression levels of can-
didate proteins could predict the illness outcome, we performed a 
comparative analysis to test the levels of candidate proteins in all in-
fluenza populations. The results showed that BPI, MMP8 and DEFα4 
had a higher expression in dead than survived people, but OLFM4 
was the opposite (Figure 7C). Collectively, these findings suggested 
that some candidate proteins were linked to disease status or illness 
outcome during influenza infection.

4  | DISCUSSION

To our knowledge, our study is the first one to apply DEGs analysis 
combined with WGCNA algorithm to search novel hub genes related 
to pathogenesis of severe influenza. In addition, our study is also the 
first to verify these screened key genes in both another new data 
set and independent clinical plasma samples and to analyse the cor-
relation between hub gene encoding proteins and disease severity or 
clinical outcome. These findings provide additional insights on under-
standing the molecular mechanism of severe influenza development.

Numerous studies have been conducted to reveal the 
causes and immunological mechanisms of progression in severe 

influenza, by which they could assist in designing treatment strate-
gies. Nonetheless, the morbidity and mortality of influenza infection 
is still very high in the past several decades. Most studies have iden-
tified some host factors associated with severe influenza, however, 
only focused on a single genetic event (ie genetic susceptibility).15-19 
Recently, transcriptomics studies also captured extensive gene ex-
pression profiles of host response and these results indicated that 
structure of gene sets and their functions were different across the 
full range of normal, moderate and severe infection. However, these 
findings were only generated from a single cohort study and failed to 
further clinical validation or detailed functional analysis.8,9,12,20

A prospective cohort study discovered discernible differences 
in gene expression pattern between acute and recovery phase from 
influenza patients.21 To minimize variability, we only captured partial 
transcriptomics information from data set GSE11 1368. Therefore, we 
could analyse the characteristics of whole-blood RNA in the acute 
phase of influenza infection. Through integrating microarray data 
from normal people and influenza patients, we identified 357 robust 
DEGs. Among them, some had greater significance for influenza infec-
tion than others, such as IFI27 (also called ISG12) and IFITM3 (both are 
up-regulated genes), have been reported widely and in details.11,15,22 
Interestingly, both of them belonged to well-known ISGs.23 It was 

F I G U R E  3   Identification of key 
modules correlated with disease severity 
through weighted gene co-expression 
network analysis. A, Sample dendrogram 
and trait heat map (GSE11 1368). Colour 
intensity varies positively with age, sex, 
severity and disease status. B, Analysis 
of the scale-free fit index (left) and the 
mean connectivity (right) for various 
soft-thresholding powers. C, Clustering 
of module eigengenes. The red line 
indicates cut height (0.25). D, Clustering 
dendrograms of genes based on a 
dissimilarity measure (1-TOM). E, Module-
trait associations were evaluated by 
correlations between module eigengenes 
and sample traits. Each cell contains 
the correlation coefficient and P value. 
A stronger positive correlation was 
displayed in darker red, and the negative 
correlation with deeper blue. F, The 
combination of eigengene dendrogram 
and heat map indicated that the cyan 
module is highly related to the severity of 
influenza infection

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368


     |  1733LIU et aL.

suggested that response to interferon signalling and/or viral infections, 
as a remarkable indicator, involved in influenza development.

Furthermore, we conducted GO functional enrichment analysis 
and found that these DEGs were mainly associated with anti-bac-
teria response and neutrophil function. These findings mutual con-
firmed with result of immune infiltration analysis, from which we 
conclude that neutrophils-related host response played a pivotal role 
in influenza infection. Similarly, it has been known that neutrophils, 
as vital practitioners of microbe-killing, can defend against bacte-
ria, fungi and protozoa through phagocytosis, degranulation, releas-
ing lytic enzymes and reactive oxygen species.24 Aside from these 
traditional mechanisms, they also perform their killing function by 
releasing decondensed chromatins and granule proteins, which are 
collectively called neutrophil extracellular traps (NETs), into the ex-
tracellular space.25-28 The biological functions of DEGs closely match 
the mechanism of biocidal action of NETs. Thus, we can speculate 
that the activation of neutrophils and production of NETs were the 
most represented signatures in severe influenza. These results were 
consistent with previous analysis and reports.8,12,29

Weighted gene co-expression network analysis, as widely used 
bioinformatics method, focused on the relationship between co-ex-
pression modules and clinical traits at transcriptome level14; thus, 
this approach can provide insight into complementary information 
related to phenotypic traits. Among 13 modules, the cyan module is 
the key one involved in influenza severity and its contained genes' 
pathway enriched in the ‘cell cycle’, which is consistent with previous 
reports.8 It has been reported that ‘cell cycle’ plays a pivotal role in 

host-virus interaction. Influenza viruses could escape the host re-
striction and facilitate their own replication through changing the 
cell cycle transition points.30-32 Therefore, these findings provide a 
possible clinically relevant to better understand the relationship be-
tween immune cell proliferation and viral load change.

Ten hub genes were identified using DEGs analysis combined 
with WGCNA algorithm, and almost all of these genes were neu-
trophils-related. Although neutrophils ameliorate lung damage and 
delay the development of mild flu-like symptoms to severe or critical 
clinical illness,33 cumulative evidence also suggested that excessive 
pulmonary infiltration of neutrophils was responsible for adverse 
outcome of influenza infection.34-37 For example, the prolonged ac-
tion of NETs might accelerate local damage because of higher immu-
nogenicity.38 It has been shown that increased release of NETs was 
correlated with disease severity and might be a significant guideline 
to predict the poor prognosis during influenza infection.39 However, 
testing complexity and biased observations limited its clinical appli-
cation.40 Thus, searching alternative indicators might provide more 
innovative clues to achieve faster and easier detection. NETs are 
composed of decondensed chromatin fibres coated with antimi-
crobial proteins, such as histones, neutrophil elastase (ELANE), my-
eloperoxidase and α-defensins (DEFα).25 Our integrated analysis and 
validation results also again illustrate that these candidate genes, 
including ELANE, DEFA4, involved in NETs formation, could cause or 
participate in the process of severe influenza.

Neutrophils are essential for the initiation and maintenance of 
inflammation response as well. Although the neutrophil counts were 

F I G U R E  4   Key hub gene in severe progression of influenza infection. A, A scatter plot of gene significance for influenza severity vs 
module membership in cyan module (Red line: module membership > 0.8 and gene significance > 0.5 were set to define genes highly 
correlated with disease severity). B, Venn diagrams indicate overlap of 43 commonly changed genes. Identification of the intersection 
from the cyan module (WGCNA results, module membership > 0.8 and gene significance > 0.5 were set as the cut-off criterion) and 
DEGs (Healthy control vs Influenza infection; Foldchange > 2 and FDR < 0.05 were set as the cut-off criterion). C, The core module 
from overlapped genes by PPI (confidence score > 0.9) and Cytoscape software (MCODE: Degree cut-off = 4; Node score cut-off = 0.2; 
K-core = 2; Max. depth = 100). DEG, differentially expressed gene; FDR, false discovery rate; WGCNA, weighted gene co-expression 
network analysis
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not statistically significant between moderate and severe patients 
(P = 0.0557; Table 1), closely related genes and their encoding pro-
teins were generally more abundant in relatively severe cases. It also 
reflected disease status or predicted influenza patients' outcome. 
Among them, some proteins related to specific neutrophils gran-
ules, such as bactericidal/permeability-increasing (BPI) protein and 
matrix metalloproteinase-8 (MMP8) protein, were generally more 
abundant in relative severe influenza cases.41,42 Specially, it has been 
reported recently that originally identified as neutrophil collagenase, 
MMP8 was elevated after influenza infection.43 BPI, usually as anti-
microbial proteins and peptides, could also destroy the viral particles 
completely to inhibit infectious abilities of influenza viruses.44 In this 
study, we found that MMP8 and BPI were sensitive to disease status 
evaluation, which suggested that it could provide potential clinical 
application values as candidate biomarkers in the future. Resistin 
(RETN) could induce myeloid/granulocyte specific protein expres-
sion such as lipocalin 2 (LCN2) and lactoferrin (LTF), which promote 
formation of mature neutrophils.45 Indeed, ROC curves showed that 
LCN2 could serve as promising biomarkers to define and distinguish 

severe influenza with high sensitivity and accuracy. In terms of mu-
tual functions, LTF and LCN2, as iron-associated glycoprotein, exhibit 
anti-inflammatory and anti-bacterial properties.46,47 However, RETN 
has recently reported to directly inhibit bacterial killing in neutro-
phils.48 In addition, Transcobalamin I (TCN1) encoding proteins in 
plasma tended to be lower in severe patients than in moderate pa-
tients. TCN1, as a vitamin B12 (VitB12) binding protein, respectively, 
expressed in mature neutrophils, and most strongly at the stages of 
myeloid development and granulocyte differentiation.49 As of yet, 
the mechanisms to explain decreased protein levels of TCN1 in se-
vere influenza infection are unknown, and the phenomenon and 
causes deserve further investigation.

In terms of the gene and protein expression in the validation II 
and I, they didn't exactly match. The possible reasons for the results 
mentioned above lie in the following aspects. According to the cen-
tral dogma, the main links of gene expression include transcription 
and protein synthesis, but there existed complex post-transcriptional 
and post-translational regulation, such as epigenetic modification.50 
It might cause inconsistent trends of gene expression between 

F I G U R E  5   Gene set enrichment analysis (GSEA) of hub gene and association of hub genes' expression with neutrophils. A-D, seven 
gene sets enriched in groups with positive correlated with single hub genes (GSE11 1368). A, LCN2; B, ELANE; C, BPI and D, MMP8. E-H, 
Association of E, LCN2; F, ELANE; G, BPI and H, MMP8 genes expression with Neutrophils in influenza infection. Each plot represents a 
sample

F I G U R E  6   Phase I validation: Candidate genes increased with disease severity. Validation of hub genes in the data set GSE10 1702. Ten 
candidate genes highly differentially expressed in severe influenza infection increased with severity of illness. Scatter diagram from the 
validation set comparing healthy donors (red, n = 52), moderate infection (blue, n = 63) and severe infection (green, n = 44)
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transcriptional and protein levels. In addition, the difference in de-
tection time might be a reason that cannot be ignored. For exam-
ple, when mRNA peaks, protein levels were still changing.51 Last 
but not least, some specific secreted proteins expressed differently 
because of different sources from tissues and organs or different 
disease severity. For example, TCN1, as a VitB12 binding protein, may 
be more related to gastrointestinal illness than just severe influenza 
infection.49

We wanted to point out that Jake's research generated from 
British influenza patients and their further analysis results mainly 
emphasized the patterns change in progression of severe influ-
enza.9 However, enrolled patients in Benjamin's study came from 
different countries (including Australia, Canada and Germany) and 
available network analysis in this study revealed different disease 
modules were associated with infection severity.8 Although these 
two studies used different platforms and population for gene 

F I G U R E  7   Phase II validation: Candidate proteins evaluate disease severity and predict patient outcome. A, Concentration levels of 
RETN, MMP8, LCN2, HP, OLFM4, ELANE, TCN1, DEFα4, BPI and LTF in plasma obtained at the first sampling time-point (T1) from healthy 
donors (n = 25) and influenza patients (n = 63) and presented as scatter diagram. HD: Healthy donors; M: Moderate patient (n = 34); S: 
Severe patients (n = 29). B, Severity prediction using LCN2, BPI, ELANE and MMP8 expression levels, and proportion of neutrophils and 
lymphocytes. Receiver-operator characteristic (ROC) curves of four candidate proteins and two clinical indicators to predict disease severity: 
ROC-AUC (LCN2: 0.646; BPI: 0.774; ELANE: 0.671; MMP8: 0.872; Proportion of neutrophils: 0.754; Proportion of Lymphocytes: 0.650). 
C, The protein levels of BPI, MMP8, DEFα4, OLFM4, LCN2 and ELANE in survivors (n = 49) and non-survivors (n = 14) with influenza 
infection. Statistical significance is determined by unpaired t test. *P < 0.05, **P < 0.01, ***P < 0.001
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expression analysis, key hub genes and their expression trends 
essentially agree with each other. The reason may be that the 
enrolled population criteria were similar and the analysis meth-
ods and obtained data were normalized or standardized. Based 
on these findings, we proposed that the expression of these hub 
genes is universal in severe influenza population. Of course, their 
expression and related function in influenza infection also need to 
be elucidated in the future.

Some limitations in the study have to be acknowledged. A signif-
icant number of DEGs were associated with anti-bacterial function 
of neutrophils, including neutrophils degranulation, NETs formation 
and so on. However, it remains unclear whether modulation of these 
host factors was specific for severe influenza infection. Hence, the 
main problem should be clarified through further study, such as con-
trolled animal experiments and even randomized controlled clinical 
trials in humans.

In conclusion, our comprehensive bioinformatics analysis results 
showed that neutrophils activation and increase of anti-bacterial ac-
tivity were sets of typical characteristics of severe influenza. Several 
hub genes related to neutrophil activation and anti-bacterial humoral 
response were more highly associated with severe disease. New data 
sets and clinical samples validation revealed BPI, MMP8 and their 
encoding proteins, as indicators of high sensitivity and specificity, 
could reflect disease severity and predict outcome. Overall, these 
findings could significantly improve our understanding of causes 
and underlying biological events in severe influenza infection. And it 
could also provide new insights into molecular mechanism research 
and clinical diagnosis or treatment of severe influenza.
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