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Capturing sleep–wake cycles by using day-to-day smartphone
touchscreen interactions
Jay N. Borger1, Reto Huber 2 and Arko Ghosh1

Body movements drop with sleep, and this behavioural signature is widely exploited to infer sleep duration. However, a reduction
in body movements may also occur in periods of intense cognitive activity, and the ubiquitous use of smartphones may capture
these wakeful periods otherwise hidden in the standard measures of sleep. Here, we continuously captured the gross body
movements using standard wrist-worn accelerometers to quantify sleep (actigraphy) and logged the timing of the day-to-day
touchscreen events (‘tappigraphy’). Using these measures, we addressed how the gross body movements overlap with the
cognitively engaging digital behaviour (from n= 79 individuals, accumulating ~1400 nights). We find that smartphone use was
distributed across a broad spectrum of physical activity levels, but consistently peaked at rest. We estimated the putative sleep
onset and wake-up times from the actigraphy data to find that these times were well correlated to the estimates from tappigraphy
(R2= 0.9 for sleep-onset time and wake-up time). However, actigraphy overestimated sleep as virtually all of the users used their
phones during the putative sleep period. Interestingly, the probability of touches remained greater than zero for ~2 h after the
putative sleep onset, and ~2 h before the putative wake-up time. Our findings suggest that touchscreen interactions are widely
integrated into modern sleeping habits—surrounding both sleep onset and waking-up periods—yielding a new approach to
measuring sleep. Smartphone interactions can be leveraged to update the behavioural signatures of sleep with these peculiarities
of modern digital behaviour.
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INTRODUCTION
There is a well-recognised need for tracking sleep in patients, as
well as in the general population. This rush to quantify sleep is
partly driven by the increased awareness that sleep is crucial for
cognitive performance and well-being. Body movements offer an
easy proxy for sleep measurements. Essentially, users wear an
accelerometer at the wrist or ankle and the recorded accelerations
i.e., body movements are automatically converted into estimates
of sleep.1,2 This popular method relies on the sharp drop in
motility at sleep onset and the sharp rise with wakefulness.1,3 The
body movements recorded at the joints may involve different
levels of cognitive engagement—from reflexes to the postural
control accompanying fine motor control. However, the extent of
cognitive engagement does not enjoy a simple linear relationship
with the movements recorded at the joints. For instance, the now
common fine finger movements on the touchscreen are
cognitively engaging, but they may result in no or negligible
signal deflections at the wrist. This lack of a simple relationship
and the widespread use of smartphones in modern behaviour
warrant an up-to-date perspective on tracking sleep based on
motor activity.
In general, modern digital interactions offer unprecedented

opportunities to quantify behaviour in the real world with major
repercussions for sleep. For instance, the timing of social
messaging such as on Twitter can be used to elaborate the
diurnal behavioural patterns.4,5 This measure of online activity is

limited in terms of capturing the behaviour continuously. For
instance, only a fraction of the digital behaviour occurs via the
social messaging server. Another approach has focused on the
mobile device itself, and sleep–wake cycles can be inferred by
machine-learning algorithms that use the hardware state of the
smartphone (i.e., phone on the charger and the screen being on or
off) as inputs and sleep diaries as the ground truth.6 This ‘black-
box’ approach is not designed to improve the fundamental
understanding of motor behaviour and sleep, but it does
underscore the value of capturing data from the smartphone
sensors in the context of sleep. However, there is a large gap
between the accuracy of phone-based sleep detection and the
objective measures of sleep.7 Regardless of the current limitations
and pending validations of these novel approaches, they do
promise an economical, easy to administer and highly scalable
measure of sleep based on existing sensors in contrast to
approaches that require extra sensors as used in standard
actigraphy.
In this study, we used standard wrist-worn actigraphy to

quantify sleep–wake cycles and in parallel recorded the time-
stamps of smartphone touchscreen interactions. Although smart-
phones have built-in accelerometers capable of monitoring body
movements—as long as it is carried by the user—the wrist-worn
approach ensures that all of the movements are independently
and continuously recorded, including when at asleep. We focused
on the Cole–Kripke algorithm, which is well studied and widely
used to infer sleep from the body movements. This algorithm has
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been validated against the gold standard or direct measure of
sleep using polysomnography.3,8–10 By merging these distinct
measures, we quantify the patterns of overlap between smart-
phone behaviour and sleep, and validate a novel approach to
measure sleep derived from the smartphone interactions alone.

RESULTS
Physical activity and smartphone usage
We estimated the variations in smartphone interactions at the
different levels of physical activity (Fig. 1). In keeping with our goal
of better understanding sleep–wake cycles, we quantified the
activity in terms of the actigraphy ‘D’ values, where D is
proportional to the sum of the acceleration at any given minute
and the surrounding minutes. Importantly, D < 1 corresponds to
sleep in the Cole–Kripke algorithm, whereas D > 7 corresponds to
high actigraphy activity which could result from a range activities
from a brisk walk to biking, and from riding a bus on a bumpy
road to climbing stairs.3 In all of the participants, the probability of
observing smartphone interactions increased when at physical
rest (D ≈ 1, Fig. 1). A subset of participants showed a bimodal
distribution such that the smartphone interactions frequently
occurred both at low and high actigraphy values. In 42/79
participants, the smartphone interactions were maximum
between the D values of 0 and 2, and 34/79 participants show
the maximum values at greater than 6. Interestingly, the
smartphone behaviour at physical rest was related to the
behaviour with high actigraphy value, such that the higher the
smartphone usage at complete physical rest (0.25 ≥ D ≥ 0) the
higher the phone usage when high actigraphy activity (D > 7, R2=
0.14, β= 1.13, t(72)= 3.33, p= 0.001). For subjects eliminated
from the analysis, please see Supplementary Table.

Comparison of tappigraphy-based sleep–wake estimations to
standard actigraphy and sleep diaries
The high probability of smartphone touches at physical rest raised
the opportunity that the putative sleep times can be simply
estimated by observing the gaps in smartphone usage. We
compared two standard methods used to estimate sleep with that
of a new tappigraphy-based algorithm based on the gaps in
smartphone usage. Pooling all of the measurements together (by
concatenating the sleep-related estimates obtained from each
participant), we found strong correlations between the putative
sleep times determined by actigraphy versus tappigraphy (Fig. 2).
For the sleep-onset times, a linear fit with a slope ≈1 well captured
the relationship (R2= 0.84, β= 0.93, t(1380)= 85.2, p < 0.0001).

For the wake-up times, there was a strong correlation between the
actigraphy (x) versus tappigraphy (y) estimates as well (R2= 0.90,
β= 0.90, t(1380)= 111.4, p < 0.0001). In terms of sleep duration
(for non-concatenated p-values from each subject see Supple-
mentary Fig. 1), tappigraphy consistently underestimated sleep
given that the slope was substantially below 1 (R2= 0.28, β= 0.49,
t(1322)= 22.7, p= 1 × 10−98). This regression yielded an intercept
of 3.9 (p < 0.0001) and x= y was at 7.6 h, suggesting that the
tappigraphy sleep durations <7.6 h are underestimates of sleep.
This could not be simply explained by the fact that the data used
were from the left wrist, whereas the phones may be handled by
the right. Using the right wrist movements, we again found a
biased estimation of sleep duration (R2= 0.30, β= 0.51, t(1318)=
23.8, p= 1.5 × 10−104 with an intercept of 3.8, p < 0.0001). A similar
pattern was found when comparing tappigraphy to sleep diaries.
For sleep-onset times and wake-up times, a linear fit with a slope
≈1 well captured the relationship between the two approaches
(for sleep-onset times: R2= 0.89, β= 0.99, t(1034)= 92.9, p <
0.0001 and for wake-up times: R2= 0.94, β= 0.99, t(1108)= 136.0,
p < 0.0001). As in actigraphy, the sleep duration was under-
estimated by tappigraphy (y) versus diary (x, R2= 0.59, β= 0.88, t
(1023)= 38.5, p= 4.71 × 10−201), and the regression model had an
intercept of 1.39 (p= 2.36 × 10−14). It is interesting to note that
how the sleep diary (y) related to actigraphy (x). The regression
model was captured with a slope ≈0.5, suggesting subjects
reported shorter durations compared with what was determined
by actigraphy (R2= 0.36, β= 0.47, t(1091)= 24.6, p= 7.42 ×
10−107). Finally, we addressed whether the sleep diary on the
smartphone may have consistently occurred right before bedtime
or right after rise time (1 entry was made per day) to contaminate
the tappigraphy algorithms, but no specific reporting pattern was
observed, and the reports were scattered through all times of the
day (Supplementary Fig. 2).

Inter-individual differences in actigraphy and tappigraphy-based
sleep–wake estimations
A key question is how engaged must any user be on the
smartphone for the tappigraphy-based metrics to accurately
reflect sleep. Considering the actigraphy-based measures as
ground truth, we found that the median sleep-onset times and
wake-up times derived from tappigraphy were well correlated to
the values obtained from actigraphy (Fig. 3, for sleep onset: R2=
0.72, β= 0.97, t(77)= 14.1, p= 4.45 × 10−23 and for wake-up
times: R2= 0.60, β= 0.83, t(77)= 10.7, p= 6.00 × 10−17). Next,
we determined the median percentage error in estimating sleep
duration against the actigraphy values to find the median
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Fig. 1 The relationship between smartphone touchscreen interactions and gross movements. a The data from a single participant showing
the extent of the overlap between smartphone interactions quantified using an App running in the background (‘tappigraphy’) and overall
physical activity measured at the wrist and quantified using an actigraphy algorithm, where D ≤ 1 is indicative of physical rest. b The
probability of smartphone interactions in 1-minute bins at different levels of physical activity quantified in steps of 0.25 D. The subjects are
sorted according to the amount of smartphone activity at D= [0–0.25]
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absolute error to be 7.2%, and median error at −2.8%, i.e., in the
majority of the sampled population sleep was underestimated
(negative error) by tappigraphy. Note that these negative errors
may well mean that actigraphy overestimates true sleep durations
rather than tappigraphy underestimates the duration. This was
further confirmed when comparing the population means derived
by using actigraphy (8.5 h ± 0.94 STD) vs. tappigraphy (8.1 h ±
1.1 STD, t(78)= 2.4, p= 0.02). Interestingly, the errors were
strongly related to smartphone usage—such that tappigraphy
overestimated sleep in comparison with actigraphy for users who
generated a low number of touchscreen touches per day, and the
errors were reversed for the high smartphone users (R2= 0.27,
β=−0.0023, t(77)=−5.23, p= 1.4 × 10−6). With the 0-error
intercept set at ≈3200 touches per day. This value offers a
guideline on the extent of engagement needed to estimate sleep

using tappigraphy. As the number of available days of measure-
ment varied from 5 to 31 days per individual, we opportunistically
addressed whether the errors were linked to the number of days
of measurement, and this was not found to be the case (R2= 0.02,
β=−0.12, t(77)=−0.62, p= 0.53).
As sleep may vary from one night to the next, we measured the

intra-individual variation in sleep duration (CoV) to find that the
actigraphy versus tappigraphy values were correlated (R2= 0.35,
β= 0.57, t(77)= 6.13, p= 3.6 × 10−8). Finally, we exploited the
demographic information to address whether the inter-individual
differences in sleep durations and sleep CoV could be explained
by the amount of phone usage (measured as number of touches
per day), age, gender (dummy variable), height and weight. Age,
height and weight were normally distributed, but the sample was
focused on a rather narrow age range (mean age was 23 ±

n = 1382 nights
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Fig. 2 Comparison of tappigraphy-based sleep estimates with that of actigraphy. a Actigraphy watches were used to quantify the amount of
ambient light, near-body temperature (not shown) and the body movements. The smartphone touches were simultaneously recorded by
using an App running in the background. We used the Cole–Krpike algorithm to extract the putative sleep times from actigraphy, and a new
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smoothing function
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2.6 STD). For the actigraphy-based sleep duration, the overall
multiple regression model was not significant (R2= 0.03, F(5, 71)=
0.44, p= 0.82). When using sleep CoV as the dependent variable,
the full regression model was significant (R2= 0.237, F(5, 71)=
3.38, p= 0.001), and the variation reduced with age (β=−0.01,
t(71)=−2.08, p= 0.04, p > α post Bonferroni correction) and
increased with weight (β= 0.003, t(71)= 3.02, p= 0.004). Next, we
performed the same analysis using the sleep duration and sleep
CoV values derived from tappigraphy. For the sleep duration, the
overall model was highly significant (R2= 0.30, F(5, 71)= 6.17, p=
8.39 × 10−5). The higher the phone usage the shorter the duration
(β=−0.0002, t(71)=−4.71, p= 1.2 × 10−5), and the larger the
weight the shorter the duration (β=−0.023, t(71)=−2.09, p=
0.04, p > α post Bonferroni correction). For sleep CoV, the overall
model was significant (R2= 0.23, F(5, 71)= 4.25, p= 0.002). The
higher the phone use the lower the variation (β=−1.7 × 10−5,
t(71)=−3.19, p= 0.002), and females were less variable than
males (female= 1, β=−0.09, t(71)=−3.03, p= 0.003).

Smartphone usage in actigraphy-derived ‘sleep’
Some of the observations described above were consistent with
the idea that actigraphy can overestimate sleep. If this is the case,
smartphone touches must be visible even during the putative
sleep times determined by actigraphy. First, we quantified the
probability of observing a smartphone touch during the
actigraphy-derived sleep. Users were found to be regularly
interacting on the phone in the putative sleep period (Fig. 4).

Next, we addressed the temporal distribution of the probability of
observing smartphone touches in 3 -min bins after the sleep onset
and before the wake-up time. This analysis was necessary given
that simply comparing the population central tendencies sug-
gested that actigraphy overestimated sleep by 0.4 h. However,
neither does that simple comparison indicate which parts of the
night are most vulnerable to the phone nor does it capture the
low probability disruptions that may consistently occur across the
population. According to the temporal distribution analysis, the
probability of observing a touch remained significantly greater
than 0 for ≈2 h after sleep onset and before wake-up time.
Unsurprisingly, the body movements were observed through the
night, albeit lower than at sleep onset or wake-up time. The
smartphone touchscreen events that interrupted the actigraphy-
based sleep could be used to quantify sleep fragmentation or the
extent of un-interrupted sleep experienced by the users (Fig. 5).
According to this analysis, only ~20% of the sampled population
regularly (at 25th percentile, ~40% at 50th percentile) experienced
smartphone-free sleep. Scatter plots with probability density
estimates were generated using Nils Haentjens’s scatter_kde
function implemented by using MATLAB.

DISCUSSION
This study revealed the state of physical activity during the
cognitively engaging fine movements captured on the smart-
phone touchscreen. The smartphone touches consistently occu-
pied the periods of low physical activity, and this has substantial
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population. d The relationship between the individualised measurement error and smartphone usage in the sampled population

J.N. Borger et al.

4

npj Digital Medicine (2019)    73 Scripps Research Translational Institute



repercussions for sleep. On the one hand it offers a new
opportunity to quantify sleep, and on the other hand it offers a
highly quantitative insight into the extent of integration of
modern digital behaviour with sleep behaviour, in particular with
falling asleep and waking up. According to our results, smart-
phone touches recorded in the background can yield a reliable
proxy measure of sleep and, surprisingly, the digital interactions
are as much a part of falling asleep as they are a part of waking up.
Firmly understanding the link between smartphone usage and

physical activity is a key step for sleep research and medical
conditions associated with physical inactivity.11 For the former,
there is no consensus on to what extent smartphone usage or
digital media usage influences sleep, but the conventional
observations have vigorously employed self-reports which can
be expected to provide a noisier, more time consuming and
expensive understanding compared with the sensors used
here.12,13 We consistently find that smartphone interactions
occurred at rest. In this study, we focused on a measure of
physical activity that is typically used in resolving the sleep–wake
state in the popular Cole–Kripke algorithm.3 This measure uses the
accelerations recorded at the wrist as raw inputs. A well-known
limitation of actigraphy is that while low acceleration values with
the watch firmly attached on to the wrist is a reliable indicator of
physical rest, the higher values may be contaminated for instance
by a bumpy ride in a vehicle. Therefore, when considering our
finding that there can be a second peak of smartphone usage with

high actigraphy values, we must take the technical limitation of
actigraphy into consideration.
We deployed a simplistic algorithm to determine the putative

sleep onset and wake-up times based on the smartphone touches.
This tappigraphy algorithm essentially combined two safe
assumptions. First, the smartphone screen can be only touched
when awake. Second, users follow a 24-h sleep–wake cycle. The
first assumption provided us with a list of smartphone usage gaps
of which at least one contained sleep duration. The second
assumption helped select the maximum gap which overlapped
with the inactive phase—and this gap was identified as putative
sleep. This simple approach resulted in sleep-onset times and
wake-up times, which were highly correlated with the times
extracted from the standard actigraphy or sleep diary. Admittedly,
there is a scope for improvement—neither can the current
analysis detect day-time naps nor can we be sure it would
accurately reflect sleep in subjects who cannot follow the 24 -h
cycle as in shift workers or in sleeping disorders such as insomnia.
Day-time naps in particular cannot be reliably captured using
actigraphy alone, and the development & validation of nap-
specific algorithms based on Tappigraphy must rely on additional
behavioural or physiological readouts.14 However, our initial
version can be a powerful tool for quantifying sleep in individuals
who follow diurnal behavioural patterns and addressing its utility
in shift workers or sleeping disorders is a necessary next step.
Interestingly, the sleep durations were typically shorter when

measured by using tappigraphy in comparison with actigraphy or
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using Bonferroni correction

J.N. Borger et al.

5

Scripps Research Translational Institute npj Digital Medicine (2019)    73 



sleep diaries. The overestimation of sleep by actigraphy (in the
order of 15 min) is a well-recognised methodological issue and is
typically explained by the delay between reduced motility and
falling asleep.3,10,15 Our findings suggest a more complex scenario
in the sense that there is a highly active period—in terms of
cognitively engaging smartphone behaviour—between the two
sleep-related landmarks. A surprising finding was the prevalence
of smartphone interactions surrounding the wake-up times,
suggesting another source of sleep-overestimation in actigraphy.
In sum, smartphones occupy the apparently quiescent periods
between going to bed and falling asleep, and waking up and
getting out of bed. These findings raise the crucial question of
whether these periods were used differently in terms of cognitive
activity prior to the introduction of smartphones in human
behaviour. Regardless, due to the general consensus that a
quiescent period before sleep is integral to initiating sleep,
combining tappigraphy and actigraphy (or polysomnography)
may offer highly relevant measures of sleep hygiene.16 Indeed,
according to our estimates based on the integrated measure of
sleep fracture fraction—that quantifies the extent of actigraphy
sleep involving smartphone touchscreen disturbances—only 40%
of the users regularly experience undisturbed sleep.
We opportunistically used the demographic data assimilated on

age, gender, height and weight to address how they related to
sleep measures derived from tappigraphy and actigraphy. In terms
of sleep duration, actigraphy-based values did not relate to the
demographic information. However, according to tappigraphy,
there was a weak link (tendency) to body weight and a strong link
to overall phone usage such that both variables negatively
correlated with sleep duration. An interesting pattern of the
results emerged when we focused on the night-to-night variations
in sleep using tappigraphy or actigraphy. Actigraphy revealed that
individuals with higher weight showed more irregularity in sleep.
In tappigraphy, we found a striking gender difference, with
females being more regular sleepers than males. The findings
from such a small sample are by no means conclusive, but it does
offer an interesting starting point in using these methods to
address inter-individual differences and offers a preliminary
suggestion that tappigraphy may be sensitive to distinct features
compared with actigraphy.
This study offers tappigraphy as a clear complement and

reflection to actigraphy in sleep measurements. However, for
tappigraphy to replace actigraphy in sleep measures it must be
tested against polysomnography. For instance, the pending
measures may clarify the physiological states surrounding the
near-bedtime and near-rise time touchscreen touches. Interest-
ingly, it would also help compliment the sleep fracture fraction
measure derived here: which sleep stages are most susceptible to

such fractures? However, as polysomnography requires the
laboratory setting tappigraphy may less faithfully reflect day-to-
day sleep in such artificial conditions. Another factor pertaining to
the application of tappigraphy in sleep measurements is that the
current study sample consisted almost exclusively of young adults
and a systematic exploration is needed to address if the findings
here can be generalised to the rest of the population. Finally,
although focusing on the cognitively engaging touchscreen
interactions negates false positives when quantifying sleep
disturbances, they also make the measurement insensitive to
wakeful periods where the person is engaged in activities like
watching long videos on the phone or in long phone-free
activities, like watching TV while falling asleep. A cross-platform
digital logging in addition to tappigraphy may help address this in
a next step.
According to this study, smartphones appear truly integrated

into modern human behaviour, including into our sleeping habits.
Quantifying the extent of integration may not only yield a better
understanding of behaviour in the real world but also yield new
measures of sleep. The sleep measures introduced here do not
rely on high smartphone usage as such, but rather rely on the
phenomenon that smartphones are used at rest and that they can
be easily used even when in bed. The favourable consequence of
this deep digital integration is that we can now develop highly
scalable measures of sleep. Whether the integration is detrimental
to sleep itself needs to be clarified.

METHODS
Participants and recruitment
Participants from the campus of Leiden University were recruited by using
advertisements on a closed online platform and department-wide emails.
Candidates with known neurological and psychiatric diagnosis based on
self-reports were excluded from recruitment. Due to technical limitations,
those users with an Android operating smartphone were invited to
participate and under the condition that the phone remains strictly un-
shared during the study period. A total of 88 right-handed participants
were recruited (44 females, 16–45 years of age, mean age 23). The
experimental procedures used here were approved by the Ethical
Committee at the Institute of Psychology at Leiden University. All the
participants provided written and informed consent and were compen-
sated for their time using a cash reward or course credits. The weight with
one layer of clothing, height and the year/month of birth was collected
from each participant. As a part of a larger study, the volunteers also
consecutively participated in a range of laboratory assessments beyond
the scope of this report.
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Actigraphy measurement
The gross movements (three-axis accelerometer), the ambient light and
near-body temperature were measured using GENEACTIV watches
(Activinsights, Cambridgeshire, UK). Participants were instructed to wear
the watch on both wrists for a minimum of 2 weeks, and the data from the
left wrist are primarily presented here. Four participants were unable to
follow the instruction due to reported discomfort and were eliminated
from the study. Participants who only intermittently removed the watches
during part of the observation period were not eliminated, as these
periods could be accounted for using the near-body temperature
measurements. The watches were set to acquire the data at 50 Hz and
the data were recovered after 14 days of acquisition or earlier, only to be
reset for continued use if the subjects were willing to participate for an
additional week.

Tappigraphy measurement and on-phone sleep diary
The touchscreen interactions were quantified using the TapCounter App
(QuantActions Ltd. Lausanne, Switzerland).17 The App was installed by
each user from the Google Playstore (Google, Mountain View, USA). The
App is designed to gather the precise timestamps of all touchscreen
interactions and operates in the background. Only those touchscreen
interactions which occurred during the ‘unlocked’ state of the screen were
considered here. Each user was provided with a unique user code—and
when entered into the App, the data were streamed to the cloud along
with the unique code for further processing. All data were encrypted
during transmissions. Users were instructed to note the bed, sleep, wake-
up and out-of-bed times every day during the actigraphy measurements
on a ‘notes’ feature built into the TapCounter (sleep and wake-up reports
are were here). The nights after which the participants failed to report
these times were eliminated from the analysis pertaining to sleep diaries
versus tappigraphy, and sleep diaries versus actigraphy. The app failed to
operate in five participants due to missing device permissions.

Participant instructions
Participants were not explicitly made aware that any analysis linking
actigraphy, sleep diaries and tappigraphy prior to the de-briefing at the
end of the observation period. Through the observation period, the
participants were under the impression that the sleep-related variables
from the watches and diaries would be linked to the laboratory measures
obtained towards a broad study on sensorimotor properties. Towards
actigraphy, the participants were instructed to wear the watches
throughout the observation period (24 h/day). No instruction was given
as to where to place the smartphone (as in next to the bed or not) in the
same period. Towards the sleep diaries, the participants were instructed to
use the ‘notes’ feature on the TapCounter App whenever convenient, but
in the morning period to report on the previous night’s sleep using a single
entry per day. The timestamps of these notes were further recorded to
screen for any consistent patterns in the note-taking behaviour or to
address whether participants adhered to the instructions.

Actigraphy algorithm
The accelerations gathered along the three axes by the actigraphy watches
were combined using the sum of squares and low-pass filtered at 2 Hz. To
estimate the putative sleep and wake times, we employed the standard
Cole–Kripke algorithm on the filtered data with slight modifications.3 A key
part of this algorithm—the minute-by-minute categorisation of the data
into rest-active states based on the weighted sum of the current minute
with that of the surrounding minutes—was extracted to study the physical
activity state during smartphone usage. The algorithm was implemented
on MATLAB (MathWorks, Natick, USA) and used pre-existing codes.18 We
modified the codes such that the automatic scoring of sleep and wake by
the Cole–Kripke algorithm was further checked by the near-body
temperature and ambient light measurements. Firstly, any putative sleep
period where the median temperature dropped below 25 °C was ignored
— removing instances where the user removed the watch from the body.
Secondly, any putative sleep period where the median ambient light levels
failed to drop below 25 lux was ignored and thus restricting the analysis to
nighttime sleep and ignoring day-time naps. Thirdly, the putative sleep
times had to contain a 10% (36 min) overlap with the 6 -h low-activity
period determined using a 24 -h sinewave fit (Casey Cox’s cosinor function
implemented in MATLAB).19 This final step is commonly substituted using
sleep diaries, but our approach avoided mixing the subjective diary entries

with the objective measurements to determine sleep durations—ensuring
the estimated durations are entirely objective.

Tappigraphy algorithm
The raw touchscreen timestamps were parsed into MATLAB using the
parser extractTaps (QuantActions Ltd. Lausanne, Switzerland). The
touchscreen timestamps were then processed using a separate algorithm
(getresttimesphone, implemented in MALTAB) designed to gather the gaps
in smartphone use at the circadian rest phase (i.e., at the putative night).
To elaborate on this algorithm, first, the phone data were reduced to
binary states in 60-s bins (1 as active and 0 as rest). The activity was further
processed using a cut-off (5% in an hour threshold) such that the brief
periods of activity surrounded by inactivity were labelled as rest. Next, we
extracted all of the continuous gaps in smartphone activity, such that the
gap in usage was greater than an arbitrarily set 2 h threshold. In a parallel
set of computations, we obtained a 24 -h sinewave fit on the time series of
smartphone interactions using the Cosinor analysis (Casey Cox’s cosinor
function implemented in MATLAB).19 This sinewave fit was then used to
determine the 6-h long periods with the least activity in the tapping data
in 24 -h windows. The two parallel streams were combined to select those
activity gaps which had a minimum of arbitrarily set 10% overlap (36 min)
with the 6 h period, and these gaps were labelled as ‘sleep’.

Statistical analysis
Simple linear regressions (using the bi-square fitting method, implemented
using the fitlm function in MATLAB) were employed for all of the analysis,
except that for the analysis including demographic information where
multiple regression was used. The simple pairwise regression was the
method of choice where the relationship between a traditional parameter
—from actigraphy or sleep diary—was compared against the output of
tappigraphy.20 These paired comparisons were conducted on concate-
nated data with the resolution of each night and with non-concatenated
data with the resolution of each individual. The concatenation for bed
times, wake-up times and sleep duration, from one subject say S1 with
another S2 say for an estimate e: Sc= S1 ei∈{1,...,m} ∥S2 ei∈{1,...,n}, where m and
n are the number of nights recorded for S1 and S2, respectively, and Sc is
the concatenated data. The subsequent subject’s data, say S3 was
concatenated to Sc and so on. For bed times and wake-up times, to
enable the correlations of values from a 24 h clock in a linear space a
simple transformation for the sleep onset values under 10 am, such that
01 h in past midnight was considered as 25 h. Non-concatenated data were
used to study inter-individual differences and given the importance of
central tendency estimate of sleep (median sleep duration, and the
corresponding coefficient of variation, CoV), we used tappigraphy versus
actigraphy paired comparisons.21 Pairwise regression was also used to
address the dependency of measurement error in tappigraphy (evaluated
against actigraphy) versus smartphone usage. The simple regression
method was also used to address how much phone use is needed to
obtain useful tappigraphy-based estimates (therefore serving to establish
an inclusion criterion in future studies based on phone usage alone).
Multiple regression was used in the explorative analysis of how the

demographic information was related to the key sleep metrics of sleep
median and CoV. The purpose of this analysis was to illustrate the nature of
the relationships that may be discovered when using tappigraphy or
actigraphy independently. Four different regression models were tested
with the following dependent variables: actigraphy-based median sleep
duration and CoV, and tappigraphy-based median sleep duration and CoV.
Towards all of these models, the following explanatory variables were
used: phone usage (measured as the number of touches per day), age,
gender (dummy variable), height and weight. Each model was used to test
five hypotheses simultaneously, and the corresponding t test α (set at 0.05)
was Bonferroni corrected for this multiple comparison (the values which
were >α post correction, but <0.05 are still noted in the results and
indicated as such due to the exploratory nature of this analysis). In these
multiple regressions, the two subjects with ages higher than 35 were
excluded as outliers (>5 STD from the mean age). The subject elimination is
detailed in the Supplementary Table, and the statistics in the results
section is reported with the corresponding degrees of freedom. When
MATLAB estimated p-value was at 0, then p < 0.0001 is used to describe the
results.
Paired t test was used to compare the median sleep durations (from

each individual) obtained using actigraphy versus tappigraphy in the
sampled population (α= 0.05). In a separate analysis, one sample t tests of

J.N. Borger et al.

7

Scripps Research Translational Institute npj Digital Medicine (2019)    73 



mean probability of phone interactions in 3 -min bin versus 0 were
conducted to establish the dynamics of interrupted nights (α= 0.05,
Bonferroni corrected).

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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