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Abstract

Background: Brain state classification has been accomplished using features such as voxel intensities, derived from
functional magnetic resonance imaging (fMRI) data, as inputs to efficient classifiers such as support vector machines (SVM)
and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain
function, features from brain networks may provide increased discriminatory power for brain state classification.

Methodology/Principal Findings: In this study, we introduce a novel framework where in both functional connectivity (FC)
based on instantaneous temporal correlation and effective connectivity (EC) based on causal influence in brain networks are
used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us
called correlation-purged Granger causality (CPGC) in order to obtain both FC and EC from fMRI data simultaneously
without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and
performance accuracy is enhanced by combining recursive cluster elimination (RCE) algorithm with the SVM classifier. We
demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification
exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3%
accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral
differences were found between exposed and healthy subjects.

Conclusions/Significance: The framework adopted in this work is quite general in nature with prenatal cocaine exposure
being only an illustrative example of the power of this approach. In any brain state classification approach using
neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When
brain state classification is used for disease state prediction, our approach may aid the clinicians in performing more
accurate diagnosis of diseases in situations where in non-neuroimaging biomarkers may be unable to perform differential
diagnosis with certainty.
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Introduction

Functional magnetic resonance imaging (fMRI) is an effective

and non-invasive technology for investigating brain function.

Consequently, fMRI data has been extensively used to investigate

the neural correlates of healthy and disease states with respect to

various sensory, motor and cognitive brain processes. Traditional

approaches rely on statistical differences between the data

obtained from two different populations or two different

conditions within the same population. However, statistical

separation of data features between groups does not imply that

those features have a predictive value in foretelling the group to

which a novel example will belong. Therefore, statistical

separation based on hypothesis testing has limited value in the

generalizability of the results, a key goal in any scientific endeavor.

This has led to the introduction of machine learning approaches

into neuroimaging which use a part of the data to learn the rules

which discriminate between the groups and which can then be

generalized with some accuracy.

Methodologically, most of the neuroimaging studies use a

specific machine learning framework for classification. This

framework consists of three parts. The first part is pattern analysis

for feature extraction where in specific characteristics are obtained

from the data with the hope that they will be different for different

classes. Commonly used features include voxel intensities [1,2] and

temporal synchrony [3]. The second part is feature selection. Since
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not all features may distinguish the classes, ‘‘filter methods’’ such

as t-tests [4] or ‘‘wrapper methods’’ such as recursive feature

elimination (RFE) [3] are employed to select only those features

which have the discriminatory power. Generally, the wrapper

methods perform better than the filter methods for feature

selection [2]. In the third part, the selected features are input to

a machine learning algorithm which learns the implicit rule which

separates the classes such that it will be able to correctly assign a

novel example into the correct class. Both univariate and

multivariate methods [2] have been used for classifying neuroim-

aging data. Multivariate methods based on multiple voxel pattern

analysis (MVPA) provide a distinct advantage over the univariate

methods [5]. Within MVPA, support vector machines (SVM) have

been reported to be very reliable and less sensitive to noise [4].

Strategies using specific combinations of each of the individual

parts of the framework described above have been previously used.

For example, MVPAs which use the functional connectivity

(defined as the instantaneous non-directional temporal correlation

between brain regions) information as opposed to just voxel

intensities have been shown to perform better [3]. In this regard,

SVM based classifiers have been demonstrated to reliably

distinguish patients with major depressive disorder (MDD) from

healthy controls based on their resting state functional connectivity

patterns [3]. Effective connectivity, as opposed to functional

connectivity, provides information on the direction of time-

delayed causal influences between regions and is expected to

improve the classification accuracy. In this regard, another study

used multivariate partial least squares and structural equation

modeling (SEM) to distinguish MDD patients receiving different

treatments based on their effective connectivity patterns derived

from SEM [6]. However, since SEM limits the number of regions

that can be included in the model and requires a priori specification

of their connectivity architecture, it has limited utility as a data

driven approach and hence does not completely exploit the

advantages of SVM, which is fully data driven and which works

best when the feature space is adequately sampled.

In order to maximize prediction accuracy, the features extracted

from the data must have as much discriminatory power as

possible, the feature selection must reliably eliminate, in a

computationally efficient manner, the features that do not possess

the discriminatory power and the classifier must be able to exploit

the discriminatory power available in the selected feature space.

While very efficient classifiers have been developed in the machine

learning field, their utility in neuroimaging is dependent upon

effective feature extraction and selection strategies which are

developed in the neuroimaging field. To this end, we propose a

novel combination of feature extraction, selection and classifica-

tion strategies which may maximize prediction accuracy for brain

state classification. Our feature extraction is based on a variant of

Granger causality (GC), called correlation-purged Granger

causality (CPGC), which is capable of inferring the underlying

causal brain networks without interference from instantaneous

correlation [7,8]. CPGC can provide the directional causality

information without making any a priori assumptions about the

underlying connectivity architecture or limitations about the

number of regions. Owing to the superiority of wrapper methods

over filtering methods, we adopt recursive cluster elimination

(RCE) [9] for feature selection since it is faster than RFE and also

considers feature clusters rather than individual features [9].

Finally, we use a linear SVM classifier as its potency has been

amply demonstrated before [1]. This is the first study, to the best

of our knowledge, to use effective connectivity for feature

extraction in combination with RCE for feature selection for

brain state classification.

We illustrate this approach to brain state classification using a

specific instance of disease state prediction by successfully

predicting whether any given subject was prenatally exposed to

cocaine when no significant behavioral differences were found

between the two groups. Prenatal cocaine exposure (PCE) can be

associated with behavioral problems in children and adolescents

that affect occupational, behavioral and emotional functioning

[10–13]. Such problems may be the effect of alterations in an

arousal regulatory mechanism in the brain where one’s ability to

adjust and allocate mental resources for distinct yet interactive

streams of information processing is compromised [14]. Arousal

regulation involves multiple brain circuits such as the Default

mode network, emotional network and executive control network.

Previous neuroimaging task-based studies from our group using

fMRI have shown that in subjects prenatally exposed to cocaine,

some regions corresponding to the above networks exhibit activity

different from those observed in their healthy counterparts [15].

However, other studies which investigated only one of the above

networks reported no significant activation differences between the

PCE and control groups. For example, Hurt and colleagues found

similar activations in the executive control network of both the

groups during a working memory task [16]. Given previous studies

which have indicated that PCE effects are subtle (despite

significant social consequences) [17], finding objective and

consistent biomarkers based on neuroimaging data remains a

challenge. This makes an interesting test case for the applicability

of sophisticated pattern analysis and machine learning approaches

for brain state classification.

In this study, we examine the hypothesis that the neurobiolog-

ical basis of the teratological effects of PCE may involve baseline

(or resting state) alterations in the interactions between multiple

brain networks and hence may not be apparent in spatially

localized task based activations. Given that resting state networks

have been shown previously to be sensitive to baseline alterations

in various disorders such as cocaine abuse [18], Tourette

syndrome [19], multiple sclerosis [20] and Alzheimer’s disease

[21], we posit that the same would hold true in the case of PCE. In

general, resting state also has the advantage of not requiring any

task to be performed as it may be difficult for people with clinical

conditions to perform certain tasks inside the scanner. Accord-

ingly, we will obtain resting state functional and effective

connectivity networks from fMRI data acquired from both healthy

and PCE groups and use those as features in our classifier. Finally,

we will compare the classifier performance obtained from resting

state networks with those obtained from behavioral data, resting

state voxel intensities, task activations and task-based networks.

Materials and Methods

Subjects
Participants were adolescents recruited from cohorts identified

originally as part of two longitudinal studies of PCE on infant

development [22,23]. Both cohorts were drawn from a low

income, predominantly African-American population with infants

delivered at an urban hospital during 1987–1994. The PCE and

control participants in the present study respectively comprised 30

(19M11F, 15.362.1 y.o.) and 26 (10M16F, 14.962.3 y.o.)

participants. The participants used in the present study largely

overlapped with those used in our previous study [15]. However,

the present study used resting data while the previous study

focused on activations; therefore some subjects with good resting

data failed to follow task instructions (thus no activation data) and

some subjects with good activation data did not have the imaging

slice covering the amygdala. Consequently, there was some

Classification by Connectivity
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mismatch between the present sample and that reported

previously. The index of sample overlap (ISO) is often used to

assess the overlap between samples and is given by

ISO~

number of participants contributed to all the samples

number of participants contributed to any one of the samples

For the two samples used in this paper and our previous paper

[15], the ISO is 0.88. Prenatal cocaine exposure was determined

by maternal self-report and/or positive urine screen at recruitment

post-partum. Positive maternal urine screens at labor and delivery

and during pregnancy noted in the medical record were also

accepted as evidence of use. More information regarding the

determination of substance use, participants’ inclusionary criteria,

and classification of participants into experimental groups have

been described extensively in previous reports [22,23].

Data Acquisition and Pre-processing
Experimental design. Behavioral data used in the present

study were acquired from a cognitive task that the participants

performed in separate fMRI activation scans. To investigate

interactions between neural responses of working memory and

emotion processing, this task had 4 conditions: 0-back task with

neutral emotional distraction, 1-back task with neutral distraction,

0-back task with negative distraction, and 1-back task with

negative distraction. Participants in this task were instructed to

focus on the memory tasks (0- or 1-back) and ignore the emotional

distractions. For the memory task, each subject provided 8

behavioral measurements with one accuracy index and one

reaction time (only correct responses) for each of the 4

conditions. The accuracy index is the product of the true hit

fraction with (1- false alarm fraction) and hence combines both

sensitivity and specificity factors. Details about the task design and

statistical group comparisons of behavioral performances were

reported in our previous publication [15]. Briefly, the memory

performance decreased with either higher memory load or/and

negative emotional distraction. However, as the task paradigm was

deliberately designed to minimize behavioral group difference, no

significant group differences in task performance were observed.

MRI data. With a 3T MRI scanner (Siemens Medical

Solutions, Malvern, PA), both the resting-state and task scans

used a T2*-weighted echo-planar imaging sequence. The

acquisition parameters for the task were: 120 volumes per scan,

matrix = 64664, 30 axial slices, 3 mm in thickness without gap,

repetition time (TR)/echo time (TE) = 3000 ms/30 ms, flip

angle = 90u, field of view (FOV) = 192 cm. For the resting state

scan, the parameters were: 210 time points, matrix = 64664,

20 axial slices without gap, slice thickness = 4 mm,

TR/TE = 2000 ms/30 ms, flip angle = 90u, FOV = 192 cm.

Corresponding high resolution (2566256) 3D T1-weighted

anatomical images were also acquired for each subject. Image

preprocessing for the task data followed the standard pre-

processing pipeline while that for the resting state data included

slice timing correction, rigid body registration, regressing out of

white matter and CSF time series and 0.009 Hz,f,0.08 Hz

temporal band-pass filtering.

Regions of Interest (ROI) Selection and Network
Identification

Results of our previous fMRI studies [15,24] showed that PCE

could alter brain activation in regions associated with arousal

regulation (amygdala and default mode network) and that these

alterations in turn affected brain activations involved in cognitive

processes (e.g. lateral prefrontal cortex). Based on these previous

findings, 9 regions of interest were defined in the present study

including bilateral amygdala, bilateral lateral prefrontal cortex

(PFC), bilateral parietal cortex, medial prefrontal cortex (MPFC),

anterior cingulate cortex (ACC) and posterior cingulate cortex

(PCC). The amygdala and cingulate ROIs (PCC and ACC)

represented nodes of the emotional network and default mode

network, respectively, which together constitute the arousal

regulation network, while the PFC and parietal ROIs represented

nodes of the executive control network. As the participants

performed a working task with emotional distractions, these ROIs

were derived from the results (voxel-wise p,0.001, uncorrected) of

a 2 (high vs. low memory load) 62 (negative vs. neutral emotional

arousal) repeated ANOVA. The bilateral amygdala exhibited the

positive emotion effect (BOLD signal higher in the negative

condition than neutral); the bilateral prefrontal, parietal and

medial prefrontal cortices exhibited the positive memory effect

(BOLD signal higher in the 1-back condition than 0-back); and the

anterior/posterior cingulate cortices exhibited the negative

memory effect (BOLD signal higher in the 0-back condition than

1-back). To avoid biasing the ROIs to activations/deactivations of

either group, the ANOVA used equal numbers of participants

from both group (23 PCE +23 control subjects). Talairach co-

ordinates [25] and volumes of those ROIs are shown in Table 1.

Nine time series, each being the average from all the voxels within

an ROI, were extracted for subsequent analysis.

Correlation-purged Granger Causality
Given k time series X(t) = [x1(t) x2(t) … xk(t)], with k being 9 in

this study, the traditional vector autoregressive (VAR) model of

order p is given by:

X tð Þ~A 1ð ÞX t{1ð ÞzA 2ð ÞX t{2ð Þz � � �z

A pð ÞX t{pð ÞzE tð Þ
ð1Þ

where E(t) is the model error and A(1) … A(p) are the coefficients

of the VAR model. Multivariate Granger causality can be derived

based on the model coefficients A(1) … A(p) as in previous studies

[26–30].

Table 1. The regions of interest defined from task activations.

Regions of interests Talairach coordinates* Volume (mm3)

Left amygdala 23.6, 6.9, 210.5 2147

Right amygdala 225.2, 6.6, 210.7 2481

Left lateral prefrontal
cortex

41.5, 27.5, 32.5 2466

Right lateral prefrontal
cortex

241.5, 210.9, 31.5 2294

Left parietal cortex 34.0, 49.5, 42.4 4529

Right parietal cortex 234.8, 47.6, 44.1 5265

Anterior cingulate cortex 0.6, 248.9, 10.0 12464

Posterior cingulate cortex 2.5, 49.4, 24.3 14090

Medial prefrontal cortex 0.7, 212.3, 46.6 5063

*Coordinates reported in AFNI format (http://afni.nimh.nih.gov/afni/doc/faq/
59).
doi:10.1371/journal.pone.0014277.t001
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PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14277



GCij~
Xp

n~1

a2
ij nð Þ ð2Þ

where aij are the elements of the matrix A. We introduced the zero-

lag term into Eq.1 as shown below to account for the zero-lag

correlation effects.

X tð Þ~A0 0ð ÞX tð ÞzA0 1ð ÞX t{1ð ÞzA0 2ð ÞX t{2ð Þz � � �z

A0 pð ÞX t{pð ÞzE0 tð Þ
ð3Þ

Eq.3 represents a modified VAR (mVAR) model where the

diagonal elements of A’(0) are zero such that only the

instantaneous cross-correlation, and not the auto-correlation,

between the time series are modeled. The model coefficients

obtained from Eq.3 are not equal to those obtained from Eq.1, i.e.

A’(1) … A’ (p)?A(1) … A(p) because the inclusion of the zero-lag

term affects the value of other coefficients. GC obtained from A’(1)

… A’ (p) are free from the effects of zero-lag correlation and is

defined as correlation-purged GC (CPGC) [7,8].

CPGCij~
Xp

n~1

a0ij nð Þ
h i2

ð4Þ

In addition, the zero-lag correlation between the time series is

given by A’(0). The mVAR model’s order was determined using

Bayesian Information Criterion (BIC) [31].

Feature Extraction
Different types of features were derived from both task-based

and resting state fMRI data and behavioral data as described

below.

1. Behavioral data: The accuracy index and reaction time obtained

from each of the 4 experimental conditions.

2. Task Activation: The beta values obtained from the activation

GLM for each of the 9 ROIs and for each of the 4 conditions.

3. Resting State Voxel Intensities: Classifiers dealing with task-based

fMRI data usually consider the beta values at each voxel or

time series from activated voxels obtained from a general linear

model as input features [2]. However, this approach cannot be

utilized in the absence of experimental modulation of brain

activity such as during resting state. Consequently, the entire

resting state time series of each ROI was selected as

multidimensional input features to the classifier. This enabled

us to compare the efficacy of univariate features as opposed to

connectivity features which are multivariate in nature.

4. Resting State Connectivity: The time series representing the 9 ROIs

for each subject was input into the mVAR model described

before, to obtain both causal and instantaneous correlation

networks for every subject. First, the path weights of the

instantaneous correlation networks were input into the RCE-

SVM classifier. Subsequently, both causal and instantaneous

connectivity features were used as inputs. Finally, instantaneous

connectivity was obtained from the traditionally used Pearson’s

correlation and used as features in the classifier for comparison.

In addition, a t-test was performed to identify the connectivity

features which were significantly different between the two

groups.

5. Task-based connectivity: The procedure described in the previous

paragraph was applied to task-based data instead of resting

state data.

Recursive Cluster Elimination based Support Vector
Machine (RCE-SVM) Classifier

SVM is a machine learning approach developed by Vapnik [32]

and has been extensively used for classification in many different

fields [33]. It has been previously demonstrated that using

discriminatory features, i.e. those features which assume statisti-

cally different values for the classes under consideration, enhances

the performance of SVM-based classification [3]. To this end,

filtering methods and wrapper methods have been used [3]. The

filtering approach is based on using statistical tests such as t-test to

select features which are statistically different between the classes.

Wrapper methods such as RFE and RCE are based on iteratively

eliminating features so as to minimize the prediction error. In

wrapper methods such as RCE, the feature selection/elimination

and classification steps are embedded with each other and are

repeated after each iteration. Therefore, we refer to it as the RCE-

SVM classifier. The potency of the RCE-SVM classifier has been

previously established in the context of gene classification [9],

though this is its first application to the field of neuroimaging to

the best of our knowledge.

The main steps of the RCE-SVM algorithm, shown in the

flowchart in Fig. 1, are the cluster step, the SVM scoring step and

the RCE step. First, the input features for all the 56 subjects (30

PCE and 26 healthy subjects) were partitioned into two parts, each

containing 15 PCE and 13 control subjects. The first part was used

for training and the second part for testing. In the clustering step,

the training data was clustered into n clusters using K-means

algorithm [34]. The number of clusters was first set to the number

of features and was progressively decreased by one until there were

no empty clusters. The n obtained by this iteration served as the

initial n for the RCE-SVM loop. In the SVM scoring step, the

score of each cluster, defined as its ability to differentiate the two

classes of samples by applying linear SVM, was obtained. In order

to calculate the score of each cluster, we randomly partitioned the

training data into 10 non-overlapping subsets of equal sizes (10

folds). Linear SVM was trained using 9 subsets and the remaining

subset was used to calculate the performance. The clustering and

cross-validation procedure was repeated 500 times in order to take

into account different possible partitionings. The average accuracy

of the SVM over all the folds and repetitions was designated as the

score of the corresponding cluster. For each of the 500 repetitions,

classification accuracy was ascertained using the test data. In the

RCE step, the bottom 10% of the clusters with the lowest score

was eliminated. The surviving features were merged, n was

decreased by 10% and the above three steps performed again in

an iterative fashion. With every successive iteration, the testing

data was used to assess the performance of the classifier with a

lower number of features compared to the previous iteration. The

complete separation of training and testing data also ensures that

there is no bias in the performance accuracy [35]. The procedure

was terminated when the number of clusters was equal to one.

However, the classifier performance was plotted only until

maximum accuracy with minimum number of features was

obtained. The features corresponding to that iteration were

tabulated and rank ordered based on their scores. The evolving

accuracy was calculated at every RCE-SVM loop as the mean

accuracy of all 500 repetitions calculated at each loop using the

feature clusters of test data available at the corresponding loop

(Fig. 1).

Classification by Connectivity
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Results

The evolving accuracy of the RCE-SVM classifier using features

from behavioral data, resting state BOLD intensities and task

activations is shown in the top panel of Fig. 2. Table 2 shows the

corresponding maximum accuracies achieved and the ranking of

the features for maximum accuracy based on their SVM scores. It

is evident that the final accuracy of 59% obtained from behavioral

data is just above chance and of no practical value. Among the

behavioral features, the ones for the negative 0-back condition

seemed to carry limited discriminatory information between the

groups. As reported before in our previous study [15], 2 (emotion

effect, neutral vs. negative) 62 (memory effect, 0-back vs. 1-back)

62 (exposure, PCE vs. control) ANOVA revealed significant

emotion, memory and emotion 6memory interaction effects, but

no group differences between PCE and controls. Even though the

performance of the classifier using resting state voxel intensities

and task beta values was better than that using behavioral data, the

final accuracies of 73.4% and 72.3%, respectively, is not high

enough for use in practical applications. Resting state voxel

intensities from PCC and R Parietal and task beta values from R

Parietal negative 0-back condition and L PFC Negative 1-back

condition provided maximum accuracy, respectively.

The evolving accuracy of the RCE-SVM classifier using task-

based connectivity features is shown in the bottom panel of Fig. 2. It

can be seen that as the RCE algorithm eliminated the features, the

accuracy of classification steadily improved up to 79.2%, 73.3% and

81.7% for Pearson’s correlation, instantaneous influence from our

model and instantaneous + causal influence from our model,

respectively. Frontal/Cingulate/Parietal R Amygdala top-down

causal paths, i.e. PCC R R Amygdala and L Parietal R L

Amygdala with ACC and R PFC feeding into PCC (Table 2), were

the features providing maximum accuracy with task-based

connectivity. In addition, 3 of the 4 paths, i.e. PCC R R Amygdala,

R PFC R PCC and L Parietal R L Amygdala, were significantly

higher (p,0.05) in controls as compared to PCE group.

Figure 1. Flow chart depicting the RCE-SVM procedure.
doi:10.1371/journal.pone.0014277.g001

Classification by Connectivity
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The evolving accuracy of the RCE-SVM classifier using resting

state connectivity features obtained from data regressed with CSF

and white matter (WM) time series is shown in the top panel of

Fig. 3, while the curves for data without regression are shown in

the bottom panel of Fig. 3. Table 2 shows the corresponding

maximum accuracies achieved and the ranking of the features for

maximum accuracy based on their SVM scores. For all the three

connectivity feature sets, i.e. Pearson’s correlation, instantaneous

influence from our model and instantaneous + causal influence

from our model, regressing out the CSF and WM time series from

resting state data improved the final accuracy from 2–4%. The

improvement seems to be larger with Pearson’s correlation than

with instantaneous and causal influences from our model. The

maximum accuracy of 90.3% was achieved by causal paths L

Amygdala R R PFC, R Amygdala R R PFC and MPFC R R

PFC obtained from data with CSF/WM regression. In addition,

all the three paths had a significantly (p,0.05) higher causal

influence in PCE group as compared to controls.

Discussion

RCE-SVM Classifier Performance
Figs. 2 and 3 demonstrate that without recursive cluster

elimination, the performance of the SVM classifier using all the

available features would have been 52.3%, 53.2%, 42.5%, 52.5%

and 59% for behavioral data, resting state voxel intensities, beta

values from task activations, task-based instantaneous plus causal

connectivity and resting state instantaneous plus causal connec-

tivity features from CSF/WM regressed data, respectively. In

comparison, the corresponding accuracies obtained with RCE-

SVM were 59%, 73.4%, 72.3%, 81.7% and 90.3%, respectively.

This demonstrates that feature extraction and feature selection are

central to the utility of machine learning for brain state

classification. Specifically, resting state effective connectivity

features seem to provide an edge over other characterizations of

brain state for the following reasons. First, as in the case of PCE,

different brain states may not necessarily give rise to different

behavior and using behavioral data for brain state classification

may not inform us about the neural correlates of behavior.

Second, in situations where disease states are better characterized

by baseline alterations in the brain, rather than during engaging

specific brain systems during task performance, univariate features

based on voxel intensities or activation beta values may have only

limited discriminatory capability. Third, many brain states in

healthy and disease populations are characterized by different

modes of interaction between brain regions rather than activity

within a given region. In such situations, connectivity, rather than

activity, is likely to be discriminatory between different brain states.

Accordingly, we observed improved accuracy with task-based

connectivity measures as compared to task-based activation

measures. However, connectivity measures further improved the

performance when they were derived from resting state data

rather than task-based data. This corroborates previous studies

which have shown that correlation-based functional connectivity

metrics from resting state data may provide useful information

about temporal synchrony of different regions which may aid in

Figure 2. The evolving performance of the RCE-SVM classifier with decreasing number of features derived from: top left-
behavioral data obtained from a working memory task with emotional distracters, top middle- resting state BOLD intensities from
9 ROIs, top right- beta values from 9 ROIs for 4 task activation conditions, bottom left- Pearson’s correlation between 9 ROIs during
task, bottom middle- instantaneous influence from our model during task, bottom right- instantaneous + causal influence from our
model during task.
doi:10.1371/journal.pone.0014277.g002

Classification by Connectivity
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Figure 3. The evolving performance of the RCE-SVM classifier with decreasing number of features derived from: top row – data
regressed with CSF and white matter time series, bottom row – data not regressed with CSF/WM time series, left column –
Pearson’s correlation from resting data, middle column – instantaneous influence from our model from resting data, right column –
instantaneous and causal influence from our model from resting data.
doi:10.1371/journal.pone.0014277.g003

Table 2. Maximum accuracy and important features for different metrics.

Metric Maximum % Accuracy Features providing maximum accuracy Rank

Behavioral Data 59 Reaction Time Negative 0-back 1

Accuracy Index Negative 0-back 2

Resting State BOLD intensities from 9 ROIs 73.4 Posterior Cingulate 1

Right Parietal 2

Beta Values from 9 ROIs for 4 Task Conditions 72.3 Right Parietal Negative 0-back 1

Left PFC Negative 1-back 2

Pearson’s
Correlation

Instantaneous
Influence from our
model

Instantaneous + Causal
Influence from
our model

Features providing
max accuracy p-value Rank

Resting state connectivity
weights with CSF/WM
regression

84 80.1 90.3 L Amygdala RR PFC 0.001 (PCE.control) 1

R Amygdala RR PFC 0.003 (PCE.control) 2

MPFC RR PFC 0.03 (PCE.control) 3

Resting state connectivity
weights without CSF/WM
regression

80.1 78.3 88.6

Connectivity weights
during task

79.2 73.3 81.7 PCC R R Amygdala 0.04 (control.PCE) 1

ACC R PCC .0.05 2

R PFC R PCC 0.03 (control.PCE) 3

L Parietal R L Amygdala 0.04 (control.PCE) 4

doi:10.1371/journal.pone.0014277.t002
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classification [3,36]. However, since functional connectivity lacks

directionality information, it may not always discriminate between

brain states if the underlying neural correlates for discrimination

depend on the pattern of causal influences between brain regions.

As we have demonstrated in the case of PCE, the causal

information seems important for obtaining high accuracy.

It is worth noting that removing physiological confounds from

resting state data using methods such as CSF/WM regression seems

to be useful because it purges the data of non-discriminatory artifacts

and hence provides higher accuracy (Table 2). Any other method for

removing physiological artifacts in the image [37] or frequency [38]

domains must have a similar effect. The comparative performance of

Pearson’s correlation, instantaneous and causal influence from our

model shows that Pearson’s correlation performs better than the

instantaneous influence from our model while the causal influences

from our model outperforms both the instantaneous metrics. Owing

to the smoothing of neuronal activity by the hemodynamic response,

relatively rapid neuronal influences occurring at time scales finer

than the sampling interval may contribute to Pearson’s correlation

between time series. However, the mVAR model removes those

causal influences from the instantaneous term in the model and it is

instead reflected in the causal terms. Consequently, the instanta-

neous term from the mVAR model taken alone may be less

informative than Pearson’s correlation. Instead, including both the

instantaneous and causal terms from our model will be more

powerful than Pearson’s correlation because it conveys purer

estimates of both types of interactions.

The relative merits of wrapper and filter methods for feature

selection in fMRI are debatable. While de Martino et al [2] found

better performance with RFE, the study by Craddock et al [3]

found that filter method performed better. However, we believe

that evidence from the use of these methods in other fields [9]

clearly points towards the superiority of wrapper methods and

hence we have employed it in this study.

Previous studies have indicated that network metrics could be

an important discriminant while studying disorders which alter the

topology of networks [36], such as in depression and schizophre-

nia, where in the small-worldness of the network is compromised

[39]. However, in the case of PCE, the hypothesis is that the

relative direction and strength of the influence between the sub-

cortical structures involved in emotion and the fronto-parietal

structures are different in controls as compared to PCE subjects.

Hence, we did not investigate network-level metrics such as

average number of links or in-out count per node. Future

applications of this method to other disorders such as depression

will investigate this aspect.

In the literature, many researchers have suggested the usage of

nonlinear SVMs so as to obtain a maximum-margin hyper plane

in a transformed feature space when the linear classifier is not able

to obtain high accuracy in the original feature space [32,40]. This

approach is appropriate when the discriminatory power of the

input feature space could no longer be improved using pattern

analysis. In our case, we have shown that this is not the case as

demonstrated by increased discriminatory power of features

derived from brain networks as compared to more traditional

features derived from behavioral data or voxel intensities. In

addition, the computational burden imposed by nonlinear SVMs

may hinder the practical application of this approach in the clinic,

where in quick decision making is important. Therefore, we have

persisted with linear SVMs in this work.

Scientific Significance of the Results to PCE
The precise way in which PCE related structural and functional

brain changes cause cognitive or behavioral deficits are far from

clear. Since not all PCE children suffer from neurobehavioral

problems, it is hypothesized that the brain has compensatory

mechanisms to provide relief from the effects of PCE. Conse-

quently, general IQ and neurobehavioral tests used to assess

children who were prenatally exposed to cocaine may not be

sensitive to the factors that are altered in PCE [41]. From the

clinical point of view, research that enables healthcare providers to

identify biological markers in children at risk, are definitely

needed. The present study, employing a pattern analysis and

machine learning approach based on resting-state fMRI and

effective connectivity, is a step in this direction. Besides the high

accuracy in group classification, results shown in the group

differences, in terms of features with the most discriminatory

power, may be informative about the neurobiological basis of

arousal dysregulation reported in previous behavioral and

neuroimaging studies of PCE [14,15,24,42]. During resting state,

higher effective connectivity from bilateral amygdala to R PFC

was observed in the PCE group. Since amygdala is typically

involved in processes involving emotion and arousal regulation

[43], the higher amygdala to PFC influence may suggest that the

exposed adolescents may have a higher baseline arousal level,

which in turn affects neural activity in the executive control

network [15]. The medial prefrontal cortex is generally considered

to be involved in continuous action monitoring and triggering

compensatory adjustments in cognitive control [44]. With a higher

emotional distraction from amygdala to PFC, PCE subjects may

also need to increase this cognitive monitoring, resulting in

increased effective connectivity from MPFC to R PFC. While

performing the task, our previous study had shown that the PCE

subjects could not suppress their amygdala activation with

increased memory load [15]. This generally indicates reduced

top-down inhibition from prefrontal and parietal regions to

amygdala. In this study, we observed lower causal influence from

PCC/Parietal regions to bilateral amygdala in PCE subjects as

compared to controls and this feature provided maximum

accuracy in distinguishing the groups based on task-based effective

connectivity, thus supporting our previous results. In addition, the

lower R PFC to PCC influence in the PCE subjects suggests that

the exposure reduced the inhibitory effect from the executive

network to default mode network, which may also underlie arousal

dysregulation observed in exposed adolescents [24].

General Significance of the Results
The framework adopted in this work is quite general in nature

with PCE being only an illustrative example of the power of this

approach. While it is difficult to claim that the conclusions of this

paper will generalize broadly to other data sets, our preliminary

investigation of the applicability of this method to other disorders

such as depression has yielded positive results [45]. Brain state

classification using neuroimaging data has applications in brain-

computer interfaces [46,47], lie detection [48], emotion detection

[49] and neurofeedback systems [50], where including the

directional connectivity information may prove to be a perfor-

mance enhancer. When brain state classification is used for disease

state prediction, our approach may aid the clinicians in

performing more accurate diagnosis of diseases in situations where

non-neuroimaging biomarkers may be unable to perform

differential diagnosis with certainty.

Conclusions
In this study, we have introduced a novel framework for brain

state classification using both instantaneous and causal resting state

connectivity derived from CPGC analysis of fMRI data as

features, in conjunction with RCE-based feature selection and
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SVM-based classification and compared its performance to

classification using behavioral metrics, voxel intensities, task

activations and task-based connectivity as features. We have

demonstrated the efficacy of the CPGC-based RCE-SVM

approach using a specific instance of brain state classification

exemplified by disease state prediction. We were able to predict,

with 90.3% accuracy, whether any given human subject was

prenatally exposed to cocaine or not, even when no significant

behavioral differences were found between exposed and healthy

subjects. This study provides a template, which can be extended to

any brain state classification problem, especially those trying to

exploit baseline differences in brain function.
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