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Abstract

Survival analysis involves the modelling of the times to event. Proposed neural network 

approaches maximise the predictive performance of traditional survival models at the cost of 

their interpretability. This impairs their applicability in high stake domains such as medicine. 

Providing insights into the survival distributions would tackle this issue and advance the medical 

understanding of diseases. This paper approaches survival analysis as a mixture of neural baselines 

whereby different baseline cumulative hazard functions are modelled using positive and monotone 

neural networks. The efficiency of the solution is demonstrated on three datasets while enabling 

the discovery of new survival phenotypes.

1 Introduction

Predicting the risk of a medical event is essential for clinical screening, prioritisation and 

intervention. Survival analysis has been used in the literature to model the time to an event 

such as death or the appearance of symptoms. This analysis differs from standard regression 

problems as it leverages information from patients for whom the outcome of interest was 

unobserved. Though the event of interest has not occurred during the follow-up period for 

these patients, their censored data still contribute to the likelihood through the knowledge 

that their times to the event must be later than their observed right-censoring times.

Extensive research has developed likelihood-based survival models which allow for 

censored observations. Approaches have limited the complexity of the model's likelihood. 

In the statistical literature, parametric models have been used when the survival functional 

form is known or for computational tractability and interpretability. Semi-parametric models 

conventionally leave the baseline survival distribution unspecified but assume a parametric 

form for how covariates modify this distribution. These semi-parametric models result in 

complex likelihoods and require assumptions such as the proportional hazards assumption 

of Cox (1972), or numerical approximations of the likelihood. Such approaches have been 

echoed in the machine learning community using neural networks (Katzman et al., 2018; 

Nagpal et al., 2021c). The increased modelling flexibility provided by these can lead to 

improved predictive performance.
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Nonetheless, neural networks approaches have continued to make similar parametric 

assumptions to obtain closed-form tractable likelihoods (Katzman et al., 2018; Nagpal 

et al., 2021b), or used numerical approximations and discretization of the timescale to 

a finite number of time intervals for computational efficiency (Lee et al., 2018). The 

improved performance compared to non-neural approaches justified the use of these 

methods but might result in sub-optimal modelling. Additionally, they might exacerbate 

the interpretability issue of neural networks: the optimisation leads to modelling well the 

wrong assumption instead of sub-optimal learning of the true distribution. Therefore, any 

interpretation of the weights might be misleading. This problem limits their applicability 

in the medical domain for which population-level survival profiles would provide a better 

understanding of risk and disease.

In this work, we introduce Neural Survival Clustering (NSC): a fully neural approach that 

models the cumulative hazard function as a mixture of neural networks. Each component 

models an unconstrained distribution that reflects a survival cluster in the studied population. 

Individual survival distributions are obtained as a weighted combination of the population-

level distributions. These weights are obtained through an assignment network. We show 

that this method benefits from better interpretability and group discovery compared to 

existing methods.

This paper first explores the related literature before introducing our proposed model. Next, 

applications to a synthetic and two real-world datasets demonstrate the effectiveness and 

interpretability of our approach.

2 Related work

The clinical literature traditionally relies on Cox proportional hazards models (Cox, 1972) 

to model survival outcomes: a linear combination of covariates h(X) = βTX is usually 

used to model deviations from a population's non-parametric baseline hazard λ0 on the 

log-hazard scale, i.e. λ(t|X) = λ0(t)eh(X) where λ is the instantaneous risk of an event 

conditional on survival until that time (the hazard) and X, a vector of covariates. This model 

assumes proportionality between the baseline and the individuals' evolutions. However, this 

assumption rarely holds in medical applications (Stablein et al., 1981) and extensions have 

been developed to allow more flexibility, such as stratified group baselines and covariate 

interactions.

These semi-parametric approaches have been extended to model more complex relationships 

between covariates and survival. DeepSurv (Katzman et al., 2018) extends the Cox Model 

with non-linear covariate interactions, i.e. h is a non-linear function of the covariates, such as 

the output of a neural network. The neural network's training maximises the model's partial 

log-likelihood as in traditional Cox models. However, this approach relies on the same 

proportional hazards assumption. To overcome this issue, DeepHit (Lee et al., 2018, 2019) 

divides the timescale into discrete intervals. The task becomes similar to a classification 

in which each outcome is a binary variable reflecting if the patient survived within a 

specific time interval. As a non-parametric model, this approach offers better discriminative 

performances when the underlying survival distribution is unknown. This model benefits 
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from being effortlessly extendable to competing risks but suffers from its discretisation that 

limits its applicability.

Another approach consisting of a time discretisation is modelling the hazard as constant 

on discrete intervals: Rava and Bradic (2020) modelled the problem as step-wise additive 

hazard functions. Other methods have been explored to avoid assumptions on the survival 

function: Bender et al. (2021) proposed a general framework for survival analysis by 

considering the intensity function as an exponential of a non-linear function. This form 

creates a parallel with Poisson regression and then can leverage any regression model. This 

approach discretises the prediction horizon to obtain a piece-wise exponential function. In 

its limit, an infinite discretization of the survival modelling leads to an ordinary differential 

equation (ODE) which is the approach adopted in Tang et al. (2020). This approach results 

in an assumption-free model that can maximise the exact likelihood but relies on an ODE 

solver. Closer to our work, Chilinski and Silva (2020); Omi et al. (2019); Rindt et al. (2021) 

described another neural network that does not approximate the likelihood while avoiding 

the computational burden of ODE. The authors propose to model the cumulative intensity 

function through a monotonic neural network, and leverage automatic differentiation to 

derive the exact likelihood.

Models have also been developed to leverage parametric distributions while allowing more 

flexibility. Nagpal et al. (2021a,b) proposes Deep Survival Machine (DSM), a mixture of 

Weibull distributions for predicting the survival of an individual. Parameters of the Weibulls 

and individual mixture weights are jointly learnt through a deep neural network. However, 

each component deviates from a population mean through the use of a neural network 

modelling individual effects.

The previously described approaches have extended survival modelling to complex non-

linear dependencies on covariates, improving performance at the cost of interpretability. 

Discriminative performance is essential for applicability but high stake applications require 

a better understanding of the survival outcome. For instance, current medical practice relies 

on identifying groups at different risks to adapt treatment. Models performing sub grouping 

therefore enhance interpretability and allow personalised treatment (Collins and Varmus, 

2015).

Survival clustering has been explored to tackle this issue in three different ways. First, as 

post-processing: a survival model is fitted to the population and the identified predictive 

covariates are used for clustering. For instance, Gaynor and Bair (2017); Bair et al. (2004) 

model survival using a Cox model and applied a K-Means clustering with a weighted 

distance. Xia et al. (2019) extracts the embedding obtained through a deep learning 

survival model to cluster the population. Nonetheless, clustering on covariates might not be 

consistent with outcomes (Bair et al., 2004; Gaynor and Bair, 2017). Second, as an objective 

in itself: data are clustered given the outcome by maximising the divergence between 

clusters' survival distributions (Mouli et al., 2019). Finally, as a joint optimisation: both 

clustering and survival objectives are jointly maximised as in the Bayesian profile regression 

(Chapfuwa et al., 2020; Liverani et al., 2021) or in Manduchi et al. (2021). Similarly, 

Nagpal et al. (2021c) explores a mixture of Cox regression with group baselines in which 
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individual covariates allow deviation from the Breslow estimator of the cumulative hazards. 

Each cluster assumes proportional hazards and the semi-parametric approach requires an 

expectation-maximisation (EM) optimisation. Direct joint optimisation should be preferred 

as multistage optimisation and EM approach might lead to suboptimal solution and slow 

convergence (McLachlan and Krishnan, 2007).

Our work is part of this third family with end to end optimisation. The proposed approach 

consists of a mixture of neural networks modelling non-parametric distributions of the 

cumulative hazard function. Each individual survival distribution is a combination of 

these distributions. This method leverages neural networks to obtain unconstrained cluster 

distributions while maximising the likelihood of the observed data. This results in a more 

interpretable neural network that does not rely on the assumptions made by the previous 

models.

3 Proposed Approach

3.1 Notation

We aim to model the survival outcome of a given population of the form {xi, ti, di}i where 

xi is a vector of the observed covariates for patient i, ti ∈ ℝ+ is the last time the patient 

was present in the study, and di represents the cause of end of follow-up. We assume 

non-informative censoring i.e. if di = 0, the patient is right-censored for a cause uncorrelated 

with the outcomes of interest, otherwise an event of interest was observed. In the remainder 

of this paper, we use “censored” to mean “right-censored”. However, the model can easily 

be extended to left censoring.

3.2 Model

Using a mixture of distributions for the hazard function has led to improved discriminative 

and calibration performances (Lee et al., 2019; Nagpal et al., 2021b). Previously described 

mixture models have focused on improving individual performances. These approaches do 

not enhance group interpretability as the baseline distributions are adjusted for individual 

characteristics or directly depend on their covariates (Nagpal et al., 2021b,c).

We propose a novel architecture with input x, the covariate vector, and the time of 

prediction, t, and with output Λ(t, x), the cumulative hazard at time t. Each neural network 

k in the mixture outputs Λk (t), which is defined as the integral of the instantaneous hazard 

from the time origin until the time t at which to evaluate the function. Its input consists 

of time t and a set of latent weights lk, learnt during training. Each component, therefore, 

represents the survival distribution of the kth cluster and does not directly depend on input 

data, i.e. x is not an input of the kth cluster.

As integral functions of a positive hazard function, these neural networks need to return a 

positive value, monotone over time. Chilinski and Silva (2020) introduces monotone neural 

network for density estimation by enforcing neural network to have positive weights. Omi et 

al. (2019) applies the non-smooth absolute function to ensure positive weights. We propose 

to use the log space or square function as in Rindt et al. (2021). This alternative guarantees 
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the derivative's existence. These weights' updates avoid complex optimisation while ensuring 

the desired property.

Finally, the additional constraint of being null at time t = 0 for the cumulative hazard 

must be enforced. Therefore, the neural network value at the origin time is subtracted 

from each component. This ensures that each component returns the well defined Λk. 

While the optimisation should enforce this constraint to reach optimal likelihood, its 

enforcement speeds up convergence and ensures stability and identifiability compared to 

previous methods (Omi et al., 2019; Rindt et al., 2021).

An individual survival function is then a weighted sum of these neural distributions as 

follows:

S(t x) = EZ [ ℙ (T ≥ t x, z)]
= ∑

k
ℙ (z = k x) ℙ (T ≥ t z = k)

= ∑
k

ℙ (z = k x)e−Λk(t)
(1)

in which z is the assigned cluster for the data x.

This assignment z is obtained through an additional neural network which outputs the 

probability vector α of belonging to each components, in which

αk(x) = ℙ (z = k x)

Figure 1 describes the proposed model. A first multi layer perceptron with inter-layer 

dropout estimates the mixture weights α1..K with a Softmax to ensure that their summation 

is equal to one. This assignment neural network leverages the individual data to allocate 

each point to a cluster. Each component of the mixture of networks takes the time t 

and the learnt latent representation lk as inputs to predict the cluster-specific cumulative 

hazard Λk(t). Finally, the survival function estimate is obtained as the weighted sum of the 

components as shown in equation (1). Note that one could consider a unique monotone 

neural network with a K-dimension output to scale to larger number of clusters.

3.3 Training Loss

The model is trained by maximising the survival likelihood. Our approach leverages the 

automatic differentiation used to train neural networks to compute the exact likelihood at 

no additional computational cost (Omi et al., 2019; Rindt et al., 2021). In our setting, each 

component k computes: t, lk → Λk (t) with lk, the latent cluster representation and Λk, the 

cumulative hazard function for this kth component, i.e. Λk (t) = ∫0
tλk(u)du . Using automatic 

differentiation, one obtains the instantaneous hazard function λk(t).

Focusing on the set of uncensored patients U, the likelihood contribution of the observation 

(xi,ti)i∈U is the probability of surviving until ti i.e. Sk (ti) = e−Λk (ti) multiplied by the 
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instantaneous hazard of observing an event at ti i.e. λk (ti). This leads to the log likelihood 

contribution for the set U:

lmix
U = ∑

i ∈ U
log∑

k
αk(xi)λk(ti)e−Λk(ti)

(2)

Similarly, the log likelihood contribution for the set of censored patients C consists of the 

probability of surviving up to the censoring time, and can be computed as follows

lmix
C = ∑

i ∈ C
log∑

k
αk(xi)e−Λk(ti)

(3)

The final model is trained by maximising the log likelihood obtained by summing (2) and 

(3)

lmix = lmix
C + lmix

U (4)

4 Experiments

4.1 Datasets Description

Following a similar experiment setting and pre-processing as in Nagpal et al. (2021b), we 

present results on the three following single-event and single-risk datasets:

• METABRIC (Curtis et al., 2012) with 1,904 patients presenting 9 genetics and 

clinical covariates. 57.9% of the population died from breast cancer.

• SUPPORT (Knaus et al., 1995) consisting of 9,105 patients with 30 demographic 

and medical history covariates. 68.1% of the cohort died during the 180-day 

observation period.

• Synthetic (Kvamme et al., 2019) with 25,000 synthetic patients with 3 covariates 

following a non-linear non-proportional hazard. The censoring rate is 34.5%.

4.2 Benchmark Models

For predictive performance comparisons, our method: Neural Survival Clustering (NSC), 

was compared to a Cox Proportional Hazards model CoxPH (Cox, 1972) which expresses 

the hazard as

λ(t|x) = λ0(t)eβT x

with λ0(t) the unspecified baseline hazard and β, the learnt vector of coefficients modelling 

the covariates' effect on survival. Its deep learning extension DeepSurv (Katzman et al., 

2018), which leverages a neural network to estimate the covariate effect, was also used 

for comparison. Moreover, the performance of the monotone survival neural network SuMo-
net (Rindt et al., 2021) was also compared, as our work uses a similar network for the 
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distribution modelling. Additionally, we analysed the performance of Deep-Hit (Lee et al., 

2018), which discretizes the survival horizon to train the model as a discrete classification 

task. Finally, a mixture of Weibull distributions conditioned on a deep representation of the 

covariates, known as Deep Survival Machine (DSM Nagpal et al. (2021b)), was evaluated.

For population clustering, we compare our model to a mixture of Cox models known as 

Deep Cox Mixture (DCM Nagpal et al. (2021c)). While this method allows individual 

flexibility as each patient can deviate from a non-parametric cluster baseline, it relies on 

expectation-maximisation iterations and Breslow estimators that might respectively lead 

to sub-optimal modelling and overfitting. As a final clustering baseline, we considered a 

Cox-Weighted K-Means (CWKM) in which the covariates are divided using a K-means 

algorithm with an Euclidean distance weighted by the Cox regression and a Kaplan-Meier 

estimator to estimate the survival distribution for each group.

4.3 Experimental Settings

The experiments consist of a 5-fold cross-validation with identical splits for every model. 

Our proposed approach was fitted on 1000 epochs with hyper-parameters selected over 

100 random iterations. The random search used the following grid: learning rate (0.001 or 

0.0001), batch size (100 or 250), number of layers for both mixture weights and survival 

neural networks (1, 2, 3) with number of nodes (50 or 100), number of components for 

the mixture (〚2, 5〛) and size of the latent cluster representation (10, 50, 100). Adam 

optimiser (Kingma and Ba, 2015) was used. Finally, Tanh activation function was used to 

ensure the existence of the cumulative intensity's derivative.

The parameter search for all other methods used a similar grid (when appropriate). 

Additionally, following (Nagpal et al., 2021b), we optimised DSM over the type of 

distributions (LogNormal or Weibull) and used 10,000 warming epochs. Four intervals were 

used for DeepHit to discretise the timescale. These splits reflect the evaluation at 0.25, 0.5 

and 0.75 quantiles. The training procedure relied on an early stopping criterion on 10% of 

the training split using the negative log-likelihood loss.

4.4 Evaluation metrics

Survival performances were measured using time-dependent Brier score (Graf et al., 1999) 

and cumulative time-dependent C Index (Hung and Chiang, 2010) at the dataset-specific 

0.25, 0.5 and 0.75 quantiles of the uncensored population event times, and averaged over the 

5-fold cross-validation. Means and standard deviations are reported.

Table 1 reports the percentage of patients experiencing temporal censoring and observed 

outcomes of the different datasets at the 0.25, 0.5 and 0.75 quartiles of observed events in 

the population used for performance evaluation.

Time dependent Brier score was used to measure models' calibration in the presence of right 

censored data. It is defined at time t as:
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BS(t) = 1
n∑

i
[ω(ti)1i ∈ U ∧ ti ≤ tS(t|xi)2

+ω(t)1ti > t(1 − S(t|xi))
2]

with 1, the indicator function, S(t|x), the predicted survival probability at time t and ω(t), the 

Kaplan-Meier estimate of the inverse probability of censoring weight.

The time-dependent C index is a generalisation of ROC-AUC to survival labels with right 

censoring. It captures the discriminative performance of a model by measuring the ordering 

of the survival predictions:

C Index(t) =
∑i, jω(ti)1(ti ≤ t) ∧ (t < tj) ∧ (S(t|xj) > S(t|xi)

[∑k1tk > t][∑kω(tk)1tk ≤ t]

5 Results

5.1 Performance

Table 2 presents the time-dependent C index and Brier score performance of the different 

models.

On METABRIC, the proposed approach (NSC) consistently outperforms DCM by a 

large margin and competes with state-of-the-art deep learning approaches. This advantage 

might result from the proportional hazards assumption and the sub-optimal expectation-

maximisation used by DCM. Note that the competitive advantage of neural network 

approaches fades at larger time horizons, with a decreasing margin between the Cox model 

and the best performing models. DeepHit exemplifies this issue as it suffers from less 

populated horizons. Lastly, leveraging the non-linear relation between covariates provides 

an edge as shown by the difference between CoxPH and DeepSurv. These results confirm 

the following observations made in the literature (Wang et al., 2019; Lee et al., 2019): 

non-parametric models present superior discriminative performance when the survival 

distribution is unknown or misspecified and, more complex approaches' performance suffers 

from less populated time horizons.

Identical observations are echoed for the SUPPORT dataset for which the proposed 

approach offers a significant improvement compared to state-of-theart models. The absence 

of censored patients and the potential presence of groups (Knaus et al., 1995) might 

explain this advantage. One can note that DCM presents more competitive results in this 

example as it might have reached a more stable solution. Lastly, SuMo-net presents similar 

performance to our model as it relies on a similar structure. Nonetheless, our approach has 

an interpretability edge by extracting population phenotypes that do not directly rely on the 

input covariates.

Finally, the Synthetic experiment shows the limit of the proposed method that does not 

allow the distributions to directly depend on the input data. This explains the competitive 
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advantage of SuMo-net, DeepHit and DSM that model the survival outcome as a non-linear 

transformation of the covariates. Nonetheless, the existence of phenotypes in real-world 

medical datasets is better leveraged by our proposed method which results in higher 

interpretability.

From these experiments one can make the three following conclusions:

• While our approach does not aim to maximise discriminative performances but 

to discover clusters, it nonetheless challenges other state-of-the-art methods.

• Our method identifies survival distributions aligned with the observed outcome.

• The unconstrained family of survival distributions learnt by our method allows 

more flexibility compared to DSM and DCM, despite not relying on input 

covariates.

5.2 Clustering

The proposed approach aims to provide new insights into the survival distributions present 

in the data. To demonstrate the capacity of the model to identify groups, we further study 

the METABRIC results. In this analysis, the number of clusters was selected by an elbow 

rule on the negative log-likelihood with a fixed number of components (See Figure 3 in the 

Appendix). Then, the cross-validation was re-run with the selected number of components. 

Presented in Figure 2 are the average clusters obtained on the METABRIC over the 5-fold 

test sets. Three main conclusions can be made from this analysis.

First, the family of survival distribution is unconstrained as monotone neural networks 

are universal approximators (Lang, 2005). This flexibility allows for the recovery of 

the population clusters despite differences in survival distributions. In this example, one 

can note how distinguishable are the identified baseline distributions. Additionally, the 

narrowness of the 95% confidence bands shows the algorithm's consistency over the 5-fold 

cross-validation, validating the stability of these three clusters in the population.

Second, as further validation of the obtained distributions, every point was assigned to 

one cluster by discrete allocation to the highest estimated cluster probability of z. A Kaplan-

Meier estimate was then fitted to estimate the median survival time in each group. A 

log-rank test tested if the survival distributions were significantly distinct at the 5% level of 

significance. Table 3 summarises the characteristics of the clusters with the average median 

survival time obtained over the 5-fold cross-validation, the percentage of the study cohort 

present in each cluster, the proportion of censored patients and the covariates' average values 

for DCM, NSC and CWKM. While all methods lead to statistically significantly different 

clusters' survival distribution, NSC identifies a population of long-term survivors with a 

median life expectancy after diagnosis close to double that of the other groups.

Third, membership to a cluster can be further studied as the obtained survival distributions 

do not rely on patients' covariates. A permutation of the covariates (Breiman, 2001) on the 

assignment network's inputs identified age at diagnosis, chemotherapy indicator and ERBB2 

gene marker as the most discriminative covariates between groups (See Figure 5 in the 

Appendix). These covariates were averaged per group in Table 3. This confirms observations 
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made on the improved recovery for younger patients and the increased risk for patients 

with ERBB2 marker (Curtis et al., 2012) as patients belonging to cluster 0 show higher 

predominance of this gene marker and shorter life expectancy. However, the permutation 

approach does not allow formulating causal conclusions. This limitation is underlined by 

the chemotherapy distribution: the use of chemotherapy might reflect how advanced the 

condition is but might also be linked to the genetics of the breast cancer as well as patients' 

preference and other treatment option. Hence, the observation of lower chemotherapy 

prevalence in clusters 1 and 2 despite longer median survival times in comparison to cluster 

0.

6 Conclusion

In this paper, we propose a non-parametric survival clustering approach that consists of a 

mixture of survival distributions modelled through monotone neural networks. This work 

builds upon the previous literature by generalising (Nagpal et al., 2021b,c) to non-parametric 

distributions, independent of the input data while avoiding assumptions of proportional 

hazards and sub optimal expectation-maximisation (EM) training. The use of neural 

distributions as an alternative to the Breslow estimators allows an end-to-end optimisation 

of the observed likelihood leading to a more reliable optimisation (than EM training) and 

therefore more stable and interpretable clusters. Our approach remains highly interpretable 

as the neural networks define cluster distributions at the population-level. The input data are 

only leveraged to identify membership to the different clusters. This work shows state-of-

the-art performance while providing better insight into the survival distributions observed in 

the population. While a deeper exploration of the model's assignment does not lead to causal 

conclusions, it opens avenues for further research on potential risk factors. As future work, 

we aim to automatically discover the optimal number of components, left as a parameter 

tuning problem in this work.
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Figure 1. Neural Survival Clustering Architecture.
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Figure 2. Survival clusters observed in the METABRIC dataset.
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Table 1
Percentages of patients observing an outcomes by the evaluation’s times.

Dataset Outcome q 0.25 q 0.5 q 0.75

METABRIC
Censored 2.05 6.83 18.86

Dead 14.50 28.94 43.43

SUPPORT
Censored 0.00 0.00 0.00

Dead 16.71 33.96 51.03

Synthetic
Censored 5.46 13.01 20.74

Risk 16.38 32.77 49.15
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Table 2
Models’ performance - Mean (standard deviation) over the 5-fold cross validation with best 
performance in bold and second best in italic.

C Index Brier Score

Model q 0.25 q 0.5 q 0.75 q 0.25 q 0.5 q 0.75

METABRIC

NSC  0.700 (0.06) 0.669 (0.05) 0.647 (0.04) 0.117 (0.02)  0.192 (0.02) 0.222 (0.02)

DCM  0.552 (0.08)  0.543 (0.09)  0.547 (0.09)  0.125 (0.01)  0.210 (0.01)  0.249 (0.01)

DSM 0.701 (0.06)  0.662 (0.04)  0.642 (0.04) 0.117 (0.02)  0.191 (0.02) 0.222 (0.02)

SuMo-net 0.701 (0.06)  0.667 (0.04)  0.640 (0.03)  0.118 (0.02) 0.190 (0.02)  0.223 (0.02)

DeepHit  0.680 (0.08)  0.631 (0.05)  0.600 (0.03)  0.120 (0.02)  0.200 (0.02)  0.236 (0.01)

DeepSurv  0.631 (0.04)  0.633 (0.03)  0.634 (0.04)  0.122 (0.02)  0.197 (0.02)  0.227 (0.02)

CoxPH  0.630 (0.02)  0.626 (0.02)  0.633 (0.03)  0.121 (0.01)  0.196 (0.01)  0.223 (0.02)

SUPPORT

NSC  0.749 (0.01) 0.713 (0.01) 0.681 (0.01)  0.128 (0.01) 0.189 (0.00)  0.212 (0.00)

DCM  0.690 (0.10)  0.663 (0.08)  0.639 (0.06)  0.132 (0.01)  0.200 (0.02)  0.220 (0.02)

DSM  0.733 (0.01)  0.699 (0.01)  0.653 (0.01)  0.136 (0.01)  0.204 (0.01)  0.219 (0.00)

SuMo-net 0.754 (0.02)  0.713 (0.01)  0.680 (0.01) 0.124 (0.01) 0.189 (0.01) 0.211 (0.00)

DeepHit  0.736 (0.01)  0.685 (0.01)  0.617 (0.01)  0.134 (0.01)  0.210 (0.00)  0.234 (0.00)

DeepSurv  0.683 (0.01)  0.665 (0.01)  0.663 (0.01)  0.134 (0.01)  0.201 (0.01)  0.216 (0.00)

CoxPH  0.683 (0.02)  0.668 (0.01)  0.667 (0.01)  0.135 (0.01)  0.201 (0.01)  0.214 (0.00)

Synthetic

NSC  0.856 (0.01)  0.838 (0.00)  0.802 (0.00)  0.097 (0.00)  0.134 (0.00)  0.131 (0.00)

DCM  0.850 (0.00)  0.827 (0.00)  0.806 (0.00)  0.095 (0.00)  0.131 (0.00)  0.145 (0.00)

DSM  0.858 (0.01)  0.841 (0.00) 0.827 (0.00)  0.085 (0.00)  0.122 (0.00)  0.121 (0.00)

SuMo-net 0.861 (0.01) 0.843 (0.00) 0.827 (0.01) 0.084 (0.00) 0.117 (0.00) 0.112 (0.00)

DeepHit  0.859 (0.01)  0.839 (0.01)  0.818 (0.01)  0.100 (0.00)  0.153 (0.00)  0.153 (0.00)

DeepSurv  0.846 (0.01)  0.834 (0.00) 0.827 (0.00)  0.087 (0.00)  0.122 (0.00)  0.116 (0.00)

CoxPH  0.846 (0.00)  0.821 (0.00)  0.794 (0.00)  0.092 (0.00)  0.134 (0.00)  0.152 (0.00)
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Table 3
METABRIC - Clusters’ characteristics

Models Cluster 0

Median Survival Population % Censored || Age At Diagnosis Chemotherapy ERBB2

NSC 102.22 23.95 % 33.55 % || 61.20 51.75 % 6.12

DCM 138.97 71.64 % 37.31 % || 64.10 22.95 % 5.88

CWKM 139.90 19.22 % 49.18 % || 48.63 99.73 % 6.01

Cluster 1

Median Survival Population % Censored || Age At Diagnosis Chemotherapy ERBB2

NSC 135.75 45.06 % 33.57 % || 68.94 0.23 % 5.80

DCM 205.71 28.36 % 54.07 % || 53.46 15.37 % 5.85

CWKM 125.17 47.69 % 28.41 % || 72.13 3.41 % 5.84

Cluster 2

Median Survival Population % Censored || Age At Diagnosis Chemotherapy ERBB2

NSC >237.82 30.99 % 61.02 % || 49.58 26.78 % 5.79

CWKM 230.71 33.09 % 57.62 % || 52.41 0.00 % 5.84
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