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Abstract
Habitat degradation and climate change are currently threatening wild pollinators, 
compromising their ability to provide pollination services to wild and cultivated plants. 
Landscape genomics offers powerful tools to assess the influence of landscape modi‐
fications on genetic diversity and functional connectivity, and to identify adaptations 
to local environmental conditions that could facilitate future bee survival. Here, we 
assessed range‐wide patterns of genetic structure, genetic diversity, gene flow, and 
local adaptation in the stingless bee Melipona subnitida, a tropical pollinator of key 
biological and economic importance inhabiting one of the driest and hottest regions 
of South America. Our results reveal four genetic clusters across the species’ full dis‐
tribution range. All populations were found to be under a mutation–drift equilibrium, 
and genetic diversity was not influenced by the amount of reminiscent natural 
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1  | INTRODUC TION

Although bees are now widely acknowledged as key pollinators of 
wild and cultivated plants, as well as important income sources for 
beekeepers around the globe (Potts et al., 2016), the joint impact 
of habitat degradation and climate change is currently threaten‐
ing their wild populations (Brown & Paxton, 2009; Hadley & Betts, 
2011; Potts et al., 2010; Viana et al., 2012; Wratten, Gillespie, 
Decourtye, Mader, & Desneux, 2012). Habitat loss has been related 
to reductions in native bee abundance and richness (Kennedy et 
al., 2013), whereas land use changes have fragmented populations 
in some species (Jha, 2015; Jha & Kremen, 2013). Additionally, 
climate change is expected to modify the availability of floral and 
nesting resources and affect bee physiology, thereby resulting in 
distribution range shifts and reductions in many species (Faleiro, 
Nemésio, & Loyola, 2018; Giannini et al., 2017; Kerr et al., 2015; 
Le Conte & Navajas, 2008; Pyke, Thomson, Inouye, & Miller, 2016; 
Willmer, 2014).

Landscape genomics offers powerful tools to assess the influ‐
ence of habitat loss on genetic diversity and functional connectivity, 
and to identify adaptations to local environmental conditions that 
could facilitate future bee survival (Balkenhol et al., 2017; Lozier 
& Zayed, 2017). For instance, landscape resistance to gene flow 
has been assessed in both temperate and tropical species (Davis, 
Murray, Fitzpatrick, Brown, & Paxton, 2010; Jackson et al., 2018; 
Jaffé, Castilla, et al., 2016), and genomic signatures of adaptations to 
environmental conditions have been identified in the honeybee Apis 
mellifera (Chávez‐Galarza et al., 2013; Henriques et al., 2018) and the 
bumblebee Bombus lapidarius (Theodorou et al., 2018). Nonetheless, 
while most studies assessing landscape effects on gene flow have 
employed microsatellite markers (Balkenhol, Cushman, Waits, & 
Storfer, 2016; Monteiro et al., 2019), none has thus far employed 

genomic data to assess both isolation by landscape resistance and 
local adaptation in bees (Storfer, Patton, & Fraik, 2018).

Dispersal is believed to be particularly restricted in stingless 
bees (Apidae: Meliponini), because daughter colonies rely on re‐
sources from their maternal colonies during their initial establish‐
ment and consequently do not establish far from each other (Roubik, 
2006; Van Veen & Sommeijer, 2000; Vit, Pedro, & Roubik, 2013). As 
restricted dispersal implies a diminished ability to move to high‐qual‐
ity habitats and maintain gene flow across fragmented landscapes, 
habitat loss and fragmentation are expected to reduce and isolate 
stingless bee populations, making them extremely susceptible to ge‐
netic erosion through the action of genetic drift (Allendorf, Luikart, 
& Aitken, 2013; Lozier & Zayed, 2017). However, previous studies 
using microsatellite markers were not able to detect an effect of for‐
est or land cover on stingless bee gene flow, suggesting that these 
bees have a remarkable ability to maintain high gene flow across 
heterogeneous and human‐altered landscapes (Jaffé, Castilla, et al., 
2016; Jaffé, Pope, et al., 2016; Landaverde‐González et al., 2017). 
Since estimates of genetic diversity and gene flow are strongly in‐
fluenced by the type and number of genetic markers employed 
(Allendorf, 2017; Leroy et al., 2018; Lozier, 2014), genomic studies 
employing thousands of single nucleotide polymorphisms (SNPs) 
are needed to confirm whether stingless bees are really resilient to 
habitat loss and fragmentation, or whether the lack of significant iso‐
lation‐by‐resistance effects in previous studies is due to the resolu‐
tion of the genetic markers employed (Alvarado‐Serrano, Van Etten, 
Chang, & Baucom, 2019; McCartney‐Melstad, Vu, & Shaffer, 2018).

Here, we employ novel landscape genomic tools to assess the 
joint influence of habitat degradation and climate change on an eco‐
nomically important tropical stingless bee inhabiting one of the most 
deforested, driest, and hottest regions of the Americas. Distributed 
across northeastern Brazil, Melipona subnitida Ducke, 1911 (known 
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as the Jandaíra bee) is a key pollinator of native plants and local crops 
and one of the most widely used stingless bee species for honey 
production (Imperatriz‐Fonseca, Koedam, & Hrncir, 2017), contrib‐
uting to the household income of many rural families (Giannini et 
al., 2017; Jaffé et al., 2015). The species natural range spans four 
different biomes (Giannini et al., 2017; Imperatriz‐Fonseca et al., 
2017), namely Tropical Dry Forest (Caatinga), Savanna (Cerrado), 
the Atlantic Rain Forest, and Mangrove Forests, thus encompassing 
important climatic and altitudinal gradients, which are expected to 
drive local adaptations (Koffler et al., 2015; Maia‐Silva, Hrncir, Silva, 
& Imperatriz‐Fonseca, 2015). Species distribution models suggest 
the species could respond to climate change by seeking refuge in 
higher elevations, where both the bees and their plant resources are 
more likely to find suitable climatic conditions in the future (Giannini 
et al., 2017). However, such response depends on the bee's ability 
to relocate to high‐quality habitats, which could be hindered by the 
region's increasing human‐led desertification (Marengo, Torres, & 
Alves, 2017; Vieira et al., 2015). Given M. subnitida's key biological 
and economic importance, efforts are urgently needed to safeguard 
this key pollinator by facilitating its migration toward higher lands. 
Such conservation actions will nevertheless require the prior identi‐
fication of barriers to gene flow and the spatial distribution of adap‐
tive genetic variation.

Relying on thousands of SNPs, we explicitly tested whether 
genetic diversity and gene flow in M. subnitida are affected by the 
amount of reminiscent natural habitats, and identified genomic 
signatures of adaptations to local environmental conditions. 
Considering the life history characteristics of our study species 
and the high statistical power granted by the large number of 
genetic markers employed, we formulated the following predic‐
tions: (a) Since natural habitats harbor floral resources and nesting 
sites (Vit et al., 2013), we expected to find a positive association 
between genetic diversity and the amount of reminiscent natu‐
ral habitats surrounding sampling sites (DiLeo & Wagner, 2016; 

Fahrig, 2013), as found in bumblebees (Jackson et al., 2018); (b) as 
restricted dispersal implies reduced gene flow across deforested 
areas, we expected to find significant isolation by landscape re‐
sistance (McRae, 2006) and predicted that gene flow would be 
influenced by habitat amount as well as environmental correlates 
of genetic connectivity in other bee species, including elevation, 
terrain roughness, temperature, and precipitation (El‐Niweiri & 
Moritz, 2011; Jackson et al., 2018; Jaffé, Pope, et al., 2016; Jha, 
2015); and (c) based on the documented tolerance of our study 
species to extreme heat and water scarcity (Maia‐Silva et al., 2015), 
and previous candidate genes found associated with precipitation 
and latitude in honeybees (Chávez‐Galarza et al., 2013; Henriques 
et al., 2018) and urban land cover in bumblebees (Theodorou et 
al., 2018), we expected to find genomic signatures of adaptation 
related to temperature, precipitation, and forest cover. Ours con‐
stitutes the first genomic study assessing both isolation by land‐
scape resistance and local adaptation across the full distribution 
range of a bee pollinator.

2  | MATERIAL S AND METHODS

2.1 | Sampling and DNA extraction

We collected samples of M. subnitida across its entire distribution 
range (Pedro, 2014), aiming to maximize temperature, precipitation, 
elevation, and forest cover gradients (Figure 1). Samples were col‐
lected between 2013 and 2014 (SISBIO collection permits 38000‐1 
and 10393‐1). We sampled one bee per colony from a total of 160 
nests of beekeepers who could certify their local origin. We only 
collected samples from local colonies, and not from colonies of un‐
known origin or from nests brought from different locations. We also 
registered any information on previous introductions of bee colonies 
that beekeepers could provide, as long‐distance colony transporta‐
tion is common and has been shown to have profound effects on 

F I G U R E  1   Melipona subnitida sampling 
locations across northeastern Brazil 
over a land cover map (source: http://
mapbiomas.org/)

http://mapbiomas.org/
http://mapbiomas.org/
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stingless bee gene flow (Jaffé, Pope, et al., 2016). In cases when bee‐
keepers had a few weak colonies, we did not collect any samples or 
collected samples from a single colony. When beekeepers had many 
strong colonies, we collected samples from more than one colony. 
Distance separating sampling locations therefore ranged between 
0 km (samples from the same beekeeper) and 947 km. Only freshly 
emerged (callow) workers were collected from the nest's interior, 
to minimize the sampling of drifters. All individuals were stored in 
absolute ethanol and then frozen at −20°C until DNA extractions. 
The geographic location of all samples was recorded by GPS (see 
Supporting Information Table S1).

Total genomic DNA was extracted from the whole insects (dis‐
carding only the heads) using Qiagen's DNeasy Blood and Tissue Kit, 
according to the manufacturer's protocols. DNA integrity was then 
verified on 1% agarose gels, and its concentration was quantified 
with a Qubit 2.0 Fluorometer (Invitrogen). Only samples containing 
nondegraded DNA, concentrations of at least 20 ng/μl, and a total 
DNA amount greater than 2 μg were used for subsequent RAD 
sequencing.

2.2 | RAD sequencing and SNP discovery

DNA samples were then shipped to Floragenex, Inc. (Eugene, OR, 
USA) for RAD library preparation, Illumina sequencing, and bioin‐
formatic processing. Briefly, libraries were prepared based on the 
genome size of this species (Tavares, Carvalho, Aparecida, & Soares, 
2010), digesting genomic DNA with the SgrAI restriction enzyme. 
The resulting fragments were tagged with individual barcodes, 
which were then multiplexed and sequenced using 100‐bp single‐
end methodology on the HiSeq 2000 platform (Illumina). Libraries 
were created at the same time and ran on the same sequencing run 
on two different lanes. Total number of generated reads per individ‐
ual ranged from ~550,000 to 2.3 million. Samples were then demul‐
tiplexed and barcode sequences trimmed to result in final fragment 
lengths of 92 bp. Quality filtering was done in SAMtools during 
the genotyping stages, and coverage was limited to loci having less 
than 500× to limit the incidence of possible contaminants. Stacks 
was then used to cluster loci from a single individual and generate 
a RAD reference, allowing two haplotypes from each locus. The de 
novo clustering of sequences into RAD tags was performed using 
VELVET (version 1.2.10), considering a minimum cluster depth of 
5 and maximum of 1,500, a maximum number of two haplotypes 
per cluster, and a maximum of three variants per cluster. SNP calling 
was performed using SAMtools (version 0.1.16), and loci harboring 
SNPs were included in the final genotype (VCF) table if they had 
at least 6× individual sequence coverage over at least 75% of the 
population, individual per locus genotype quality scores of at least 
10, a minimum FASTQ quality score of 20, and a minimum distance 
to other SNPs of 50 bp (average individual Phred score was 60.8, 
while average individual sequencing coverage was 36.3×). A variant 
was cataloged when it was present in a single sample (only 3% of loci 
had minor allele frequencies—MAF—below 0.5, 2% of loci had MAF 
below 0.3, and 1% of loci had MAF below 0.1.).

2.3 | Population structure and genetic diversity

The R package r2vcftools (https://github.com/nspope/r2vcftools), a 
wrapper for VCFtools (Danecek et al., 2011), was used to perform 
final filtering and quality control on the genotype data. To assess 
genetic diversity and population structure across the distribution 
range of our study species, we first filtered loci for quality (Phred 
score 30–80), read depth (20–50), linkage disequilibrium (LD, 
r2 < 0.4), and strong deviations from the Hardy–Weinberg equilib‐
rium (HWE, p < 0.0001). Additionally, we removed any potential 
loci under selection detected through genome scans. FST outlier 
tests were applied after adjusting p‐values using the genomic infla‐
tion factor (λ), and setting false discovery rates to q = 0.05, using 
the Benjamini–Hochberg algorithm (Benjamini & Hochberg, 1995; 
François, Martins, Caye, & Schoville, 2016).

Two complementary genetic clustering software packages were 
employed to assess population structure using the resulting set of 
neutral and independent loci: the snmf function of the LEA (v2.0) 
package (Frichot & François, 2015; Frichot, Mathieu, Trouillon, 
Bouchard, & François, 2014) and Admixture (Alexander, Novembre, 
& Lange, 2009). The number ancestral populations (k) was allowed to 
vary between 1 and 10, with 10 replicate runs for each k‐value, and 
the best k was chosen based on cross‐entropy and cross‐validation 
errors (Frichot et al., 2014). Individuals were then assigned to genetic 
clusters based on the ancestry coefficients retrieved from LEA (Q‐
matrix), identifying the cluster with the highest ancestry.

We then calculated genetic diversity metrics for each one of the 
identified genetic clusters. These included observed heterozygosity 
(HO), expected heterozygosity (HE), nucleotide diversity (π), and in‐
breeding coefficient (F; see VCFtools manual for details). Effective 
population size (Ne) was also estimated employing the linkage dis‐
equilibrium method implemented in NeEstimator 2.0.1 (Do et al., 
2014), using a threshold lowest allele frequency value of 0.05 and 
assuming a monogamy model (Jaffé et al., 2014). Additionally, we 
calculated Tajima's D, representing the difference between the mean 
number of pairwise differences and the number of segregating sites. 
In a population of constant size evolving under mutation–drift equi‐
librium, Tajima's D is expected to be zero; negative values result from 
an excess of rare alleles and thus indicate a recent selective sweep or 
a population expansion after a recent bottleneck; and positive values 
appear when rare alleles are lacking, therefore suggesting balanc‐
ing selection or a sudden population contraction (Tajima, 1989). We 
used r2vcftools to compute a genome‐wide estimate of Tajima's D 
and perform a simulation from the neutral model to correct for bias 
due to a minor‐allele‐frequency filter.

2.4 | Landscape genetic analyses

Aiming to assess the influence of habitat amount on genetic diver‐
sity, we reclassified a high‐resolution land cover/land use map for 
2013 (http://mapbiomas.org/) into habitat (i.e., all types of natural 
forest and nonforest formations) and nonhabitat (farming, nonveg‐
etated areas, and water bodies). The percentage of habitat cover in 

https://github.com/nspope/r2vcftools
http://mapbiomas.org/
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2‐km‐radius buffers surrounding our sampling locations was then 
calculated, as such radius comprises the estimated foraging dis‐
tance for this species (Silva & Ramalho, 2016). Because more than 
one colony was sampled in some locations (Supporting Information 
Table S1), we computed mean percentage of habitat cover and mean 
genetic diversity (HO, HE, and F) for each location (N = 56 locations). 
We then used the nlme package (Pinheiro, Bates, DebRoy, & Sarkar, 
2018) to fit generalized least squares models (gls) containing genetic 
diversity metrics as response variables, percentage of habitat cover 
as predictor, and different correlation structures (no autocorrela‐
tion, linear, exponential, Gaussian, spherical, and rational quadratics) 
to account for spatial autocorrelation. Logit transformations were 
used to normalize/linearize heterozygosities. The sample‐size‐cor‐
rected Akaike information criterion (AICc) was then used to compare 
models with different correlation structures, fitted with restricted 
maximum likelihood. The best models (∆AICc ≤ 2) were finally se‐
lected, fitted once more using maximum likelihood, and compared 
to reduced models without predictor variables using likelihood ratio 
tests (LRT, α = 0.05). All models were validated by plotting residual 
versus fitted values and by checking for residual autocorrelation.

Prior to assessing isolation by landscape resistance (IBR), we 
evaluated fine‐scale spatial genetic structure by quantifying spatial 
autocorrelation in genetic relatedness. To do so, we used local poly‐
nomial fitting (LOESS) of pairwise relatedness to pairwise geographic 
distance (https://github.com/rojaff/Lplot; Bruno, Macchiavelli, & 
Balzarini, 2008). Yang's relatedness between pairs of individuals 
(Yang et al., 2010) was used, since similar measures of relatedness 
have been found to be highly accurate as individual‐based genetic 
distance metrics for landscape genetic studies (Shirk, Landguth, 
& Cushman, 2017). We then evaluated the contribution of habitat 
amount, elevation, terrain roughness, temperature, and precipita‐
tion in explaining patterns of gene flow (Balkenhol et al., 2016). We 
created a first resistance surface using the reclassified land cover/
land use map for 2013 described above, attributing low resistance 
(0.1) to habitat pixels and high resistance (0.9) to nonhabitat pix‐
els. This allowed us to test whether gene flow is enhanced by nat‐
ural habitats or hindered by habitat‐deployed environments (Jaffé, 
Castilla, et al., 2016). A second resistance surface was then created 
using an inverted forest cover map from the University of Maryland 
(http://earthenginepartners.appspot.com/science‐2013‐global‐for‐
est/download.html), to test for higher gene flow across forested 
areas. To test for a reduced gene flow across highlands and corru‐
gated terrains, we created elevation and terrain roughness surfaces, 
using raw elevation and terrain roughness maps. While elevation 
was retrieved from WorldClim (http://www.worldclim.org/), terrain 
roughness was created from this elevation layer using the Terrain 
Analysis plug‐in in QGIS V2.14. To evaluate resistance due to en‐
vironmental conditions, we created three additional resistance sur‐
faces containing the raw values from those WorldClim bioclimatic 
variables explaining most variation across our study region (mean 
temperature of coldest quarter, temperature annual range, and pre‐
cipitation of driest quarter; see details below). We thereby tested 
for reduced gene flow across areas with higher temperatures, higher 

temperature range, and higher precipitation. To assess isolation by 
geographic distance (IBD), we created a last resistance surface re‐
placing all pixel values in our elevation map with 0.5. Using the pro‐
gram Circuitscape V4.0 (McRae, 2006), we then calculated pairwise 
resistance distances between all samples, employing all the resis‐
tance surfaces described above. Due to Circuitscape's computing 
limitations, all rasters were cropped to the extent of sample loca‐
tions plus a buffer area of one decimal degree to minimize border ef‐
fects (Jaffé, Castilla, et al., 2016), and all pixels containing zero values 
were replaced with 0.001.

To assess IBR, we fit mixed‐effects regression models using pe‐
nalized least squares and a novel correlation structure designed to 
account for the nonindependence of pairwise distances across in‐
dividuals and spatial locations (based on the maximum‐likelihood 
population effects or MLPE model: https://github.com/nspope/
corMLPE; Clarke, Rothery, & Raybould, 2002). Because more than 
one colony was sampled in some locations (Supporting Information 
Table S1), there exists a spatial dependence structure in pairwise 
comparisons between individuals that is not captured by the MLPE 
model. This is because the MLPE correlation structure only models 
dependence across pairwise comparisons that overlap in the indi‐
viduals being compared, with no reference to spatial location. The 
unmodeled spatial dependence has the net effect of making infer‐
ence anticonservative and can be diagnosed by calculating serial au‐
tocorrelation in the normalized residuals of the MLPE model, after 
sorting the data by spatial locations. To combat this, we introduce a 
novel modification of the MLPE model that incorporates correlation 
between pairwise measurements due to comparison of both indi‐
viduals and spatial locations (Nested MLPE or NMLPE). Briefly, the 
original MLPE model has a random‐effects representation where 
the expected value for each pairwise observation includes a pair of 
iid random effects (one for each of the individuals being compared 
in the observation), whereas our extension (NMLPE) additionally 
incorporates iid random effects for pairs of spatial locations (see 
Supporting Information Script S1 and Data S1).

Yang's relatedness between pairs of individuals was used as re‐
sponse variable and the different resistance distances (geographic 
distance, forest cover, elevation, roughness, temperature annual 
range, mean temperature of coldest quarter, and precipitation of dri‐
est quarter) as predictors in our MLPE models. We used the Akaike 
information criterion (AIC) to compare models containing all possible 
combinations of noncollinear predictors (r < 0.6), created with the 
dredge function from the MuMIn (v1.4) package (https://github.com/
rojaff/dredge_mc; Barton, 2018). Likelihood ratio tests were then 
performed to assess the influence of the inclusion of each predictor 
variable on the best‐fitting model's log‐likelihood. Finally, we refitted 
the best models using NMLPE models to obtain parameter estimates 
unbiased by spatial dependence. To evaluate the impact of excluding 
samples from our IBR analyses, we also ran a sensitivity analysis, 
generating one hundred data subsets (randomly excluding differ‐
ent numbers of samples) and performing one hundred independent 
model selection protocols for each subset (using MLPE models). 
We report the number of times predictor variables were included 

https://github.com/rojaff/Lplot
http://earthenginepartners.appspot.com/science-2013-global-forest/download.html
http://earthenginepartners.appspot.com/science-2013-global-forest/download.html
http://www.worldclim.org/
https://github.com/nspope/corMLPE
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https://github.com/rojaff/dredge_mc
https://github.com/rojaff/dredge_mc
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in the set of best‐fitting MLPE regression models (∆AIC ≤ 2), after 
randomly excluding different numbers of samples (Supporting 
Information Figure S5).

2.5 | Identification of putative adaptive loci

To identify genomic signatures of adaptations to local environmen‐
tal conditions, we employed environmental association tests. To this 
end, we used our original dataset filtered by quality and depth only 
(as described above), but not for LD or HWE. We first ran a princi‐
pal component analysis using all 19 WorldClim bioclimatic variables 
plus altitude and forest cover (all scaled), to select a set of orthogo‐
nal variables explaining most environmental variation across our 
study area. Since the first four principal components accounted for 
92.08% of total variance, we selected the four variables that were 
most strongly correlated with these axes. The selected variables 
(mean temperature of coldest quarter, forest cover, temperature 
annual range, and precipitation of driest quarter) were then used 
to run latent factor mixed models (LFMMs), aiming to identify pos‐
sible associations between SNPs and environmental variables, while 
accounting for the underlying population structure (De Kort et 
al., 2014; Frichot, Schoville, Bouchard, & François, 2013; Rellstab, 
Gugerli, Eckert, Hancock, & Holderegger, 2015). LFMMs have been 
used extensively and are currently one of the most commonly used 
environmental association analysis approaches (Ahrens et al., 2018), 
given they provide a good compromise between detection power 
and error rates, and are robust to a variety of sampling designs and 
underlying demographic models (Rellstab et al., 2015). LFMM were 
implemented in R through the LEA package, using 1,000 iterations, 
a burn‐in of 5,000, and five runs per environmental variable (Frichot 
& François, 2015). The p‐values were adjusted using the genomic 
inflation factor (λ = 1), and false discovery rates were set using the 

Benjamini–Hochberg algorithm at a rate of q = 0.05 (Benjamini & 
Hochberg, 1995). Since incorrect assumptions about underlying 
demographic structure can increase both type I and type II errors 
(Cushman & Landguth, 2010; Storfer et al., 2018), we ran LFMM 
using k ± 1 latent factors (where k was the optimum number of an‐
cestral populations detected) and only considered as candidate loci 
those shared between all runs for each environmental variable. Full 
R scripts of LFMM can be found in the LEA website (http://mem‐
bres‐timc.imag.fr/Olivier.Francois/LEA/index.htm). In order to map 
adaptive genetic variability, we used the adegenet package (Jombart, 
2008) to run a spatial principal component analysis (sPCA) on all 
identified candidate SNPs and interpolated the first two principal 
components on a grid covering our study area.

3  | RESULTS

3.1 | Genetic diversity and population structure

We identified 29,349 SNPs from which 3,454 loci remained after 
filtering for quality, depth, HWE, LD, and FST outlier loci. We de‐
tected four genetic clusters (K = 4) using two different clustering ap‐
proaches (Figure 2, Supporting Information Figure S1), and excluded 
four samples from subsequent analyses (final sample size was 156 
individuals) because they were likely introduced bees from a dis‐
tant location (Supporting Information Figure S2, Table S1). Cluster 
assignments were generally unambiguous as ancestry coefficients 
for the assigned clusters were usually above 0.50 (lower 25% quan‐
tile = 0.50, median = 0.60, upper 75% quantile = 0.86). Clusters 1 
and 4, located at the northern and southern extremes of the species 
distribution range, showed the lowest Ne and π. All genetic clusters 
showed small but significant inbreeding and values of Tajima's D 
overlapping zero (Table 1).

F I G U R E  2   Map showing Melipona 
subnitida assignments to four genetic 
clusters against an elevation map 
(from USGS Earth Explorer). Pie 
charts represent ancestry coefficients 
determined using the LEA package

http://membres-timc.imag.fr/Olivier.Francois/LEA/index.htm
http://membres-timc.imag.fr/Olivier.Francois/LEA/index.htm
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3.2 | Landscape genetic analyses

Habitat amount was not found associated with heterozygosity or in‐
breeding (Table 2). We found positive spatial autocorrelation in pairwise 
genetic relatedness for up to 300 km, after which spatial autocorre‐
lation became negative (Figure 3). However, IBR was better able to 
explain genetic relatedness patterns than IBD (Table 3). Temperature 
annual range (defined as the difference between maximum tempera‐
ture of warmest month and minimum temperature of coldest month) 
was the best predictor of relatedness patterns across the full distribu‐
tion range of M. subnitida. The second best IBR model was nearly 18 
AIC units apart from the model containing temperature annual range 
(Table 3), suggesting that forest cover, altitude, and terrain roughness 
combined did not explain relatedness patterns as well as temperature 
fluctuations alone. All these predictors showed a significantly nega‐
tive association with genetic relatedness (Table 4, Figure 4). Although 
temperature annual range did not show a larger variation than the 
other predictors used to assess IBR (Supporting Information Figure 
S3), it was highly correlated with forest cover (r = 0.94; Supporting 
Information Figure S4), so the effect of temperature annual range is 
likely confounded by forest cover to some extent. Nested MLPE mod‐
els (accounting for spatial dependence) substantially improved fit and 
reduced evident autocorrelation. Although parameter estimates from 
NMLPE models had slightly larger standard errors (implying these were 
more conservative estimates), all effects continued to be significantly 
different from zero (Table 4). Our sensitivity analysis on IBR models re‐
vealed that temperature annual range, altitude, and terrain roughness 
were the most frequent variables included in the set of best models 
(Supporting Information Figure S5).

3.3 | Identification of putative adaptive loci

About 10% of all analyzed sequences contained signatures of selec‐
tion (Table 5), and most of the identified candidate loci were associ‐
ated with temperature (Figure 5). The spatial distribution of adaptive 
genetic variability revealed latitudinal and altitudinal gradients 
(Figure 6).

4  | DISCUSSION

Our study reveals a clinal change in genetic structure across the dis‐
tribution range of M. subnitida, with four identifiable genetic clusters. 

Genetic diversity was not influenced by habitat amount, pairwise 
relatedness showed spatial autocorrelation, and isolation by resist‐
ance explained range‐wide relatedness patterns better than isola‐
tion by geographic distance. Specifically, gene flow was enhanced 
by low annual temperature variation, more forest cover, lower eleva‐
tions, and flatter terrains. Finally, we detected genomic signatures of 

TA B L E  1   Genetic diversity estimates for Melipona subnitida by genetic cluster

Genetic cluster N Ne HO HE F π Tajima's D

Pop 1 19 62.3/64.2 0.21/0.25 0.25/0.25 0.01/0.15 0.17/0.19 −0.09/0.36

Pop 2 32 211.9/221.0 0.22/0.22 0.23/0.23 0.03/0.05 0.21/0.22 −0.09/0.44

Pop 3 66 285.1/292.3 0.20/0.21 0.22/0.22 0.05/0.09 0.21/0.22 −0.06/0.54

Pop 4 39 107.5/109.7 0.19/0.20 0.22/0.22 0.08/0.15 0.19/0.21 −0.04/0.54

Notes. Sample sizes (N) are shown followed effective population size (Ne), observed heterozygosity (HO), expected heterozygosity (HE), inbreeding 
coefficient (F), nucleotide diversity (π), and Tajima's D. Lower and upper 95% confidence intervals are shown for each estimate.

TA B L E  2   Effect of habitat amount on observed heterozygosity 
(HO), expected heterozygosity (HE), and inbreeding coefficient (F)

Response variable Correlation structure X2 p‐Value

HO Exponential 0.24 0.63

HE None 0.22 0.64

F Exponential 0.25 0.62

Notes. Generalized least squares models contained genetic diversity 
metrics as response variables, percentage of habitat cover as predictor, 
and different correlation structures to account for spatial autocorrela‐
tion. Logit transformations were used to normalize/linearize heterozy‐
gosities. The table shows X2 values and p‐values from likelihood ratio 
tests applied on best‐fitting models.

F I G U R E  3   Spatial autocorrelation in genetic relatedness. The 
black solid line is the LOESS fit to the observed genetic relatedness, 
while the gray shaded regions are 95% confidence bounds around 
the null expectation (black dotted line). Short vertical lines at the 
bottom of the figure are observed pairwise distances
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adaptation to temperature, precipitation, and forest cover and found 
latitudinal and altitudinal patterns in the spatial distribution of adap‐
tive genetic variation.

Although previous genetic studies found intraspecific variation 
and signals of population structure in M. subnitida (Bonatti, Simões, 
Franco, & Francoy, 2014; Cruz et al., 2006; Silva et al., 2014), we 

Predictors logLik AIC ΔAIC Weight ρ

Temperature annual 
range***

22,813.91 −45,619.8 0.00 1 0.27

Inverted forest cover***, 
altitude***, terrain 
roughness*

22,807.03 −45,602.1 17.76 0 0.23

Inverted forest cover*** 22,576.63 −45,145.3 474.56 0 0.25

Geographic distance 22,521.73 −45,035.5 584.37 0 0.27

Notes. All models contained interindividual genetic relatedness as response variable and the 
different landscape resistance distances as predictors. Log‐likelihoods are followed by the Akaike 
information criterion (AIC), ΔAIC, model weight, and the MLPE correlation coefficient rho (ρ). 
Isolation by geographic distance was included here for comparison.
Likelihood ratio tests: *p < 0.05, **p < 0.01, * p < 0.001

TA B L E  3   Summary statistics for the 
top MLPE regression models

Predictors Estimate SE CI

Temperature annual 
range

−0.14 (−0.09) 0.001 (0.003) −0.14/−0.14 (−0.1/−0.09)

Inverted forest cover −0.11 (−0.07) 0.002 (0.005) −0.12/−0.11 (−0.08/−0.06)

Altitude −0.02 (−0.01) 0.001 (0.003) −0.02/−0.02 (−0.01/−0.001)

Terrain roughness −0.01 (−0.02) 0.002 (0.005) −0.01/−0.001 (−0.03/−0.01)

Geographic distance −0.14 (−0.15) 0.001 (0.001) −0.14/−0.14 (−0.1/−0.08)

Notes. Estimates are followed by standard errors (SE) and 95% confidence intervals (CI). Although 
the isolation by geographic distance was not among the top models, we include it here for 
comparison.

TA B L E  4   Parameter estimates for the 
best‐fitting MLPE regression models 
(ΔAIC < 20; see Table 3) and NMLPE 
regression models (unbiased by spatial 
dependence; in parentheses)

F I G U R E  4   Isolation‐by‐resistance effects across the entire distribution range of Melipona subnitida. Plots show the relationship between 
genetic relatedness and temperature annual range (a), inverted forest cover (b), altitude (c), terrain roughness (d), and geographic distance (e). 
Although the isolation by geographic distance was not among the top models, we include it here for comparison. Relatedness is decorrelated 
for the MLPE correlation structure

(a) (b) (c) (d) (e)
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here present the first assessment of spatial genetic structure based 
on thousands of independent genetic markers and performed 
across the full distribution range of this species. Our results reveal 
four genetic clusters, confirmed by two complementary methods, 
and extensive admixture (Figure 2). Genetic clusters located at the 
northernmost and southernmost extremes of the species’ distribu‐
tion range (Pop 1 and Pop 4) showed lower nucleotide diversity and 
lower effective population size (Ne) but similar heterozygosity and 
inbreeding as the genetic clusters located at the distribution's core 
(Pop 2 and Pop 3). This finding suggests that M. subnitida colonized 
these peripheral regions more recently, whereas clusters Pop 2 and 
Pop 3 had more time to accumulate a higher genetic variability, as 
stated by the central–peripheral hypothesis (Diniz‐Filho et al., 2009).

Genetic diversity was slightly higher than that reported in other 
genomic bee studies (Jackson et al., 2018; Romiguier et al., 2014), 
and in all genetic clusters we found Tajima's D values overlapping 
with zero, which indicate mutation–drift equilibrium. Additionally, 
we did not find a significant association between habitat amount 
and genetic diversity. These results suggest that genetic variation 
has not been influenced by habitat loss yet and that the observed 
levels of inbreeding are presumably related to the reproductive biol‐
ogy of this species (DiLeo & Wagner, 2016). Monogamy (Jaffé et al., 
2014), low population densities, and sharp seasonal variations in the 
production of reproductive individuals (Ferreira, Blochtein, & Serrão, 
2013; Roubik, 2006; Santos‐Filho, Alves, Eterovic, Imperatriz‐fon‐
seca, & Kleinert, 2006) may result in mating between related in‐
dividuals. We nevertheless caution that longer time lags may be 
necessary to detect an effect of habitat loss on genetic diversity 
(Schlaepfer, Braschler, Rusterholz, & Baur, 2018).

We detected significant spatial autocorrelation in genetic re‐
latedness, contradicting earlier microsatellite‐based studies for 
other stingless bee species (Jaffé, Castilla, et al., 2016; Landaverde‐
González et al., 2017). Interestingly, spatial autocorrelation was 
positive for up to 300 km (Figure 3), indicating that related colonies 
can be found across large areas and that gene flow did not erase 
the genetic signals left by limited colony dispersal. Above 300 km, 
spatial autocorrelation became negative, suggesting that population 
differentiation caused lower than random relatedness between in‐
dividuals from different clusters (Figure 2). These results suggest it 
would be safe to transport colonies no further than 300 km to avoid 
altering the genetic composition of wild populations (Jaffé, Pope, et 
al., 2016).

Isolation by landscape resistance explained range‐wide related‐
ness patterns better than isolation by geographic distance alone. 
For instance, temperature fluctuations were found to be the most 
important factor explaining relatedness patterns in M. subnitida, 
followed by forest cover, elevation, and terrain roughness. Our IBR 
results hold when accounting for spatial dependence and when 
excluding different numbers of samples, although forest cover 
looses importance when more samples are excluded (Supporting 
Information Figure S5). Significant isolation by resistance (altitude) 
was only found in one other stingless bee (Partamona helleri Friese, 
1900), out of 18 analyzed species to date (Jaffé, Pope, et al., 2016; 
Landaverde‐González et al., 2017), suggesting that the resolution of 
these microsatellite‐based studies only allowed the detection of very 
strong IBR effects. Our findings thus imply that fine‐scale genetic 
structure and IBR may be more common in this group of bees than 
previously acknowledged and that studies employing thousands of 
genetic markers and large sample sizes are needed to identify or rule 
out weak, but significant IBR effects.

Our results reveal that thermal stability and forest cover (which 
were highly correlated) are key mediators of genetic connectivity 
in this stingless bee species, and support earlier findings stressing 
out the role of elevation as a bee dispersal barrier (Jackson et al., 
2018; Jaffé, Pope, et al., 2016). Although thermal range is known 
to have a profound influence on insect physiology (Dixon et al., 
2009), ours is the first study to report an effect on dispersal behav‐
iors. Interestingly, temperature annual range was found to be the 
main abiotic predictor of bee richness and diversity in the eastern 
Neotropics, suggesting environmental variability may have led to 
higher speciation (Faria & Gonçalves, 2013). Our results imply that 
a similar mechanism may be operating at the species level, with in‐
creased thermal variability hindering gene flow, and thus facilitating 
local adaptation (Allendorf et al., 2013).

Even though thermal stability was the main factor explaining 
gene flow patterns in M. subnitida, temperature annual range and 
forest cover were highly correlated, so we could not disentangle 
the relative contribution of each. Our work is nevertheless the 
first to reveal a significant effect of forest cover on stingless bee 
gene flow, a long‐standing expectation for this group of bees with 
restricted dispersal (Jaffé, Pope, et al., 2016). Reduced gene flow 
across deforested areas was only found in one other tropical or‐
ganism so far (Monteiro et al., 2019), namely the army ant Eciton 
burchelli Westwood, 1842 (Pérez‐Espona, McLeod, & Franks, 2012). 

TA B L E  5   Summary of the number of adaptive signals detected employing environmental association tests. Both the number of candidate 
SNPs and the number of contigs (RAD tags) containing candidate SNPs are presented for each environmental predictor followed by the 
number of independent (nonoverlapping) detections in parentheses

Signal type Total analyzed
Total under 
selection

Environmental association testsa 

Mean Temp CoQ Forest Cover Temp AnR Prec DrQ

SNPs 27,799 1,798 997 (444) 718 (281) 700 (261) 478 (67)

Contigs 15,924 1,356 768 (334) 532 (195) 535 (203) 371 (45)

aEnvironmental variables: mean temperature of coldest quarter (Mean Temp CoQ), forest cover, temperature annual range (Temp AnR), and 
precipitation of driest quarter (Prec DrQ). 
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Interestingly, these army ants exhibit striking life history similarities 
with stingless bees, as queens are permanently wingless and thus 
show a restricted dispersal (Jaffé, Moritz, & Kraus, 2009). Forested 
areas thus seem important dispersal corridors for this stingless bee, 
which could facilitate the migration toward higher elevations pre‐
dicted under climate change (Supporting Information Figure S6).

Our environmental association tests can be considered robust to 
deviations from the underlying demographic structure, as candidate 
loci were intersected across different k‐values. Additionally, LFMM 
were calibrated based on the distribution of adjusted p‐values, so 
the incidence of false discovery rates was low (François et al., 2016). 
Interestingly, we found latitudinal and altitudinal gradients in the dis‐
tribution of adaptive genetic variation. While the former gradient was 
also found in the honeybee A. mellifera (Chávez‐Galarza et al., 2013; 
Henriques et al., 2018), and is probably related to climatic conditions, 
the altitudinal gradient suggests different adaptations to current 
highland and lowland areas. Our findings thus reveal the presence of 

locally adapted bees, which should be preserved to maintain evolu‐
tionary potential (Hoffmann & Sgrò, 2011; Sgrò, Lowe, & Hoffmann, 
2011). While lowland populations of M. subnitida are expected to 
shift to higher elevations by 2050 (Supporting Information Figure 
S6), current highland populations are at risk, since highlands will have 
no climate analogs in the future (Colwell, Brehm, Cardelús, Gilman, 
& Longino, 2008; Giannini et al., 2017). Conservation actions should 
thus prioritize the protection of current highland populations while 
improving the connectivity between highlands and lowlands, preserv‐
ing or restoring foothill and mountain forests (Giannini et al., 2017).

Taken together, our findings shed important light on the life his‐
tory of M. subnitida and highlight the role of regions with large ther‐
mal fluctuations, deforested areas, and mountain ranges as dispersal 
barriers. Moreover, our work unravels previously unknown patterns 
of local adaptation in these bees. This knowledge could help guide fu‐
ture conservation actions such as avoiding the transportation of col‐
onies beyond 300 km, preserving highland and lowland populations 

F I G U R E  6   Spatial distribution of adaptive genetic variability in Melipona subnitida. Colors represent interpolated spatial principal 
components (sPCA) and suggest a latitudinal pattern associated with sPC1 (a) and an altitudinal pattern associated with sPC2 (b). Shaded 
areas represent elevations of at least 500 masl

F I G U R E  5   Venn diagram showing 
the intersection of sequences (contigs) 
containing candidate SNPs for Melipona 
subnitida. Putative adaptive loci were 
identified using environmental association 
tests, employing mean temperature of 
coldest quarter, temperature annual 
range, precipitation of driest quarter, and 
forest cover
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separately, and conserving or restoring foothill and mountain forests. 
Considering the high biological and economic importance of this na‐
tive pollinator, such conservation efforts will be easily offset if honey 
production and pollination services are maintained in the future.
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