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The tumor microenvironment (TME) was usually studied in tumor tissue and in relation to only tumor progression, with little
involved in occurrence, recurrence and metastasis of tumor. Thus, a new concept “peritumor microenvironment (PME)” was
proposed in the proteomic characterization of peritumor liver tissues in human hepatocellular carcinoma (HCC). The PME for
occurrence (PME-O) and progression (PME-P) were almost totally different at proteome composition and function. Proteins for
occurrence and progression rarely overlapped and crossed. Immunity played a central role in PME-O, whereas inflammation,
angiogenesis and metabolism were critical in PME-P. Proteome profiling identified three PME subtypes with different features of
HCC. Thymidine phosphorylase (TYMP) was validated as an antiangiogenic target in an orthotopic HCC mouse model. Overall, the
proteomic characterization of the PME revealed that the entire processes of HCC occurrence and progression differ substantially.
These findings could enable advances in cancer biology, diagnostics and therapeutics.
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INTRODUCTION
The tumor microenvironment (TME), which describes the
composition of tumor tissue, plays an important role in
tumorigenesis. The TME is usually studied in tumor tissue, and
as such the involvement of the TME in processes associated
with initial tumorigenesis and tumor recurrence as well as
metastasis after surgery is unclear. Tumor cells and the tissues
in which tumors grow are highly heterogeneous [1], as was first
suggested in Paget’s “seed and soil” hypothesis [2]. The “soil”
refers to nontumor tissue that provides a suitable environment
for tumor cell growth, but is not itself tumor tissue. However,
identifying and studying “the soil” in which tumor will grow in
the future is difficult. Thus, a new concept, the peritumor
microenvironment (PME), was developed to describe the
mechanisms underlying the occurrence and progression of
HCC. The PME includes tissue surrounding the tumor that is very
close to the “soil”. The occurrence, recurrence and metastasis of
tumor mainly depends on the PME, and thus both the PME and
TME can influence tumor progression. To date, few studies have
focused on the PME.
Hepatocellular carcinoma (HCC) is the most common form of

liver cancer and is the sixth most-frequently diagnosed cancer and
the fourth leading cause of cancer death worldwide [3]. In contrast
to other types of tumors, more than 80% of HCC had adjacent
tissues that showed cirrhosis or fibrosis [4]. Therefore, the PME in
HCC may have unique characteristics. In this study, we carried out
the first proteomic characterization of the PME in HCC using 41
and 71 samples from normal human liver tissues and HCC
peritumor tissues, respectively.

RESULT
Proteomic analysis of the PME in patients with HCC
Across the entire data collection period, high stability and
reproducibility were evidenced by high values for the interexperi-
ment correlation coefficients (Fig. S1A–E). A total of 6 947 proteins
were identified in the PME and the subcellular distribution of
these proteins was annotated with Gene Ontology (Fig. S1F). The
average number of proteins identified in the PME (4543) was
significantly higher than that for normal liver tissues (4 372) (Fig. 1A).
Furthermore, patients with high levels of α-fetoprotein (AFPhigh;
AFP > 300 ng/mL) and a short survival time (survivalshort; survival
time <344 days) had a higher number of identified proteins in the
PME (Fig. 1B). These results suggested that changes in protein
expression in the PME were closely connected with clinical
indicators of HCC and that aberrant increases in the number of
proteins may be related to HCC progression.
Comparison of PME and the control revealed 1360 differentially

expressed proteins (Fig. 1C, D). Enrichment analysis demonstrated
that the differentially expressed proteins in the PME were
associated with signaling pathways that may be related to HCC
occurrence and progression (Fig. 1E). Notably, expression of key
regulatory proteins in the glycolysis pathway was significantly
upregulated (Fig. 1F–P), indicating that hepatic-specific metabolic
pathways are reprogrammed in the PME of HCC.

PME for occurrence (PME-O)
Unlike traditional protein analysis methods that focus on a
single protein or a single factor such as immunity [5, 6],
inflammation [7, 8], angiogenesis [9], or metabolism [10], in this
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study we established a method to examine multiple integrated
factors (Fig. 2A). Briefly, risk indices (RIs) calculated for all 40
proteins identified in the PME-O (Table S3) had values ranging
from 32.40 to 169.64 (interquartile range [IQR], 113.75~154.68;
average, 127.73; Fig. S2B). The RIs correlated well with AFP,

cirrhosis stage, and CYP2E1 activity (Fig. 2B–D). Patients with
high levels of RI (RIhigh, RI > 136.17) were more likely to have
higher AFP level and cirrhosis stage as well as CYP2E1 activity,
indicating that the established method has substantial clinical
value.

Y. Gu et al.

2481

Oncogene (2022) 41:2480 – 2491



Fig. 1 Proteomic analysis summary for the PME in patients with HCC. A Box plots of number of proteins identified in normal (pink, n= 34)
and peritumor (blue, n= 61) liver tissues. B Comparison of the number of proteins identified in peritumor tissues grouped by survival time,
AFP level, Cirrhosis stage, maximum tumor diameter and single or multiple tumors. Data are presented as the mean ± SD. C Volcano plot
displaying differentially expressed proteins in the PME with P < 0.05 (Student’s t test). D Heatmap of significantly differentially expressed
proteins. Each column represents one independent sample, and rows represents different proteins. Colors represent the protein expression
level in the sample. E Signaling pathways involved by altered expression of proteins in peritumor group. The abscissa is -log10 (the P value
enriched in the pathway). Red lines mean up-regulation, blue lines mean down-regulation. F Abnormal activation of glycolytic metabolic
pathways (N, normal; H, peritumor), the shading represents the abundance of protein in each group. (G–P) Differential expression of key
regulatory proteins involved in glycolytic metabolic pathways. Data are presented as the mean ± SD.

Fig. 2 Predictive assessment of risk factors for the occurrence of HCC. A Workflow of the relationship between the altered PME proteome
and HCC occurrence. Differential proportion of distribution for AFP (B), cirrhosis stage (C) and CYP2E1 activity (D) between RIlow and RIhigh

groups divided by the median RI. Detailed workflow of calculations for RIs described as Fig. S2A. RIhigh, RI > 136.17. CYP2E1high; CYP2E1 > 1
350 pmol/min/mg. E Proportion of risk factors for HCC occurrence in each patient. F Comparison of the RI among different risk factors related
with HCC occurrence; Data are presented as a scatter diagram representing the median with range. ROC curve (I, J) and sensitivity as well as
specificity (G, H) of the HCC occurrence prediction model with three markers combined (HSPA4L, VIL1, TYMP) in our dataset (G, I) and the
validation dataset (H, J). ***P < 0.001 compared with immunity; $P < 0.05, $$$P < 0.001 compared with inflammation; ###P < 0.001 compared with
angiogenesis; &&&P < 0.001 compared with proliferation and invasion; %%%P < 0.001 compared with DNA damage and repair. RI, risk index.
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Using the functional classification and method described above,
we found that the proportion of several factors varied substan-
tially among patients with HCC (Fig. 2E), and this variation could
be attributed to high levels of heterogeneity. The RI for immunity
was 43.56, which was highest among the six factors, followed by
inflammation (33.78) and angiogenesis (26.82) (Fig. 2F). In general,
immunity was commonly the leading cause of HCC occurrence in
the PME.
To facilitate the clinical application of this information, the

abovementioned 40 proteins were further optimized for screen-
ing. Using a logistic regression method, we constructed an
occurrence prediction model that considered three protein
markers (immunity protein, HSPA4L; inflammation protein, VIL1;
and angiogenesis protein, TYMP) that were selected according to
the AUC and weight (Fig. S2C–H). The model yielded a sensitivity
of 90.2% and a specificity of 91.2% for HCC in our dataset (Fig. 2G)
and a sensitivity of 82.2% and specificity of 97.1% in another
dataset (Fig. 2H). We also demonstrated that this model could
differentiate HCC from normal in both our data set (AUC= 0.958)
and the validation dataset (AUC= 0.960; Fig. 2I, J), suggesting that
the model we established based on findings for PME in this study
could have high value for predicting the risk of HCC occurrence.

PME for progression (PME-P)
Further analysis of the correlation between protein function and
disease progression identified 52 proteins in the PME-P that could
be divided into six categories by function (Table S4; Fig. 3A). We
then used RIs to test the influence of various factors on
progression and individual variations. The calculated RIs for these
52 proteins (Table S5) ranged from 0.26 to 908.65 (IQR,
172.15~705.89; average, 447.10; Fig. S3B). Similar to those in the
PME-O, patients with RIhigh were more likely to have shorter
survival time and higher AFP level and multiple tumors rather than
single tumor (Fig. 3B–F).
Based on the above method, we calculated the proportion of

risk factors related to progression for each patient (Fig. 3G). The
average RIs for inflammation, angiogenesis and metabolism were
116.45, 113.44, and 84.43, respectively, which were much higher
than those for the other factors, but the difference between the
three was not significant (Fig. 3H). Several factors including
immunity, inflammation, angiogenesis, metabolism, proliferation
and invasion have been shown to influence the progression of
cancer [11]. Overall, in this study, the progression of HCC in each
patient was determined by different factors, with inflammation,
angiogenesis and metabolism being the main influencing factors
of HCC progression in the PME, and these three factors all
contributed to HCC progression.
We constructed a progression prediction model involving three

markers (inflammation protein, CMPK2; angiogenesis protein,
TYMP; and metabolism protein, NADSYN1) that superior to a
single protein (Fig. S3C-I). The median survival time in the RIlow

group was significantly longer than that in the RIhigh group by a
log-rank test (P= 0.0004 in our dataset and P= 0.0006 in the
validation dataset; Fig. 3I, J). Meanwhile, ROC analysis showed that
this model could better predict disease progression [our dataset:
AUC, 0.862; and 95% CI, 0.769 to 0.955; validation dataset: AUC,
0.845; 95% CI, 0.754 to 0.935] (Fig. 3K, L), suggesting that the
model we built based on the findings for PME in this study could
be valuable for predicting the risk of HCC progression.

Signatures for the PME subtypes of HCC
The PME-O and PME-P, composed of 40 and 52 proteins that were
highly correlated with disease occurrence and progression,
respectively, constituted the HCC PME. Notably, only 3.37% (3/
89) of proteins were involved in both disease occurrence and
progression. To further verify the difference, we have evaluated
the effect of the proteins for occurrence and progression on
occurrence and progression, respectively (Fig. 3M, N). We found

that proteins for progression have only a weak effect on
occurrence of HCC, and occurrence proteins have only a weak
effect on progression similarly. The proteins for occurrence and
progression were different at composition and function, which
means occurrence and progression of HCC were totally different
stages, implying that different strategies for prevention and
treatment are needed. In addition, clinical factors, and individual
variations were all reflected by the large difference in the
occurrence and progression of HCC, which further highlighted
the high levels of heterogeneity in the PME that underpinned the
stratification analysis.
In this study, tumor classification was, for the first time, based

on the PME rather than the TME and thus could consider the
entire process of occurrence and progression. Using consensus
clustering analysis, three proteomic subtypes were clearly
identified based on differentially expressed proteins (Fig. S4).
All the cases were divided into three subtypes and 18, 23 and
16 cases were classified as subtypes S-I, S-II and S-III,
respectively (Fig. 4A). Notably, the overall survival (OS) of 57
patients was reflected by a median follow-up time of 344 days
(range: 25–1609 days), and among the S-I, S-II and S-III subtypes
the average follow-up times were 504, 432, 293 days, respec-
tively (Fig. 4B).
In terms of molecular characteristics of HCC, the subtypes S-I,

S-II and S-III showed significant differences in immunity for PME-O
(43.49, 39.86, and 32.86) and angiogenesis for PME-P (89.51,
127.19, and 162.31) (Fig. 4C, D). Significant differences among the
three subtypes were also found for CYP2E1 activity (1 341.44
pmol/min/mg protein, 1 370.02 pmol/min/mg protein, and 1
700.58 pmol/min/mg protein) (Fig. 4E). Moreover, there were
significant differences in the RIs of proteins that were specific to
molecular subtypes.
According to the PME, 38 proteins could be targeted by drugs

approved by the U.S. Food and Drug Administration (FDA) or
candidate drugs that are currently in clinical trials as listed in the
DrugBank database (Table S7). Of the 16 proteins with significant
differences at RI among the three subtypes (Fig. 4F–U), 10 proteins
could be considered as potential targets (Fig. 4V), suggesting that
the characteristics of the three subtypes in the PME are obviously
different and thus would require different treatment strategies.

TYMP as a potential target for the HCC
Our samples exhibited higher abundance of TYMP in the PME
(Fig. 5A), while the expression of TYMP mRNA did not differ
significantly between the two groups (Fig. S5A). Consistent with
proteomic data, the expression of TYMP protein detected by
Western blot is elevated in peritumor group (Fig. S5B). TYMP
expression was significantly correlated with diagnosis (Fig. 5B) and
prognosis (Fig. 5C) as well as clinical parameters (Fig. 5D–K).
Furthermore, high TYMP expression levels and the effect on
occurrence and progression were consistent with listing in the
PRIDE database (Fig. S5C–E), The Cancer Genome Atlas (TCGA)
data (Fig. S5F) and with our proteomic data. In addition, we found
that TYMP significantly correlated with PECAM1 (Fig. 5L–O; Fig.
S5G–I), an indicator of microvascular density that was up-
regulated in the PME, and positively correlated with tumor size
and prognosis (Fig. 5P–Q).
Tipiracil (TPI) is one of the most promising TYMP inhibitors,

which is used to prevents rapid degradation of trifluorothymidine
(TFT) in an orally administered fixed-dose formulation TAS-102
[12, 13]. TAS-102 is approved for metastatic colorectal and gastric
cancer, while the antiangiogenic effect of TPI has not been
reported in HCC. Another TYMP inhibitor 5′-O-Trityl-inosine (Kin59)
[14] also shows antiangiogenic effect in vitro [15], but there is a
lack of anti-tumor effect of kin59 in vivo. Considering the
immunity is an important factor in peritumor microenvironment,
H22 mouse HCC cell line was used in the transplanted BALB/c
mice as it represents a syngeneic model with animals having an
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Fig. 3 Predictive assessment of risk factors for the progression of HCC. A Workflow of the relationship between the altered proteome of the
PME and HCC progression. B Distribution of RI and survival time for each HCC patient. C Correlation between the RI and survival time.
D Kaplan–Meier curve analysis based on the RI value grouped by the median. Differential proportion of distribution for AFP (E) and single or multiple
tumors (F) according to different RI levels (f, RIhigh, RI > 484.18; g, RIhigh, RI > 437.32). G Proportion of risk factors for the progression of HCC in each
patient. Detailed workflow of calculations for RIs described as Fig. S3A. H Comparison of the RI among different risk factors related with HCC
progression. Data are presented as the median with range. *P< 0.05, ***P< 0.001 compared with inflammation; &&P< 0.01, &&&P< 0.001 compared
with angiogenesis; #P< 0.05, ###P < 0.001 compared with metabolism; $$$P< 0.001 compared with immunity; %%P< 0.01 compared with proliferation
and invasion. RI, risk index. Overall survival curves (I, J) and ROC curves (K, L) of the HCC progression prediction model with three markers combined
(CMPK2, TYMP, NADSYN1) according to the median PI in our dataset (I, K) and in the validation dataset (J, L). PI, prognostic index. Detailed
calculations for PI described in METHODS section. M Comparison of the proteins for occurrence and progression in predicting HCC occurrence.
Number of proteins was counted according to AUC of ROC curve analysis. P value of four-fold table was calculated by Chi-square test and Fisher
exact tests. N Comparison of the proteins for occurrence and progression in predicting HCC progression. Number of proteins was counted according
to Kaplan-Meier survival curve analysis and log-rank test. P value of four-fold table was calculated by Chi-square test and Fisher exact tests.
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Fig. 4 Molecular typing based on HCC PME. A Each column represents a patient sample and rows indicate proteins. The color of each cell
shows the relative protein abundance (log2-transformed). The proteomic subtypes are annotated on the top of the heatmap by colored bars
(S-I: red; S-II: green; and S-III: blue). Comparison of survival time (B), CYP2E1 activity (C), RI of angiogenesis (D) and RI of immunity (E) among
three molecular subtypes. (F–U) Comparison of RI for 16 proteins with significant differences among the three molecular subtypes. Data are
presented as the mean ± SD. V Heatmap of the RI for 16 proteins with significant differences and 10 potential drug targets (red font) for the
three molecular subtypes. TYMP, thymidine phosphorylase. RI, risk index.
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intact immune system. In this study, the two TYMP inhibitors
treatment reduced tumor weight (Fig. 6A–D) to varying degrees,
but they have no significant effect on body weight (Fig. 6E). The
intratumoral neovascularization was also reduced by the two
TYMP inhibitors (Fig. 6F, G). Apparently, the effect of tumor
suppression is obviously related to the antiangiogenesis ability of
TYMP inhibitor. Consistent with strong effect of inhibition of
intratumoral neovascularization, TPI treatment remarkably
reduced tumor weight. The effect of antiangiogenesis of Kin59
was inferior than TPI, thus showing a weaker anti-tumor effect. The
ability of inhibiting neovascularization of TYMP inhibitor may
determine the tumor suppression effect. Importantly, the inhibi-
tory effect of TPI was superior to that of bevacizumab, an
antiangiogenic drug that has been used in the clinic. In addition,
TPI had no significant effect on the growth and proliferation of

H22 cells in vitro at 24 h and 48 h, respectively, suggesting that
this inhibitor targets the tumor microenvironment rather than
tumor cells (Fig. 6H). Collectively, these data provide evidence that
TYMP could be used as an antiangiogenic target for HCC.
To examine the mechanism of TYMP in HCC angiogenesis, we

analyzed two common and distinct signaling pathways in
angiogenesis (Fig. S6A–I). The expression level of proteins
involved in the MAPK1 (ERK2)/RSK1/NF-κB pathway was sig-
nificantly up-regulated (Fig. S6F–I), and the elevated protein
abundance was associated with TYMP expression level (Fig.
S6J–M). With the treatment of TYMP inhibitor, the mRNA of
MAPK1 (ERK2)/RSK1/NF-κB pathway was down-regulated, con-
sistent with common angiogenesis-related protein VEGF and
HIF1 (Fig. 6I), indicating that TYMP upregulation promoted
neovascularization through the MAPK1 (ERK2)/RSK1/NF-κB

Fig. 5 Relationship between TYMP expression and clinical parameters and screening for interacting proteins. Quantification of TYMP
levels in normal and peritumor samples in our proteomic data (A). (B, C) Relationship between TYMP expression and the occurrence and
progression of HCC in our dataset. (D–K) Relationship between TYMP expression and serum level of liver function index. L Proteins
significantly associated with TYMP in the microenvironmental proteome of HCC. M STRING database prediction of potential interaction
between TYMP and PECAM1. N Significant increase in PECAM1 expression in peritumor tissue in our data set. O Positive correlation between
expression of TYMP and PECAM1 in our data set. Data are presented as the mean ± SD. (P, Q) Relationship between PECAM1 expression and
maximum diameter as well as survival time.
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Fig. 6 TYMP is a potential antiangiogenic target for HCC. A–C Action of TPI (100mg/kg) and Kin59 (30mg/kg) in a liver orthotopic
transplantation tumor model with H22 cell lines in BALB/c mice. Body weight (D) and Tumor weight (E) of BALB/c mice in different group. Data
are presented as the mean ± SD. ***P < 0.001 compared with normal; #P < 0.05 compared with bevacizumab group. F Representative
immunostaining images of PECAM1 (CD31), marker of microvascular density in tumor tissues for each group (Scale bar: 50 μm).
G microvascular density analysis of PECAM1 (CD31) immunostaining, data are presented as the mean ± SD. H Effect of TPI on proliferation of
H22 mouse liver cancer cells after treatment for 24 h and 48 h. I Expression of mRNA of TYMP related proteins in different groups, data are
presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 compared with model; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with normal.

J Schematic of the mechanism underlying the upregulation of TYMP expression in angiogenesis.
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pathway (Fig. 6J). Taken together, these findings suggest that
TYMP is a potential target for HCC.

DISCUSSION
Comprehensive peritumoral proteomic analysis has led to a
deeper understanding of the occurrence and progression of HCC.
Herein, we proposed a new concept of the PME, which provided
new insights into the whole process of HCC, from occurrence to
progression. Previous studies focusing on the TME could only
explore progression and not the occurrence of HCC [16, 17]. As we
all know, protein rather than mRNA is the performer of various
physiological and pathological functions. Therefore, the abun-
dance of protein reflects the state of the disease more than the
expression of mRNA. Previous studies found protein and RNA have
different enrichment patterns across tissues, which may be caused
by post-translational regulation, different turnover rate at RNA and
protein levels [18]. In this study, we found the elevated TYMP
protein expression, while the expression of TYMP mRNA did not
differ significantly between the two groups. Our research provided
different perspectives to reveal undiscovered changes in RNA-seq
(mRNA) approaches. Based on proteomics data of peritumoral
tissues, the PME was not only related to occurrence, recurrence
and metastasis but was also related to the progression of HCC.
According to proteomic characterization, the PME was divided

into the PME-O and PME-P, which represented the characteriza-
tion of occurrence and progression, respectively. Unlike traditional
protein analysis methods that focus on single proteins or single
factors, in this study, we established a method to examine
multiple integrated factors, such as immunity [5, 6], inflammation
[7, 8], angiogenesis [9, 19], metabolism [10], etc. In the proteomic
composition, the PME consisted of 89 proteins, among which 40
proteins were related to the occurrence of HCC, 52 proteins were
related to progression, and only 3.37% of the proteins in the PME
were shared by both occurrence and progression. Functionally,
the PME-O had an impact on occurrence, recurrence and
metastasis, and both the PME and the TME influenced the
progression of tumors. Moreover, the proteomic characterization
of the PME-O and PME-P significantly differed; immunity played a
central role in the PME-O, while inflammation, angiogenesis and
metabolism were key factors that influenced the PME-P. These
findings explained why most studies [20–23] showed that tumor
occurrence was the result of tumor cells escaping the immune
response. Moreover, only a few proteins participated in both
occurrence and progression, indicating that the processes of
occurrence and progression are totally different, which could
further explain why the process of occurrence may happen sooner
or last longer and the speed of progression may be slower or
faster among different individuals. Based on the PME-O and PME-
P, two models were successfully built to accurately predict HCC
occurrence and progression, respectively.
Proteome profiling identified three PME subtypes of HCC

based solely on the altered proteome. Tumor molecular
subtyping is a new classification system based on the molecular
characteristics of tumor tissues, which is different from the
traditional pathological classification system. All previous studies
performed molecular typing based on the TME [24–27], which
meant that only tumor progression was described. In this study,
for the first time the tumor classification was based on the PME
not the TME and thus could include the entire process of
occurrence and progression. In this study, these three PME
subtypes of HCC accurately reflected multiple features of HCC,
such as survival time, potential drug targets, CYP2E1 activity,
immunity and angiogenesis, supporting the superior predictive
power of our proteomic clustering. It is worth mentioning that
CYP2E1 has been shown to be causally related to hepatocarci-
nogenesis in previous studies [28, 29], which further verified the
significance and value of PME subtypes.

Additionally, according to the PME, a total of 38 potential
targets were identified, among which TYMP, also known as
platelet endothelial cell growth factor (PD-ECGF, ECGF1) [30], was
of great interest. TYMP participates in nucleic acid metabolism
under physiological conditions and inversely catalyzes thymine
and 2-D-deoxyribose-1-phosphate [31]. Clinical findings have
shown that TYMP is a marker that reflects the characteristics of
the tumor stroma [32, 33] and is closely related to poor prognosis
in various cancers [34–36]. However, the role and related
mechanism of TYMP in the occurrence and progression of HCC
are still unclear. In this study, we demonstrated that TYMP played
a protumor role by affecting angiogenesis through the MAPK1
(ERK2)/RASK1/NF-κB signaling pathway. Importantly, the inhibitory
effect of TPI on an H22 orthotopic tumor model was superior to
that of bevacizumab in clinical applications. Although the
antiangiogenesis effect of Kin59 is not as significant as that of
TPI, it still showed anti-tumor effect, which may be related to the
effect of TYMP inhibition of Kin59. Compared to TPI (IC50=
0.014 ± 0.002 μM) [37], Kin59 (IC50= 30 ± 15 μM) [38] has a weaker
inhibitory effect on TYMP. The antiangiogenesis effect of TYMP is
obviously related to the inhibitory effect, and may determine the
inhibitory effect on tumors. Besides, TYMP knockout or inhibition
also showed no effect on coagulation and bleeding [39].
According to known studies, no obvious toxicity of target TYMP
has been found [40]. In this study, the two TYMP inhibitors have
no significant effect on body weight. Based on the above results,
TYMP is an effective and safety anti-HCC target.
In summary, in this study we present a new concept, the PME,

which is based on proteomic characterization of human HCC. The
PME involves the entire process of HCC occurrence and progres-
sion, in contrast to TME, which is related only to progression.
Moreover, our results showed that the processes of occurrence and
progression differed substantially in terms of proteome composi-
tion and function. Proteins for progression have only a weak effect
on occurrence of HCC, and occurrence proteins have only a weak
effect on progression similarly, suggesting that different strategies
for HCC prevention and treatment are needed at different stages of
disease. We propose a new classification method for HCC that is
based on the PME. This classification could more accurately reflect
multiple features of HCC and information for the PME in HCC could
facilitate new advances in cancer. Overall, the new developed
knowledges for the PME will enable new advances in cancer
biology, diagnostics and therapeutics.

METHODS
Liver tissue collection
Liver tissues were collected from Affiliated People’s Hospital of Zhengzhou
University (Zhengzhou, China) and Affiliated Cancer Hospital of Zhengzhou
University (Zhengzhou, China). The study protocol was approved by the
ethics committee of Zhengzhou University. Written informed consent was
obtained from each patient. (Detail in Supplement methods).

Proteomic processing of liver tissue
Liver protein was extracted and digested. The BCA method (Boster
Biological Technology, Wuhan, China) was used to determine protein
concentrations [25, 41]. A peptide solution produced from HEK293T cells
was used as a quality control standard (method reference [27]). Peptides
were prefractionated by High-pH reverse-phase and analyzed using liquid
chromatography-mass spectrometry-tandem mass spectrometry (Q-Exac-
tive HF LC-MS/MS). (Detail in Supplement methods).

Proteomic processing of raw data
Raw data was Identification and quantification of protein by MaxQuant
software (version 1.5.3.8) [42]. Intensity-based absolute protein quantifica-
tion (iBAQ) [43] based on peak intensity was used to express protein
expression levels. The R/Bioconductor package limma v.3.24.15 was used
to apply the normalized quantile function to normalize expression matrix
quantiles [44, 45]. (Detail in Supplement methods).
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Protein alterations in the PME
The R/Bioconductor package limma v.3.24.15 [46] was used to identify
differentially expressed proteins between normal liver tissues and peritumor
tissues. Proteins detected in <50% of samples were excluded, and missing
values were replaced with half the minimal value for each protein.
Differences greater than 1.2 and P < 0.05 were considered significant.

Proteomic subtype identification
Non-negative matrix factorization (NMF) [47] is frequently used in high-
throughput biological experiments [48]. In this study, the non-negative
matrix decomposition consistency clustering algorithm in the R language
NMF software package (version 0.20.6) was used to perform cluster analysis
on the proteome data, and molecular subtypes of the peritumor proteome
were obtained. The CDF was used to estimate the efficacy of proteomic
subtypes. A Chi-square test was used to examine the relationship between
molecular subtypes and clinical characteristics.

Changes in levels of proteins involved signaling pathways in
the PME
Metascape software [49] (http://metascape.org/) was used to conduct
pathway enrichment analysis of the differential proteome of peritumor
tissue. The signal pathway databases used in the analysis include the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [50], Hallmark Gene
Sets [51], the Reactome Gene database [52], the Canonical Pathways [53]
and BioCarta Gene Sets [53], for a total of 1 524 signaling pathways. Altered
pathways were then annotated based on consultation of the literature.

Proteomic characterization of the PME-O and PME-P
Receiver Characteristic Operator (ROC) curve analysis [46] and Kaplan-
Meier survival curve analysis was used to analyze the differential proteome
(n= 1360) of the PME. RI of each protein was calculated and proteomics
data from the PRoteomics IDEntification (PRIDE) database [10] (www.ebi.ac.
uk/pride/archive, accession numbers PXD006512) were downloaded for
verification. The risk factors for the occurrence and progression of HCC was
compared. (Detail in Supplement methods).

Drug target discovery and verification based on the PME
Potential drug targets in the PME proteome. The DrugBank database [54]
(https://www.drugbank.ca/) was searched for potential drug targets in
the PME.

Detection and verification of TYMP expression. The iBAQ value of the
protein TYMP was regarded as the protein expression abundance. The
protein TYMP abundance in our data and data from the PRIDE database
(accession number PXD006512) were used to compare the expression in
different groups. The LIHC data in TCGA dataset and corresponding clinical
data was downloaded from The Cancer Genome Atlas Program (https://
www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga). The STRING database [55] (https://string-db.org/cgi/input.pl) was used
to explore the proteins related to TYMP.

Liver orthotopic transplantation tumor model with H22 cell lines in
mice. Male BALB/c mice was divided into 4 groups: the sham operation
group, model group, TPI group, Kin59 group and bevacizumab group. The
intervention group was given 100mg/kg tipiracil and 30mg/kg kin59 (in
20% DMSO, 20% cremophore in PBS) [39] respectively. The operations
detail in Supplement methods.

Immunohistochemistry assay. The liver tissues were embedded in paraffin
and sliced. The sample sections were deparaffinized and hydrated. After
antigen retrieval, endogenous peroxidase was neutralized. ovine serum
albumin was used to block antigen. The sections were incubated with
CD31 primary (Abcam Cat# ab182981, Cambridgeshire, UK) and secondary
antibody (Servicebio Cat: GB23303, Wuhan, China), the diaminobenzidine
solution was added into the sections. After stained with hematoxylin, the
sections were dehydrated and covered. The positive protein expression
was examined by XSP-C204 (CIC, Beijing, China) and the images were
analyzed by Image-Pro Plus 6.0.
Three high angiogenesis fields of each sample were chosen, and MVD

(CD31) were calculated as numbers per field. The average number of three
fields were considered as MVD of each sample. The operator was blinded
to the group of sections.

MTT assay
H22 cells were cultured with indicated concentrations of tipiracil
(1.56, 3.13, 6.25, 12.5, 25, 50, 100 and 200 μM) for 24 h and 48 h. Then 3-
(4,5-dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide (MTT)
(Solarbio Science & Technology, Beijing, China) was added and
incubated for 4 h. The medium was discarded and DMSO was added.
Formazan precipitate at 490 nm was detected using a microplate
spectrophotometer.

CYP2E1 activity determination
Human liver microsomes were prepared by hypothermal differential
centrifugation [29]. The concentration of microsomal protein was
determined by the Bradford method [56]. The CYP2E1 activity was
determined according to the reference [57–59].

RT-qPCR assay
Total RNA was extracted with Trizol (Vazyme Cat: R401-01-AA, Jiangsu,
China) according to the manufacturer’s protocol. HiScript® III All-in-one RT
SuperMix kit (Vazyme Cat: R333-01, Jiangsu, China) was used to reverse
transcription reaction. Taq Pro Universal SYBR qPCR Master Mix kit (Vazyme
Cat: Q712-02, Nanjing, China) was used to real-time PCR. Primer sequences
were listed in Supplementary Table S8.
For VEGF and RSK1, Mann–Whitney U test was used to calculate the

significance of the difference between groups. For MAPK, NF-κB, RSK2 and
HIF1, One-Way ANOVA test was used to calculate the significance.

Western blotting
Liver samples were homogenated in RIPA lysate buffer (Solarbio Science &
Technology R0010, Beijing, China) with PMSF, and protein was extracted
according to the manufacturer’s protocol. Protein concentration was deter-
mined by BCA Protein Assay Kit (GLPBIO GK10009, Cat: California, USA).
Polyacrylamide gel is prepared according to the manufacturer’s protocol of
PAGE Gel Fast Preparation Kit (Epizyme Biotech Cat: PG212, Shanghai,
China). After electrophoresis (Bio-rad, California, USA), protein was
transferred to a PVDF membrane. The PVDF membrane is blocked in
defatted milk powder dissolved in TBST. Then the membrane was
incubated with corresponding primary antibodies and secondary anti-
bodies. The antibodies and diluted concentration used were as follows:
anti-TYMP 1:1000 (Proteintech Cat: 12383-1-AP, Illinois, USA), anti-β-actin
1:5000 (Servicebio GB11001, Wuhan, China), and goat anti-rabbit IgG
1:10,000 (SAB Cat: L3012, Maryland, USA).

Statistical analysis
SPSS 21.0 was used for statistical analysis. GraphPad Prism 7.0 and
Cytoscape 3.7.0 software were used for graphing. Statistical tests included,
but were not limited to, Student’s t test, the Shapiro–Wilk test,
Kruskal–Wallis test, Chi-square test, and log-rank test. The variance of
each group has been compared. Use parametric test for data with similar
variance, and use non-parametric test for data with heterogeneity of
variance. All analyses used two-sided tests, and P < 0.05 was considered
statistically significant.
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