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Novel Intermittent Dosing Burst Paradigm
in Spinal Cord Stimulation
Timothy R. Deer, MD*; Denis G. Patterson, DO†; Javid Baksh, DO‡;
Jason E. Pope, MD§; Pankaj Mehta, MD¶; Adil Raza, MPH** ;
Filippo Agnesi, PhD** ; Krishnan V. Chakravarthy, MD, PhD††

Introduction: Intermittent dosing (ID), in which periods of stimulation-on are alternated with periods of stimulation-off, is gen-
erally employed using 30 sec ON and 90 sec OFF intervals with burst spinal cord stimulation (SCS). The goal of this study was
to evaluate the feasibility of using extended stimulation-off periods in patients with chronic intractable pain.

Materials and Methods: This prospective, multicenter, feasibility trial evaluated the clinical efficacy of the following ID
stimulation-off times: 90, 120, 150, and 360 sec with burst waveform parameters. After a successful trial (≥50% pain relief)
using ID stimulation, subjects were titrated with OFF times beginning with 360 sec. Pain, quality of life, disability, and pain cat-
astrophizing were evaluated at one, three, and six months after permanent implant.

Results: Fifty subjects completed an SCS trial using ID stimulation settings of 30 sec ON and 90 sec OFF, with 38 (76%) receiv-
ing ≥50% pain relief. Pain scores were significantly reduced from baseline at all time points (p < 0.001). Improvements in qual-
ity of life, disability, and pain catastrophizing were aligned with pain relief outcomes; 45.8% of the subjects that completed
the six-month follow-up visit used an OFF period of 360 seconds.

Conclusions: ID burst SCS effectively relieved pain for six months. The largest group of subjects used IDB settings of 30 sec
ON and 360 sec OFF. These findings present intriguing implications for the optimal “dose” of electricity in SCS and may offer
many advantages such as optimizing the therapeutic window, extending battery life, reducing recharge burden and, poten-
tially, mitigating therapy habituation or tolerance.
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INTRODUCTION

Chronic pain affects up to 1.5 billion people worldwide (1).
Spinal cord stimulation (SCS) is a minimally invasive and non-
pharmacological treatment for chronic, intractable pain and is
increasing in its application; more than 30,000 implants are com-
pleted per year in the United States (2). In a systematic meta-
analysis of the literature, SCS was reported to reduce pain,
improve quality of life, reduce analgesic use, improve return to
work status, and may also result in significant cost savings over
time, while having a low complication rate (3).
The bulk of the existing SCS literature describes outcomes using

conventional tonic stimulation, in which electrical pulses are deliv-
ered in a consistent repetitive fashion (4–7). Burst stimulation
(Abbott, Plano, TX, USA) delivers packets of stimulation—five pulses
at 500 Hz—at a frequency of 40 Hz with repolarization occurring
passively during the inter-burst interval (8). Burst SCS has been dem-
onstrated to be an effective treatment, with average limb pain relief
of 68% after mean treatment duration of 20.5 months (9). In a large
randomized controlled 12-month trial, burst SCS provided statistically
superior (albeit not clinically superior) efficacy compared with tonic
SCS (10). Furthermore, 68.2% of patients preferred it over tonic stim-
ulation, with 23.9% preferring tonic stimulation and 8% indicating
no preference (10). These data were supported by a systematic
review and pooled analysis including real-world evidence for burst
stimulation compared to tonic stimulation showing clinically impor-
tant incremental benefits (11). In addition, recent empirical evidence
employing techniques such as intraoperative electromyography
(EMG) neuromonitoring (12), electroencephalography (EEG) (13) and
fluorodeoxyglucose positron emission tomography (FDG-PET) (14)
suggests that burst stimulation pattern is unique among SCS wave-
forms. Burst SCS induces EMG responses at much lower amplitudes
compared to tonic, produces a characteristic EMG signature con-
sisting in a single large EMG spike instead of five separate ones like
clustered tonic stimulation, and induces a hyper excitable state
reducing thresholds for EMG activation for subsequent tonic pulses
(12). Source-localized EEG recordings demonstrated burst SCS acti-
vates the dorsal anterior cingulate and right dorsolateral prefrontal
cortex more than tonic stimulation (13). Increased modulation of the
dorsal anterior cingulate cortex modulation was also confirmed
using FGD-PET (14).

Significance/Rationale of Intermittent Dosing Using Burst
Waveform
Cycling of stimulation, which consists of altering the amount of

time stimulation is active (ON) and inactive (OFF), is a feature that
has been available to SCS clinicians for years (15) and patients
have always been able to activate or deactivate stimulation based
on their need. Nevertheless, this tool has not been systematically
studied with the goal of reducing the total amount of stimulation
delivered to the spinal cord in a patient tailored fashion. Based on
preclinical data (16), it was hypothesized that there would be a
residual effect present for burst SCS and that, alternating ON and
OFF periods of adequate duration, could provide sustained thera-
peutic effects while reducing the overall amount of current deliv-
ered to the spinal cord and decreasing the energy requirements
of the device. This hypothesis was confirmed by the results of a
randomized, cross-over, double blinded, controlled feasibility
investigation (17). Vesper et al. showed that intermittent dosing
in burst SCS (IDB), using short alternating ON and OFF periods,
was equivalent to continuous therapy in providing pain relief and

improvement in quality of life. In their study, 25 patients who had
been exclusively using burst SCS were blindly evaluated with con-
tinuously delivered stimulation as well as with two different IDB
paradigms (A: 5 sec ON, 5 sec OFF, 1:1 ratio; B: 5 sec ON, 10 sec
OFF, 1:2 ratio) in a randomized fashion for a period of two weeks
each. Visual analog scale (VAS) scores were collected and showed
no difference between the two IDB paradigms and continuous
SCS (A: 0.12 � 18.52 mm; B: −1.84 � 23.12; ps > 0.05). Similarly,
no difference was found in quality of life (EQ-5D) between contin-
uous stimulation and the two IDB paradigms (A: 0.03 � 0.003; B:
−0.03 � 0.002; ps > 0.05).
Given that the optimal clinical settings for IDB are not known, the

main objective of this study was to evaluate feasibility of using IDB
patterns with much lower ON:OFF ratios in patients with chronic
intractable pain who have never previously received SCS therapy.

MATERIALS AND METHODS

This was a prospective, open label, multicenter, feasibility trial
conducted with oversight of local institutional review boards
(NCT03350256). All subjects provided written informed consent
prior to any study activities. Individuals diagnosed with chronic
intractable back and/or leg pain, with no prior history of SCS,
were eligible for the study; detailed inclusion/exclusion criteria
are in Table 1. During the study, subjects completed assessments
regarding their pain (standard 10-cm VAS), quality of life
(EuroQol-5D (18)), disability (Oswestry Disability Index [ODI; (19)]),
affective features of pain (Pain Catastrophizing Scale [PCS; (20)]),
overall evaluation/satisfaction with treatment (patient global
impression of change [PGIC]), and medication usage.
Subjects were implanted epidurally with bilateral percutaneous

leads (Invisible Trial; Abbott, Plano, TX, USA). Intraoperative pares-
thesia mapping was performed with the goal of positioning the
leads to obtain coverage of painful anatomies. Subjects then com-
pleted a trial period of three to sevendays using an external trial
stimulator. During the trial, all subjects used paresthesia-free burst
stimulation with amplitude set to 60% of the perception thresh-
old and with an ID setting of 30 sec ON and 90 sec OFF (1:3 ratio).
Subjects who received at least 50% back and/or leg pain relief at
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Table 1. Demographics and Baseline Characteristics for the 50 Patients
that were Trialed during the Study.

Baseline characteristics N (%), or
mean (�CI)

Gender* Male 19 (38.8%)
Female 30 (61.2%)

Age* Years 56.8 � 3.95
Etiology† Failed Back Surgery Syndrome 18

Radiculopathy 38
Degenerative disk disease 15
Spondylosis 15
Mild spinal stenosis 3
Neuropathic pain 11
Other 11

Duration of pain‡ Years 9.98 � 3.31

*One subject missing data.
†Majority of subjects had multiple indications.
‡Two subjects had missing data.
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the end of the trial, expressed interest in a permanent implant
and were deemed successful by the treating physician received a
permanent implant.
Following permanent implantation, subjects underwent a titra-

tion of their ID settings. Titration started shortly after activation
and was performed only once. Paresthesia-free BurstDR stimula-
tion was initiated for two to three days with a small electrical
dose via a low ID setting (30 sec ON and 360 sec OFF; a 1:12
ratio). If the subject reported that this resulted in pain control
equal to or better than during the trial, that ID setting was contin-
ued as the subject’s individual dosed treatment. Otherwise, the
electrical dose was increased by changing to the next-in-line ID
setting with a shorter OFF time; see Fig. 1) and this was evaluated
for another two to three days. This continued, if needed, in a step-
wise fashion through four other options until reaching the same
ID setting as used during the trial period. Once a subject moved
to an ID setting with a shorter OFF time, they did not return to
previously tested ones. Thus, the ID settings tested, in order, were
30 sec ON and 360 sec OFF (1:12), 30 sec ON and 240 sec OFF
(1:8), 30 sec ON and 150 sec OFF (1:5), 30 sec ON and 120 sec OFF
(1:4), and 30 sec ON and 90 sec OFF (1:3). In this way, subjects
self-selected the lowest dose that achieved pain control similar to

that of the trial period. The use of the 30 sec ON and 90 sec OFF
ID setting, which was identical to trial, ensured that unsatisfactory
results observed after the trial could not be ascribed to the use of
ID itself. Subjects agreed to not to increase pain medications until
the three-month follow-up visit. ID settings were captured at the
six-month follow-up visit.
After one, three, and six months of treatment, the baseline assess-

ments were repeated, along with overall evaluation/satisfaction with
treatment (PGIC). Any subject whose VAS score at the three- or six-
month follow-up was ≥20 mm higher than that at the one-month
follow-up was identified as having experienced reduction of efficacy
(21). Adverse events occurring at any point during the study were
captured.
Data are reported as means, medians, 95% confidence inter-

vals (CI), or percentages. Since normality of data was not
assumed, a non-parametric repeated measures ANOVA
(Friedman’s test) was conducted to determine main effects using
the Cochran–Mantel–Haenszel Statistics (Q). Wilcoxon signed-
rank test comparisons were performed to determine specific dif-
ferences between visits. A retrospective post-hoc exploratory
analysis was conducted to compare the group of subjects using
an OFF period of 360 sec with the subjects using the three

568 Figure 1. Schematic representation of post-trial IDB titration process. [Color figure can be viewed at wileyonlinelibrary.com]
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shortest OFF periods (150, 120, and 90 sec, which were com-
bined in a single group in order to increase sample size). Only
the three shortest intervals were selected as they are less than
half of the duration of the longer OFF period thus allowing a
marked difference in OFF duration between the two groups.
These differences were determined by a non-parametric Mann–
Whitney test. All tests were conducted using SAS 9.4. Signifi-
cance was set at p = 0.05.

RESULTS

The study screened 60 patients. Out of the 60 patients
screened, 10 subjects were withdrawn prior to the trial phase for
various reasons, including: inclusion/exclusion violations (n = 4),
subjects recommended to receive other therapies (n = 2), proto-
col violation (n = 1), noncompliance (n = 1), denial of insurance
(n = 1), and an adverse event (n = 1). Thus, 50 subjects (average
age of 56.8 � 3.95 years, reporting having chronic pain for an
average of 9.98 � 3.31 years, see Table 1), received a trial system
and continued in the study. Thirty-eight subjects (76%) reported
at least a 50% reduction in either their back and/or leg pain and
were deemed eligible for a permanent implant. Of these, 35 sub-
jects received permanent implant as three subjects elected not to
proceed to implant. Additionally, 11 subjects were withdrawn dur-
ing the follow-up phase for various reasons, including: patient
chose to withdraw (3), protocol violation (4), nonstudy related
adverse event (1), noncompliance (1), subject moving out of state
(1), and lost to follow-up (1).

IDBSCS Settings Usage
After permanent implantation, subjects sequentially tested the

IDB patterns, starting with the option with the longest
stimulation-off duration (360 sec OFF). At the six-month follow-up,
the percentage of subjects using each stimulation ON:OFF ratio
was as follows: 45.8% of patients were using an ON:OFF ratio of
1:12, 12.5% an ON:OFF ratio of 1:8, 12.5% an ON:OFF ratio of 1:5,
12.5% an ON:OFF ratio of 1:4, and 16.7% an ON:OFF ratio of 1:3
(see Fig. 2a).
Retrospective analysis showed that there was no statistical dif-

ference in VAS, EQ-5D, or PCS at six months between the group
of subjects using an OFF period of 360 sec and the subjects using
the three shortest OFF periods. However, subjects using the
360 sec OFF time had a significantly lower mean ODI score
(25.3 � 7.3; median = 24.0) than the other group (43.6 � 14.6;
median = 49.0) p = 0.04, Z = 1.97) at six months (see Fig. 2b). The
ODI scores were not statistically different at baseline between the
two groups.
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Figure 2. (a): IDB program usage at the six-month follow-up visit.
(b) Average ODI scores at the six-month follow-up of subjects who used the
three shorter OFF periods and subjects who used the longer OFF periods
(150, 120, and 90 sec OFF). Error bars represents 95% confidence intervals. Sta-
tistical differences were observed between the two OFF groups using a
Mann–Whitney test. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Effect of titrated IDB SCS on pain. Overall (a), back (b), and leg
(c) average pain at baseline and at follow-up visits (p < 0.001). Error bars rep-
resents 95% confidence intervals. Statistical differences were observed
between baseline and all other follow-up visits using Friedman’s test. [Color
figure can be viewed at wileyonlinelibrary.com]
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Pain Intensity Assessment
The mean (CI) baseline overall VAS score was 77.2 � 3.6 mm

(median = 80.0 mm). Average overall VAS score improved to
30.8 � 7.4 mm (median = 24.0 mm) at the end of the trial (n = 47),
33.8 � 7.9 mm (median = 31.5 mm) at the one-month follow up
(n = 28), 35.6 � 10.9 mm (median = 30.0 mm) at the three-month
follow-up (n = 25) and 37.1 � 10.0 mm (median = 42.0 mm) at the
six-month follow-up (n = 24) (see Fig. 3a). Overall VAS scores were
significantly different from baseline at all later time points
(p < 0.001, Q [4] = 76.89) but did not differ amongst themselves.
Similarly, average back pain VAS improved from 73.7 � 4.4 mm
(median = 74.0 mm) at baseline (n = 50) to 29.8 � 7.8 mm
(median = 20.0 mm) at the end of trial (n = 47), 31.2 � 9.4 mm
(median = 28.0 mm) at the one-month follow-up (n = 28),
36.8 � 11.6 mm (median = 30.0 mm) at the three-month follow-up
(n = 25) and 39.6 � 10.8 mm (median = 42.5 mm) at the six-month
follow-up (n = 24) (see Fig. 3b). Back VAS scores were significantly
different from baseline at all later time points (p < 0.001, Q
[4] = 63.85) but did not differ amongst themselves. Average leg
pain VAS improved from 72.1 � 6.1 mm (median = 76.0 mm) at
baseline (n = 50) to 31.8 � 8.2 mm (median = 23.0 mm) at the end
of trial (n = 47), 26.1 � 9.2 mm (median = 21.0 mm) at the one-
month follow-up (n = 28), 29.0 � 11.7 mm (median = 15.0 mm) at
the three-month follow-up (n = 25) and 29.5 � 9.8 mm
(median = 19.0 mm) at the six-month follow-up (n = 24) (see
Fig. 3c). Leg VAS scores were significantly different from baseline at

all later time points (p < 0.001, Q [4] = 58.86) but did not differ
among themselves. Ninety-one percent of subjects maintained effi-
cacy for overall and back pain. All subjects (100%) maintained effi-
cacy for leg pain.

Quality of Life and Functionality Assessments
The mean EQ-5D index improved significantly from 0.51 � 0.04

(median = 0.53; n = 49) at baseline to 0.69 � 0.06 (median = 0.78;
n = 47) at the end of trial, 0.69 � 0.06 at the one-month follow-
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Figure 4. Effect of titrated IDB SCS on subjects’ functionality. (a) Average EQ-
5D scores at baseline, trial and at follow-up visits (p < 0.001); dashed line rep-
resents U.S. population norm for age group 55–64 years (0.776 (22)), error bars
represents 95% confidence intervals. Statistical differences were observed
between baseline and all other follow-up visits using Friedman’s test.
(b) Percentage of subjects in each of the Oswestry Disability Index categories
at baseline, trial, and at follow-up visits. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 5. Effect of titrated IDB SCS on subjects’ perception of pain and
impression of change. (a) Average Pain Catastrophizing Scale scores
(p < 0.001); dashed line represents nonpain population norm (13.9 (20)), error
bars represents 95% confidence intervals. Statistical differences were observed
between baseline and all other follow-up visits using Friedman’s test.
(b) Average Pain Catastrophizing Scale subcomponents, error bars represent
95% confidence intervals. (c) Patient General Impression of Change at the six-
month follow-up visit; blue box contains the categories that reported “some-
what better” or more marked impression of change. [Color figure can be
viewed at wileyonlinelibrary.com]
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up (median = 0.74; n = 28), 0.67 � 0.10 (median = 0.79) at the
three-month follow-up (n = 26), and 0.69 � 0.08 (median = 0.74)
at the six-month follow-up (n = 24). Values significantly differed
from baseline at all later time points (p < 0.001, Q [4] = 34.54) but
did not differ amongst themselves (see Fig. 4a).
Back pain-related disability as evaluated on ODI decreased from

54.3 � 4.9 (median = 56.0; n = 49) at baseline to 36.0 � 6.88
(median = 32.0; n = 47) at the end of trial, 37.7 � 7.72
(median = 37.8) at the one-month follow-up (n = 28), 31.5 � 8.86
(median = 22.6) at the three-month follow-up (n = 26) and
33.3 � 8.12 (median = 33.0) at the six-month follow-up (n = 24).
Values significantly differed from baseline at all later time points
(p < 0.001, Q [4] = 27.70) but did not differ amongst themselves.
Reduction in severity of disability was observed from baseline
throughout the follow up period (see Fig. 4b).

Psychometric Assessment and Satisfaction
Pain catastrophizing as evaluated using the PCS questionnaire

decreased from 24.5 � 3.9 (median = 24.0; n = 49) at baseline to
14.6 � 4.0 (median = 10.0; n = 47) at the end of trial, 10.1 � 3.4
(median = 7.5) at the one-month follow-up (n = 28), 9.6 � 4.7
(median = 4.0) at the three-month follow-up (n = 26) and
9.5 � 4.6 (median = 6.0) at the six-month follow-up (n = 23).
Values differed significantly from baseline at all later time points
(p < 0.001, Q [4] = 35.03) but did not differ among themselves
(see Fig. 5a). Similarly, mean pain catastrophizing sub-scores
(rumination, magnification, and helplessness) were significantly
different from baseline at all-time points (p < 0.001; see Fig. 5b).
The impact of the treatment on change in subjects’ life was

assessed using PGIC scale. When asked to “Rate the overall
change in activity limitations, symptoms, emotions, and overall
quality of life since starting SCS therapy”, 87.5% of subjects
reported they were “somewhat better,” “moderately better,”
“better,” or “a great deal better” at the six month follow-up
(n = 24) (see Fig. 5c).

Adverse Events
A total of eight adverse events were reported in the study, of

which, four were considered device-related. These were lead
migrations during trial (n = 3) and pocket heating (n = 1), which
was resolved after turning the stimulator off for three days. There
were two serious adverse events that were not study related (frac-
tured vertebrae, abdominal pain). There were no unexpected
device-related adverse events during this study.

DISCUSSION

Our results demonstrate that IDB SCS is safe and efficacious in
subjects with chronic back and/or leg pain and can be success-
fully used with OFF periods extending up to 360 sec. Subjects,
effectively self-selecting the length of the OFF period, received on
average > 50% pain relief between baseline and six months. At
the six-month follow-up, 45.8% of the subjects used the 360 sec
OFF period (a 1:12 ON:OFF ratio), while the remainder of the sub-
jects distributed evenly over the shorter intervals. At the same
time, subjects’ quality of life and functionality improved, as indi-
cated by a significant increase in reported quality of life and a sig-
nificant decrease in reported disability. Additionally, subjects
reported a significant reduction of pain catastrophizing and
87.5% had positive satisfaction in the patient general impression

of change at six months. These results suggest that equivalent
clinical outcomes can be obtained using low ON:OFF ratios.

Conceptual Similarity to Pharmaceutical Dosage
Given our lack of detailed understanding on potential electrical

effects of heating on the spinal cord, with increasing energy
equating to increased heat dissipation on the spinal cord, and
induction of neural accommodation/tolerance in relation to dose
of energy delivered, we felt that this provided the rationale for
the aforementioned clinical design strategy with a focus on dos-
ing and titration.
In addition, to explore electrical dosing, concepts such as phar-

macokinetics and pharmacodynamics that are well-understood
concepts in the field of medicine become extremely relevant.
While their extension to the field of neuromodulation is not
straightforward, and the study did not evaluate or show evidence
of dose response curves like pharmacological studies, both con-
cepts can serve as guides to better understanding the effects of
electrical stimulation on the nervous system and advance the
approach taken to delivery of neuromodulation toward a more
patient centric approach. Pharmacokinetics is defined as the study
of the time course of drug adsorption, distribution, metabolism
and excretion. In the neuromodulation field, these concepts can
be extrapolated to the basic principles of how electrical stimuli
are delivered (absorption), spread (distribution) and are dissipated
through heat generation (metabolism and excretion) within the
simulated area. Pharmacodynamics refers to the relationship
between drug concentration and the physiological effect, includ-
ing the time course. In the neuromodulation field, these concepts
can be extended to amount of current delivered over a unit of
time (concentration), the produced alteration of neuronal activity
(physiological effect) and persistence in time of such physiological
effects (time course).
Based on pharmacokinetic and pharmacodynamic principles,

dosages are generated to deliver the ideal amount of active com-
pound to the intended target and to ensure the concentration of
such agent is within the desired therapeutic window (above the
lowest concentration capable of producing the desired physiolog-
ical effects and below the concentration at which side effects will
manifest). Similar concepts can be useful also in the
neuromodulation field where dosage is represented by the spe-
cific combination of stimulation amplitude, pulse width, stimula-
tion frequency, impedance, and duty cycle. Likewise, therapeutic
window can be identified as the difference between the combina-
tion of stimulation parameters (“dose”) providing the required
physiological outcome with the minimum amount of electrical
current delivered to the spine and the parameters that first pro-
duce undesired stimulation effects. While delivery of electrical
stimulation to the target is immediate, the effects produced can
have different time constants. The concept of therapeutic range,
latency, and persistency of effects is not novel concepts in SCS.
Indeed, the role of stimulation parameters and their role in electri-
cal charge delivered have been previously discussed (23). Like-
wise, Shealy et al. in their seminal paper observed a short carry
over effect of SCS in cats receiving electrical stimulation of the
dorsal column and noxious stimulation but also suggested that
continuous stimulation is necessary in patients with continuous
pain (24). Other authors have instead reported that the pain-
relieving effect of SCS can last after stimulation has been discon-
tinued albeit with significant differences between patients (15,25).
Latency and persistency of effects are a well-known fact in deep
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brain stimulation, where different conditions and even different
symptoms of the same condition require different amounts of
time to re-emerge after stimulation is discontinued. In Parkinson’s
disease, tremor returns in seconds, bradykinesia can take minutes
while axial symptoms even longer (26). This phenomenon is
driven by the dynamics of the nervous system and can be poten-
tially elegantly exploited to use intermittent stimulation as an
additional parameter to more precisely titrate electrical stimula-
tion in order to provide the desired outcome, while minimizing
the overall amount of electrical stimulation. Future sham-
controlled studies, with a shorter time resolution, will be neces-
sary to fully characterize SCS parameters in a fashion analogous
to pharmacokinetic and pharmacodynamic characterization of
pharmacological compounds.

Primary Cell Battery Life and Recharge Burden
Additionally, use of these new lower dose stimulation parame-

ters has great potential to prolong the battery life of a non-
rechargeable primary cell IPG. The average time between battery-
replacement surgeries for conventional SCS systems has been
estimated to be three to fiveyears (27–29) and while no data on
battery consumption were collected during this study, it is reason-
able to expect that IDB using a low ON:OFF ratio may decrease
the frequency of battery replacements. Rechargeable IPGs afford
longer times between replacement but were found to have
higher likelihood of explant due to lack of therapeutic efficacy
(30). The obligation of frequent recharging has been identified as
a negative attribute by some SCS patients (31) and could be con-
tributing to the higher explant rate. The reduction in current
delivered to the spinal column using IDB will also improve conve-
nience for these patients by decreasing the frequency of
recharging sessions and the associated burden.

Burst Waveform Tends to Allow for Unique Intermittent
Dosing Burst Programming
Given the variety of waveforms currently clinically available, the

question of whether the effects of ID are unique to burst stimula-
tion waveform versus clustered tonic stimulation remains to be
further explored. However, as this waveform is most natural (32)
with lower per pulse charge delivered (33), there is good sugges-
tion that this waveform lends itself to the concept of lowest effec-
tive dose based on absolute energy dispersion. This extrapolation
has been organized in the DBS literature as the total electrical
energy delivered (TEED) equation that aims to quantify the
energy in terms of pulse width, amplitude squared, frequency
over impedance with duty cycle playing a role.

CONCLUSIONS

The results of this study show that IDB SCS can provide effec-
tive pain relief, increase quality of life, reduce disability, and
decrease pain catastrophizing even when low ON:OFF ID ratios
(1:12, for a total of 8% on time) are used. These results suggest
that intermittent stimulation can be titrated to provide optimal
pain relief while delivering the lowest possible dose of electricity
to the spinal cord (although no dose response curve was
observed in this study). This may help extend device battery life
and potentially reduce or delay therapy habituation. Although
preliminary, the results from this study indicate that titration of

IDB can be used to provide successful pain relief while reducing
the amount of electrical current delivered to the spinal cord.
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COMMENTS

The message of this paper is that in many cases it appears possi-
ble to achieve similar analgesia with a stimulator system running less
than 10% of the time as with continuous operation. This is a remark-
able result. If the effect endures, it suggests that the lifetime of pri-
mary cell pulse generators can be very substantially extended. An
important question now is whether cycled therapy retains its effi-
cacy over time to the same degree as continuous SCS. Longer term
follow up studies are therefore critical. In addition to the potential
implications for battery life, the study raises the interesting question
of whether the reduction in on-time might reduce any tendency to
the development of tolerance. If that is the case, one might expect
cycled SCS to hold its efficacy better than continuous SCS. Again,
long term follow up will be needed to answer this question.

James FitzGerald, MA, BM, BCh, PhD
Oxford, United Kingdom

***

The study is very interesting, confirming the hypothesis of Vesper
et al. that lower energy dosing could be as effective as higher ones,
and furthermore demonstrating that it can even be more effective.
Apart from the data of the study, the considerations on device "eco-
nomics", in terms of battery consumption and patient comfort, on
plasticity and habituation, and especially on kinetics and dynamics of
neural electrical stimulation, are very interesting and a very good
topic for further discussion.

Laura DeMartini, MD
Pavia, Italy
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